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Introduction

Transcription factors (TFs) are sequence-specific DNA-binding proteins that regulate gene expression in all organisms [START_REF] Lelli | Disentangling the Many Layers of Eukaryotic Transcriptional Regulation[END_REF][START_REF] Lambert | The Human Transcription Factors[END_REF]. They constitute a large number of protein-coding genes (between 4% to 10%) in the genomes of all species [START_REF] Babu | Structure and evolution of transcriptional regulatory networks[END_REF]. For example, in the model plant Arabidopsis thaliana, 2492 genes encode TFs, accounting for more than 9% of its total protein coding genes [START_REF] Swarbreck | The Arabidopsis Information Resource (TAIR): Gene structure and function annotation[END_REF][START_REF] Pruneda-Paz | A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors[END_REF]. TFs orchestrate gene regulation by binding to their cognate DNA binding sites (TFBS) that are usually located in cis-regulatory regions. Upon binding to a TFBS, some TFs are able to recruit epigenetic factors, such as chromatin remodelers (e.g. BRAHMA and SPLAYED in plants [START_REF] Bezhani | Unique, Shared, and Redundant Roles for the Arabidopsis SWI/SNF Chromatin Remodeling ATPases BRAHMA and SPLAYED[END_REF]) or modifiers (e.g. Polycomb Repressive Complexes (PRC) [START_REF] Xiao | Polycomb repression in the regulation of growth and development in Arabidopsis[END_REF]) to alter chromatin states.

TFs can also interact with components of transcriptional machineries, such as cofactor (e.g. Mediator and SAGA complexes in animals [START_REF] Allen | The Mediator complex: a central integrator of transcription[END_REF][START_REF] Baptista | SAGA Is a General Cofactor for RNA Polymerase II Transcription[END_REF]), general transcriptional factors [START_REF] Müller | Developmental regulation of transcription initiation: More than just changing the actors[END_REF] and RNA polymerase II for regulation of transcriptional initiation. The interplay between TFs and these factors together leads to robust and dynamic gene expression regulation [START_REF] Spitz | Transcription factors: From enhancer binding to developmental control[END_REF][START_REF] Voss | Dynamic regulation of transcriptional states by chromatin and transcription factors[END_REF].

TFs recognize TFBS in a sequence-specific manner as revealed by structural studies of protein-DNA complexes [START_REF] Paillard | Analyzing Protein-DNA Recognition Mechanisms[END_REF][START_REF] Rohs | Origins of Specificity in Protein-DNA Recognition[END_REF] and next generation sequencing (NGS) techniques such as SELEX-seq and ChIP-seq (Table 1). In the last decade, these NGS techniques have revolutionized the exploration of the TF binding landscape both in vitro and in vivo [START_REF] Koboldt | The next-generation sequencing revolution and its impact on genomics[END_REF]. This has resulted in many databases for TFBS deposition and profiling, such as TRANSFAC [START_REF] Matys | TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes[END_REF], JASPAR [START_REF] Khan | JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework[END_REF], UniPROBE [START_REF] Hume | UniPROBE, update 2015: New tools and content for the online database of protein-binding microarray data on protein-DNA interactions[END_REF], HOCOMOCO [START_REF] Kulakovskiy | HOCOMOCO: A comprehensive collection of human transcription factor binding sites models[END_REF], CIS-BP [START_REF] Weirauch | Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity[END_REF] and SwissRegulon [START_REF] Pachkov | SwissRegulon, a database of genome-wide annotations of regulatory sites: Recent updates[END_REF]. Such efforts have substantially boosted our understanding of interactions between TFs and TFBSs in different species, tissues and different developmental stages. While a great deal of progress has been made to map TFBS, the resulting models are often poorly predictive of actual gene regulation.

This can be due to poor modeling and prediction of TFBS, non-productive TF binding (i.e. that does not result in gene regulation) or a combination of the two. Here, we will focus on the more tractable question of how to model TFBS. As transcriptional regulation is a highly dynamic process that occurs in a cell and tissue-specific manner, to better understand such a complex process unbiased quantitative modeling of TFBS with improved prediction power of TF binding is highly demanded. This includes taking into account of variables such as nucleosome positioning, chromatin states, methylation patterns and the 3D structure of the genome, all of which greatly impact transcription factor binding and, for a subset of these binding events, gene expression. Therefore, these variables need to be incorporated into any model to better describe functional TF binding in vivo and the concomitant gene regulation.

In this review, we address how TFBS are identified experimentally, how the TFBS models can be built in silico, and their optimization strategies. We further integrate context variables into the TFBS model in order to better understand gene regulation networks, evolution and plant diversity (for an outline of the review, refer to Figure 1).

Throughout the review, we use examples from case studies of TFs that are involved in flower development, a developmental transition that involves the activation of a wealth of genes that are otherwise silent and the concomitant repression of a subset of genes.

TFBS modeling

TFs read genomic DNA sequences in three fundamental ways, namely base readout, indirect readout and shape readout [START_REF] Rohs | Origins of Specificity in Protein-DNA Recognition[END_REF][START_REF] Slattery | Absence of a simple code: How transcription factors read the genome[END_REF]. In base readout, TFs recognize a given nucleotide sequence by physical interactions between amino acid side chains and accessible edges of the base pairs of DNA.

These interactions include hydrogen bonding, hydrophobic interactions and the formation of salt bridges. Indirect readout involves mostly interactions between the TF and the DNA phosphate backbone, whose position is influenced by the nature of the base but not as strongly as in base readout. In shape readout [START_REF] Abe | Deconvolving the recognition of DNA shape from sequence[END_REF][START_REF] Yang | Transcription factor family-specific DNA shape readout revealed by quantitative specificity models[END_REF], TFs recognize the structural features of DNA, such as DNA bending, groove width and unwinding [START_REF] Stella | The shape of the DNA minor groove directs binding by the DNA-bending protein Fis[END_REF][START_REF] Chen | Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion[END_REF][START_REF] Hancock | Control of DNA minor groove width and Fis protein binding by the purine 2-amino group[END_REF]. Although once considered as mutually exclusive driving forces for DNA recognition, recent studies have shown that most TFs likely combine base, indirect and shape readout to recognize their TFBSs. Indeed, the integration of these features has been shown to improve TFBS prediction (Zhou et al., 2015;[START_REF] Mathelier | DNA Shape Features Improve Transcription Factor Binding Site Predictions In Vivo[END_REF].

Experimental methods to identify TFBS

With the emergence of NGS technologies, many NGS-based methodologies, both in vitro and in vivo, have been developed for determining TFBSs. Here we concentrate on some of the most widely used and recently developed methods and discuss their advantages and limitations (Table 1).

ChIP-seq has long been the gold standard for detecting genome-wide TFBSs bound by a given TF in vivo [START_REF] Johnson | Genome-wide mapping of in vivo protein-DNA interactions[END_REF][START_REF] Robertson | Genomewide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing[END_REF][START_REF] Kaufmann | Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP)[END_REF]. In a standard ChIP-seq protocol, sample tissues are treated with a crosslinking reagent and subjected to nuclei purification to isolate chromatin containing TF-DNA complexes. Generally, an additional step of chromatin shearing by sonication is applied before the final step of chromatin immunoprecipitation (IP) using a TF-specific antibody. The IP product containing enriched DNA fragments that are recognized by the TF of interest is then subjected to NGS sequencing. ChIP-seq has been successfully used routinely in many laboratories. However, standard ChIPseq protocols have intrinsic limitations and technical drawbacks [START_REF] Park | ChIP-seq: Advantages and challenges of a maturing technology[END_REF]. One of the limitations comes from sonication, a process that is highly irreproducible and produces variable DNA fragment sizes that are difficult to sequence. The other limitation is crosslinking, which produces low signal to noise ratio and many false positives. To overcome such limitations, many ChIP-seq variant methods have been developed, including ORGANIC [START_REF] Kasinathan | High-resolution mapping of transcription factor binding sites on native chromatin[END_REF], ChEC-seq [START_REF] Zentner | ChECseq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo[END_REF], CUT&RUN [START_REF] Skene | An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites[END_REF] and SLIM-seq [START_REF] Gutin | Fine-Resolution Mapping of TF Binding and Chromatin Interactions[END_REF] (refer to Table 1 for unique features and details of these methods), all of which use micrococcal nuclease (MNase) to fragment chromatin, therefore avoiding sonication.

Due to the mild conditions of DNA fragmentation by MNase, these methods do not denature or disrupt TF-DNA complexes and eliminate the requirement of crosslinking. These protocols also require substantially lower amounts of input materials and are thus feasible for low-input applications. Processing of IP enriched DNA fragments for downstream NGS application poses another challenge in ChIPseq and is often time-consuming. To simplify the process, ChIPmentation applies Tn5 transposase directly to bead-bound chromatin, allowing single-step NGS compatible DNA library preparation [START_REF] Schmidl | ChIPmentation: Fast, robust, low-input ChIP-seq for histones and transcription factors[END_REF] (Table 1).

ChIP-seq and its variants not only identify TFBSs in vivo, but also provide a wealth of information such as detection of binding sites bound by co-binders of the TF. As such, however, this also poses a challenge in distinguishing the true TFBSs from indirect binding mediated by a TF partner. ChIP-seq can be complemented by DNA binding assays performed in vitro using recombinant TFs. Among the most widely used in vitro techniques are protein binding microarrays (PBM) [START_REF] Berger | Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities[END_REF][START_REF] Berger | Universal protein-binding microarrays for the comprehensive characterization of the dna-binding specificities of transcription factors[END_REF] and SELEX-seq [START_REF] Jolma | Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities[END_REF] (Table 1). Both methods allow high-throughput identification of TF binding specificities in vitro, with such information useful to predict TFBS in genomic sequences, however, they employ synthetic randomized DNA that lack at least some genomic DNA sequence properties known to impact TF binding, including non-physiological primary sequences, core motif flanking regions, and lack of chemical modifications, such as cytosine methylation. To overcome these biases, DAP-seq (DNA affinity purification sequencing) has been recently developed, which uses fragmented genomic DNA as substrates for IP and recombinant TFs [START_REF] O'malley | Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape[END_REF][START_REF] Bartlett | Mapping genome-wide transcription-factor binding sites using DAP-seq[END_REF] (Table 1). As DNA methylation patterns are conserved in genomic DNA, DAP-seq allows genome-wide mapping of the epicistrome and the discovery of TF binding specificity from genomic DNA. Furthermore, when combined with ampDAP-seq, which uses amplified and thus demethylated genomic DNA as substrates, a comprehensive mapping of both the cistrome and the epicistrome can be derived for a given TF. Compared with ChIP-seq and its variants, DAP-seq can be performed in a high-throughput manner with lower costs, as recently demonstrated [START_REF] O'malley | Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape[END_REF]. Despite these advantages, DAP-seq has its limitations, for example, some TFs are not stable when recombinantly expressed and thus not compatible with DAPseq, others require interacting partners for their DNA binding activity, and many TFs have distinct DNA binding properties in the presence of co-factors. These limitations have to be taken into account during experiment design and data analysis. Moreover, it has to be noted that DAP-seq lacks cellular chromatin context, therefore, combination of in vitro DAP-seq and in vivo ChIP-seq would be an informative approach regarding TFBS modeling and in vivo TF binding prediction.

Model TFBS in silico

In order to make accurate de novo prediction of binding sites of a given TF in the genome, a quantitative TFBS model that is representative of TF-DNA binding affinity is required. This could be derived from a set of known TFBSs using computational methods. Here we discuss how conventional modeling methods could be improved by integrating complex features, such as sequence position dependencies and DNA shape features, which have been shown to play a role in determining TF-DNA specificity. We focus on the most recent and representative TFBS modeling algorithms (Table 2), other algorithms have been extensively reviewed elsewhere [START_REF] Tompa | Assessing computational tools for the discovery of transcription factor binding sites[END_REF][START_REF] Hombach | A systematic, large-scale comparison of transcription factor binding site models[END_REF].

Position weight matrix

Position weight matrix (PWM) is the most widely used model to represent TF-DNA binding specificity [START_REF] Schneider | Sequence logos: A new way to display consensus sequences[END_REF][START_REF] Stormo | Determining the specificity of protein-DNA interactions[END_REF]. Briefly, from a collection of TFBSs, a matrix is built that gives the frequency of each nucleotide at each position of the motif. Based on these frequencies, a PWM or position specific scoring matric (PSSM) can be computed that gives a log-scale value to each nucleotide at each position. Based on the PWM, a score can be calculated for any sequence corresponding to the sum of all values at each position. The logo representation of a PWM illustrates the information content at each position and represents the four bases depending on their frequency (Figure 2).

Dependencies

PWMs provide good approximation of TF-DNA interactions in most cases, and can be generated from various datasets, ranging from a small set of known TFBSs to TF-DNA binding data derived from high-throughput assays. However, standard PWM assumes that each position within a TFBS contributes to binding affinity independent of other positions, and is thus unable to represent inter-base dependencies, which have been observed for some TFs [START_REF] Bulyk | Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors[END_REF][START_REF] Tomovic | Position dependencies in transcription factor binding sites[END_REF][START_REF] Badis | Diversity and complexity in DNA recognition by transcription factors[END_REF]. Various models that take into account these dependencies have been shown to outperform standard PWM in de novo prediction. For example, the MORPHEUS program allows to introduce di-and tri-nucleotide position dependencies in PWM and has been successfully applied to plant TFs with, in some cases, improved predictive power [START_REF] Moyroud | Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor[END_REF][START_REF] Minguet | MORPHEUS, a webtool for transcription factor binding analysis using position weight matrices with dependency[END_REF] (Table

2).

Several approaches can be taken with respect to how and what dependencies are to be integrated into the modeling algorithm. Some consider pairwise dependencies between adjacent and/or distal positions, such as the binding energy model (BEM) [START_REF] Zhao | Improved models for transcription factor binding site identification using nonindependent interactions[END_REF], dinucleotide weight matrices (DWM) [START_REF] Siddharthan | Dinucleotide weight matrices for predicting transcription factor binding sites: Generalizing the position weight matrix[END_REF] and TF Flexible Model (TFFM) [START_REF] Mathelier | The Next Generation of Transcription Factor Binding Site Prediction[END_REF] (Table 2). Others introduce higher-order k-mer features, that take into account all possible sequences with length k, such as the feature motif model (FMM) [START_REF] Sharon | A feature-based approach to modeling protein-DNA interactions[END_REF] (Table 2). In some cases, model complexity can increase dramatically when arbitrary positions or unconstrained k-mer features are used and become prone to be overfitting.

Alternative approaches start from a model without dependencies, and use a greedy algorithm to improve the model by adding dependency features iteratively [START_REF] Hu | On the detection and refinement of transcription factor binding sites using ChIP-Seq data[END_REF][START_REF] Santolini | A general pairwise interaction model provides an accurate description of in Vivo transcription factor binding sites[END_REF]. Thus, dependency features are iteratively added until no further feature could be found to improve the model. Others use Bayesian Markov models (BaMM) of order k that take into account dependencies between one nucleotide and the k previous positions [START_REF] Kiesel | The BaMM web server for de-novo motif discovery and regulatory sequence analysis[END_REF]. Complex models integrating dependency features generally outperform simple PWM models, however, some of these models require more expertise to apply and repeated manual attempts to be trained correctly and are thus not facile to use. This constitutes one of the limiting factors that restricts these models from being used routinely in the community.

In Table 2 we summarize features of some of the most recent models.

Shape features

Sequence-based models provide accurate estimation of base readout, however, it cannot explain why some TFs, which have highly conserved DNA-binding domains, bind different sequences genome-wide. For example, the TF paralogs, androgen and glucocorticoid receptors, which bind similar DNA motifs by a set of identical amino acids [START_REF] Shaffer | Structural basis of androgen receptor binding to selective androgen response elements[END_REF][START_REF] Meijsing | DNA binding site sequence directs glucocorticoid receptor structure and activity[END_REF], share only a third of their genomic binding sites (Zhang et al., 2018a). It turns out that DNA shape features contribute significantly to distinguish bona fide TFBSs from others. In the last decade, many studies have revealed that indeed DNA shape features play an important role for determining TF-DNA binding specificity [START_REF] Rohs | The role of DNA shape in protein-DNA recognition[END_REF][START_REF] Abe | Deconvolving the recognition of DNA shape from sequence[END_REF]Yang et al., 2017). A most recent example is the MADS-box TF, SEPALLATA3 (SEP3), a key regulator of flower organ specification [START_REF] Muiño | Structural determinants of DNA recognition by plant MADS-domain transcription factors[END_REF]Hugouvieux et al., 2018).

MADS-box TFs bind to CArG-boxes with consensus sequence of 5'-CC(A/T)6GG-3', yet only a fraction of the CArG-boxes available genome-wide is bound by SEP3.

Käppel and colleagues showed that SEP3-DNA binding affinity correlates well with the width of minor groove of CArG-boxes probes, a shape readout mechanism involves a conserved arginine residue that contact minor groove [START_REF] Käppel | The Floral Homeotic Protein SEPALLATA3 Recognizes Target DNA Sequences By Shape Readout Involving A Conserved Arginine Residue In The MADS-Domain[END_REF].

Although shape features are mainly determined by the TFBS core motif, it can also be affected by flanking regions. In the past, these regions have been overlooked in characterizations of TF binding due to their low sequence information. Now both bioinformatic analysis and biochemical evidence have accumulated pointing towards their importance for TF binding. For example, Dror and colleagues showed a widespread role of the motif environment in TF binding by analyzing some 300 TFs binding data from SELEX-seq and ChIP-seq, and that the preference for a specific environment differs between distinct TF families [START_REF] Dror | A widespread role of the motif environment in transcription factor binding across diverse protein families[END_REF]. Selective binding of core motifs with different flanking sequences have also been observed by in vitro assays for several TFs [START_REF] Gordân | Genomic Regions Flanking E-Box Binding Sites Influence DNA Binding Specificity of bHLH Transcription Factors through DNA Shape[END_REF][START_REF] White | Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChIP-seq peaks[END_REF][START_REF] Afek | Protein-DNA binding in the absence of specific base-pair recognition[END_REF][START_REF] Levo | Unraveling determinants of transcription factor binding outside the core binding site[END_REF].

Introducing shape features into TFBSs modeling requires integrating several distinct shape parameters, including Minor Groove Width, Propeller Twist, Roll and Helix Twist. These features have been shown to be distinguished by different TFs (Yang et al., 2014). Very recently, nine additional shape features were introduced to the repertoire in order to better describe the unique 3D structure encoded in a given DNA sequence [START_REF] Li | Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding[END_REF]. Apart from 'naked' DNA shape features, DNA methylation on cytosine residues also affects DNA structure, making it a unique type of shape feature that could be recognized by many TFs [START_REF] Lazarovici | Probing DNA shape and methylation state on a genomic scale with DNase I[END_REF][START_REF] Yin | Impact of cytosine methylation on DNA binding specificities of human transcription factors[END_REF][START_REF] Rao | Systematic prediction of DNA shape changes due to CpG methylation explains epigenetic effects on protein-DNA binding[END_REF]. Several TFBS modeling methods that take into account shape features (some combined with sequence-based features) have been developed, and show improvement compared with only sequence feature-based models (Table 2). However, these models use DNA shape information generated from computational simulations, such as Monte Carlo or Molecular Dynamics, and potential biases exist. Improvements have already been obtained by integrating DNA shape information derived from experimental data, such as X-ray crystallography [START_REF] Li | Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding[END_REF]). Thus, one major challenge regarding incorporating shape features into TFBS modeling is to derive unbiased DNA structural data in a high-throughput manner that has been robustly verified experimentally, which currently is a challenge.

The other challenge is that both DNA conformation [START_REF] Azad | Experimental maps of DNA structure at nucleotide resolution distinguish intrinsic from protein-induced DNA deformations[END_REF] and TF conformation [START_REF] Patel | DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins[END_REF] could be changed in an adaptation mechanism upon interacting with each other due to both protein and DNA plasticity. This makes integrating shape feature even more difficult as it changes dynamically.

Energy-and deep learning-based models

Energy based biophysical models are a powerful alternative to probabilistic models such as PWM. They use the action mass law to characterize amino-acid and DNA interaction and are valid on a wider range of protein concentrations than probabilistic models, that in fact represent an approximation of energy-based models. Whenever they can be built, and several methods exist based on PBM or SELEX-seq for example, they should be preferred without disadvantages except PWM are the simplest to build [START_REF] Zhao | Inferring binding energies from selected binding sites[END_REF][START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF]Ruan and Stormo, 2017).

Machine learning methods, such as deep learning, are able to leverage very large datasets to discover intricate connections within them and make accurate predictions [START_REF] Lecun | Deep learning[END_REF]. In the last few years, deep learning has been increasingly applied to resolve complex biological problems, including those from regulatory genomics [START_REF] Angermueller | Deep learning for computational biology[END_REF]. Several methods based on deep learning have been developed to model TF-DNA binding specificity or to predict TF in vivo binding, including DeepBind [START_REF] Alipanahi | Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning[END_REF], DeepSEA [START_REF] Zhou | Predicting effects of noncoding variants with deep learning-based sequence model[END_REF], TFImpute [START_REF] Qin | Imputation for transcription factor binding predictions based on deep learning[END_REF], DeFind (Wang et al., 2018a) and DFIM [START_REF] Greenside | Discovering epistatic feature interactions from neural network models of regulatory DNA sequences Advance Access[END_REF] (Table 2). Advantages of these models include for example, 1) they can be trained from various types of sequencing data in either alone or integrated manner, and can be further combined with other information, such as DNase I hypersensitivity data, for better in vivo TFBSs prediction [START_REF] Zhou | Predicting effects of noncoding variants with deep learning-based sequence model[END_REF]; 2) they can tolerate a certain degree of noise stemming from either data acquisition technology or sequencing biases; 3) they can train predictive models fully automatically, alleviating the need for time-consuming manual intervention and expertise; 4) they can accurately identify genomic variants in the regulatory region, and indicate how variations affect TF binding within a specific sequence. However, one of the yet to be tackled difficulties of deep learning models is that they are more difficult to interpret than PWMs given the hidden layers in the networks. More information of these models and their unique properties can be found in Table 2. To conclude, it is worth mentioning that, until now, no single model has been identified to be the best for all TFs and the nature of the most adequate model depends on the individual TF.

Link between models and TF 3D structure

TFBS models derived from NGS allow a broad overview of where TFs are able to bind and their sequence specificity. Structures of TF-DNA complexes provide complementary information by identifying the amino acids and specific bases involved in TF-DNA interactions. These structural data not only explain base and shape readout at the residue and even atomic level, but also allow for the prediction of how amino acid mutations and/or changes in a given cis-element will affect TF binding. Indeed, many diseases resulting from gene misregulation are due to either mutations in a TF or alterations in its binding site. Combining the "go broad" NGS approach with the "go deep" structural approach provides a powerful tool in refining TFBS and gene regulation models.

Recent modeling tools have attempted to use 3D structural data for improving predictions of TF-DNA binding and structure-based databases for TFBS data are currently available [START_REF] Turner | TFinDit: transcription factor-DNA interaction data depository[END_REF][START_REF] Lin | PiDNA: Predicting protein-DNA interactions with structural models[END_REF][START_REF] Xu | A Structural-Based Strategy for Recognition of Transcription Factor Binding Sites[END_REF].

Structure-based TFBS methods rely on different energy functions to score TF-DNA interactions. Such energy functions are used to describe all possible physiochemical interactions such as Van der Waals interactions, hydrogen bonding, electrostatic interactions and solvation energy. Energy functions can be divided into physicsbased molecular mechanics force fields (Liu et al., 2009a;[START_REF] Marcovitz | Frustration in protein-DNA binding influences conformational switching and target search kinetics[END_REF][START_REF] Yin | Physicsbased potentials for coarse-grained modeling of protein-DNA interactions[END_REF] and knowledge-based potentials [START_REF] Liu | Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential[END_REF][START_REF] Zhang | A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes[END_REF][START_REF] Takeda | A knowledge-based orientation potential for transcription factor-DNA docking[END_REF]. While physics-based energy functions are able to accurately describe TF-DNA interactions they have a high computational cost and thus are less often applied than knowledge-based potentials. In knowledge-based potentials, statistical analysis is used to describe TF-DNA interactions at the atom or residue scale using known TF-DNA structures. These are simpler and less computationally expensive than physics-based energy models. Recent work combining aspects of both types of models to derive an "integrative energy" function have also been applied to TF-DNA modeling and shown to further improve, in some cases, the predictive power of structure-based TFBS models [START_REF] Farrel | Structure-based prediction of transcription factor binding specificity using an integrative energy function[END_REF][START_REF] Farrel | An efficient algorithm for improving structure-based prediction of transcription factor binding sites[END_REF].

A second way that 3D structural data can be used to help refining TFBS models is through the prediction of protein-protein interactions (PPIs), which may affect TF binding to DNA. Often in vitro TFBS models are relatively poor predictors of in vivo TF binding due to the added complexity of interacting proteins in vivo. Pull-down assays, mass spectrometry and yeast two-hybrid allow the generation of at least a partial interacting network for a given TF [START_REF] Yazaki | Mapping transcription factor interactome networks using HaloTag protein arrays[END_REF][START_REF] Trigg | CrY2Hseq: A massively multiplexed assay for deep-coverage interactome mapping[END_REF].

These methods have limitations and often generate incomplete models due to the difficulty in determining true interaction partners and in detecting rare or transient interactions. Structural data can be incorporated to improve PPI models by providing quantitative parameters to determine whether a putative interaction is likely to occur based on energy calculations or homology modeling [START_REF] Aloy | Structural systems biology: Modelling protein interactions[END_REF][START_REF] Beltrao | Structures in systems biology[END_REF]. By adding partners to the simple TF-DNA model, differences between in vitro and in vivo binding are better accounted for and perturbations due to mutations, for example, can be more easily modeled as has been shown for mammalian TFs [START_REF] Guturu | Structure-aided prediction of mammalian transcription factor complexes in conserved noncoding elements[END_REF]. To our knowledge a full integration of structural data with TFBS models has not been implemented for plant TFs, however as many TF families are conserved across kingdom of life, suggesting these methods are applicable to plant TFs.

Improve the predictive power of TFBS models-genome context

Eukaryotic genomes contain numerous potential binding sites for a given TF, however, only a small fraction is actually bound in vivo, and that these sites vary substantially depending on contexts, such as cell types, developmental stages, and environmental or cellular conditions. In addition, only a subset of the bound sites drive transcription [START_REF] Wasserman | Applied bioinformatics for the identification of regulatory elements[END_REF][START_REF] Hu | Genetic reconstruction of a functional transcriptional regulatory network[END_REF][START_REF] Fisher | DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila[END_REF][START_REF] Whiteld | Functional analysis of transcription factor binding sites in human promoters[END_REF]. Therefore, various contexts have to be taken into account to predict functional TFBSs precisely. This includes chromatin states (such as accessibility and epigenetic marks), methylation states, nucleosome positioning and genome 3D structures, and combinatorial binding of TFs.

Nucleosome positioning, chromatin states and 3D genome

In the nucleus of eukaryotic cells, DNA wraps around histone proteins to form nucleosomes [START_REF] Mcginty | Nucleosome structure and function[END_REF], which can be further compacted into highly condensed structure called heterochromatin by various mechanisms [START_REF] Allshire | Ten Principles of Heterochromatin Formation and Function[END_REF]. This involves factors like linker histones [START_REF] Fyodorov | Emerging roles of linker histones in regulating chromatin structure and function[END_REF], repressive histone marks [START_REF] Allis | The molecular hallmarks of epigenetic control[END_REF], such as H3K27me1/3 and H3K9me2, and DNA methylation on cytosine residues [START_REF] Kim | DNA methylation as a system of plant genomic immunity[END_REF][START_REF] Zhu | Transcription factors as readers and effectors of DNA methylation[END_REF] among others. Thus, chromatin structure is intrinsically repressive, a mechanism that helps to establish stable gene expression and prevents unwanted cell fate transitions. For gene activation, eukaryotic cells evolved various counter mechanisms for each of the chromatin compacting factors to create accessible chromatin, such as active histone marks (e.g. H3K4me2/3 and H3K27ac), chromatin remodelers [START_REF] Ho | Chromatin remodelling during development[END_REF] and demethylation machineries [START_REF] Wu | Reversing DNA methylation: Mechanisms, genomics, and biological functions[END_REF]. The interplay between all these factors result in a highly dynamic chromatin environment, in which TFs have to find their cognate DNA binding sites.

Nucleosome positioning

In general, TFs preferentially bind to TFBSs in accessible chromatin regions, where nucleosomes are depleted (NDR-nucleosome depleted region). This is evidenced by large scale cis-element studies, which showed that the vast majority of the active ciselements reside in the NDR in different species [START_REF] Thurman | The accessible chromatin landscape of the human genome[END_REF][START_REF] Weber | Plant Enhancers: A Call for Discovery[END_REF], including Arabidopsis and maize [START_REF] Zhang | Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints Using Signatures of Open Chromatin in Arabidopsis[END_REF][START_REF] Vera | Differential Nuclease Sensitivity Profiling of Chromatin Reveals Biochemical Footprints Coupled to Gene Expression and Functional DNA Elements in Maize[END_REF].

Therefore, a precise in vivo TFBSs prediction model could integrate NDR as its first layer of filter to leave out sites/regions with well-positioned nucleosomes. Indeed, several TFBSs modeling methods that integrate DNase I hypersensitivity datasets, have shown increased prediction power for in vivo binding [START_REF] Zhou | Predicting effects of noncoding variants with deep learning-based sequence model[END_REF][START_REF] Kelley | Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks[END_REF][START_REF] Wang | BART: a transcription factor prediction tool with query gene sets or epigenomic profiles[END_REF]. Thus, it is essential to generate datasets representing chromatin accessibility. To address this, recent technological advances are available, such as DNase-seq, MNase-seq, FAIRE-seq and ATAC-seq [START_REF] Meyer | Identifying and mitigating bias in next-generation sequencing methods for chromatin biology[END_REF]. Among them, ATAC-seq is a rising star method as it requires a minimal amount of input sample and even can be used at the single-cell level [START_REF] Buenrostro | Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[END_REF][START_REF] Buenrostro | Single-cell chromatin accessibility reveals principles of regulatory variation[END_REF][START_REF] Corces | An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues[END_REF]. This is particularly attractive for the plant biology community, where some plant tissues are extremely scarce, such as flower meristem cells, organ primordia and root tips.

Furthermore, when combined with INTACT (isolation of nuclei tagged in specific cell types), which allows isolation of nuclei from individual cell types of a tissue by affinitybased purification, ATAC-seq is able to map chromatin accessibility with high resolution and low noise from a specific cell type [START_REF] Deal | The INTACT method for cell type-specific gene expression and chromatin profiling in Arabidopsis thaliana[END_REF][START_REF] Sijacic | Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks[END_REF].

Although a majority of TFs favor binding in NDRs, exceptions exist. A special group of TFs, so-called pioneer factors, are able to bind TFBSs even when nucleosomes are present [START_REF] Iwafuchi-Doi | Cell fate control by pioneer transcription factors[END_REF][START_REF] Zaret | Pioneer transcription factors, chromatin dynamics, and cell fate control[END_REF][START_REF] Zaret | Pioneering the chromatin landscape[END_REF]. As exemplified by FoxA1 and GATA4, pioneer factors are able to outcompete nucleosomes or create NDR through various mechanisms, such as mimicking linker histones, recruiting chromatin remodelers and/or depositing active epigenetic marks [START_REF] Mayran | Pioneer transcription factors shape the epigenetic landscape[END_REF]. Therefore, pioneer factors have to be considered with care while modeling their in vivo binding. One of the first reported plant pioneer factor was LEAFY COTYLEDON1 (LEC1), a seed-specific TF and a master regulator of embryogenesis. Tao et al. showed that LEC1 can target mitotically silenced chromatin at the loci of floral repressor FLOWERING LOCUS C (FLC) and promote the initial establishment of an active chromatin state [START_REF] Tao | Embryonic epigenetic reprogramming by a pioneer transcription factor in plants[END_REF]. This activates FLC expression de novo in the pro-embryo and leads to the reversal of the silenced chromatin state inherited from gametes. Three TFs, LEAFY (LFY), APETALA1 (AP1) and SEP3, which are key factors in floral development in Arabidopsis thaliana, have been shown to be likely pioneer factors. A combination of ChIP-seq and DNase-seq data suggested that LFY is able to bind its TFBSs in closed chromatin, and this activity is highly correlated with its oligomerization activity. This is a potential novel driving force for pioneer activity which has not been reported in other organisms [START_REF] Sayou | A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor[END_REF]. For AP1 and SEP3, it has been shown that upon binding to their TFBSs both TFs are able to confer chromatin accessibility near those sites [START_REF] Pajoro | Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[END_REF]. Interestingly, both factors are able to form higher order homo and heterooligomers, with such activity essential for their function in vivo. Therefore, an attracting hypothesis is that oligomerization likely confers high binding affinity in order for them to bind TFBSs that are otherwise inaccessible due to the occupancy of histones at these sites. Although further evidence of pioneer activity of these TFs, including both genome-wide and biochemical studies, are required, modeling their in vivo binding requires examination of both closed and open chromatin regions.

Chromatin states: histone modifications, histone variants and chromatin remodelers

TF binding in vivo confronts various chromatin states that are established by various types of histone modifications, histone variants and remodelers. Histone modifications act as either active or repressive marks, corresponding to transcriptionally competent and inactive chromatin, respectively. These marks are deposited by epigenetic writers and removed by epigenetic erasers. For instance, the PRC2 is a writer responsible for H3K27me3 deposition while the REF6 demethylase erases this mark [START_REF] Hennig | Diversity of Polycomb group complexes in plants: same rules, different players?[END_REF][START_REF] Li | Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis[END_REF]. For some, if not all, epigenetic marks there is a corresponding epigenetic reader that reads the specific mark and confers downstream responses. Histone variants are also determinants of chromatin states and affect transcription. For instance, the H3.3 and H3.1 variants differ only four amino acid [START_REF] Ingouff | Histone3 variants in plants[END_REF], and while H3.1 is enriched in heterochromatin and preferentially carries repressive H3K27 methylation marks, H3.3 is enriched in transcriptionally active regions and preferentially carries active H3K36 methylation marks [START_REF] Johnson | Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications[END_REF][START_REF] Stroud | Genome-wide analysis of histone H3. 1 and H3. 3 variants in Arabidopsis thaliana[END_REF]. Chromatin remodelers, which use ATP energy to evict, disassemble or slide nucleosomes, are also landmarks affecting TF binding. The increasing datasets for genome-wide profiling of histone variants, marks, writers, erasers, readers and of chromatin remodelers thus constitutes a highly informative resource to improve TFBS prediction.

Cross-talk between TFs and chromatin factors co-regulate chromatin accessibility and exposure of cis-elements [START_REF] Vachon | Interactions between transcription factors and chromatin regulators in the control of flower development[END_REF]. In these processes, TFs operate either by recruiting chromatin factors or directly competing with them for target sites.

There are several examples of TF-mediated recruitment of chromatin factors in plants, such as that of REF6 by NF-Y TFs for H3K27 demethylation at SOC1, inducing flowering [START_REF] Hou | Nuclear factor Ymediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis[END_REF], or Polycomb mark reader TFL2/LHP1 recruitment by SHORT VEGETATIVE PHASE at SEP3 for flower patterning (Liu et al., 2009b), or BRAHMA and SPLAYED ATPase recruitment by LFY and SEP3 at flower morphogenetic genes [START_REF] Wu | SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors[END_REF]. Oppositely, several TFs were shown to compete with Polycomb complexes at target genes, such as NF-YC which prevents PRC2 binding to FLOWERING LOCUS T for floral transition [START_REF] Liu | Temporal-Specific Interaction of NF-YC and CURLY LEAF during the Floral Transition Regulates Flowering[END_REF] and AG which evicts PRC2 from KNUCKLES for flower meristem termination [START_REF] Sun | Timing Mechanism Dependent on Cell Division Is Invoked by Polycomb Eviction in Plant Stem Cells[END_REF]. Interestingly, at the time of flower termination, AG also has the opposite effect at WUS, promoting PRC2 recruitment for deposition of H3K27me3 [START_REF] Liu | AGAMOUS Terminates Floral Stem Cell Maintenance in Arabidopsis by Directly Repressing WUSCHEL through Recruitment of Polycomb Group Proteins[END_REF]. Differences in TF behaviour for eviction versus recruitment of PRC2 may depend on the distance between the Polycomb recognition element (PRE) and the TFBS. To this regard, large-scale analyses of ChIP-seq data revealed TFBSs in plant PREs, thereby expanding the repertoire of TF-chromatin factor interactions and providing resources for further exploration of the relationship between cis-elements and TF/chromatin factor binding [START_REF] Wang | Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements[END_REF][START_REF] Xiao | Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis[END_REF]. Taken together, intricate and dynamic interplays among TFs and chromatin factors have to be carefully examined for TF binding in vivo as they define chromatin state of a region, where TFs in turn have to engage with.

Methylation state

DNA methylation at the 5' position of cytosine plays an essential role in gene regulation and genome stability in plants and animals [START_REF] Zhang | Dynamics and function of DNA methylation in plants[END_REF]. Precise patterns of DNA methylation are crucial for plant growth and development, including flowering [START_REF] Finnegan | DNA methylation and the promotion of flowering by vernalization[END_REF]. Unlike animals, in which DNA methylation are predominantly found in the CG context, plant DNA methylation occurs in contexts including CG, CHG and CHH (H represents A, T or C) [START_REF] Zhang | Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis[END_REF][START_REF] Lister | Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis[END_REF]. Most TFs favor not to bind to methylated TFBSs due to the fact that DNA methylation affects shape features of TFBSs and that methyl groups often clash with residues that form direct interactions with otherwise unmethylated DNA motifs.

Interestingly, recent studies have revealed that some TFs preferentially bind to methylated DNA [START_REF] Zhu | Transcription factors as readers and effectors of DNA methylation[END_REF][START_REF] Yin | Impact of cytosine methylation on DNA binding specificities of human transcription factors[END_REF][START_REF] Zuo | Measuring quantitative effects of methylation on transcription factor-DNA binding affinity[END_REF]. In addition, these TFs seemed to be enriched in embryonic and organismal development, such as homeodomain TFs and pluripotent factors (e.g. OCT4), which are wellcharacterized pioneer factors. Although proteins that specifically bind to methylated DNA are found in plants as exemplified by Methyl-CpG-binding domain proteins [START_REF] Zemach | Methyl-CpG-binding domain proteins in plants: interpreters of DNA methylation[END_REF], they are not classified as TFs but epigenetic modifiers. To our knowledge, TFs that are insensitive to methylation have not yet been reported in plants, however, it is appealing to investigate whether aforementioned potential plant pioneer factors (i.e. LEC1, LFY, SEP3 and AP1) are insensitive to methylation.

Another mechanism that affects TF binding is that widespread DNA methylation promotes repressive histone modifications such as H3K9me2 and inhibits permissive histone modifications such as histone acetylation, resulting in highly compacted heterochromatin [START_REF] Zhang | Dynamics and function of DNA methylation in plants[END_REF], thus inaccessible to vast majority of the TFs, except pioneer factors. Taken together, traditional views suggested that methylation seem to inhibit TF binding to TFBSs, however, there are likely at least a subset of TFs, such as pioneer factors, that can target methylated sites. Therefore, their DNA binding affinity and specificity needs to be carefully examined with regard to prediction of their in vivo binding. There are several methods that are available to model the effects of DNA methylation, such as Cytomod [START_REF] Viner | Modeling methylsensitive transcription factor motifs with an expanded epigenetic alphabet Advance Access[END_REF]) (Table 2), which uses the classical PWM approach with an extended alphabet (e.g. 5mC representing methylated cytosine). In some practices, multiple PWM logos are given for the same TF, for which the enriched methylated and non-methylated sequences are represented separately [START_REF] Yin | Impact of cytosine methylation on DNA binding specificities of human transcription factors[END_REF]. In addition, apart from aforementioned DAP-seq, two additional experimental approaches are now available to investigate the effects of DNA methylation to TF binding in vitro, including Methyl-Spec-seq [START_REF] Zuo | Measuring quantitative effects of methylation on transcription factor-DNA binding affinity[END_REF] and methyl-SELEX [START_REF] Yin | Impact of cytosine methylation on DNA binding specificities of human transcription factors[END_REF] (details refer to Table 1).

3D genome and TF mediated long-range gene interactions

The linear nucleotide sequences are folded into highly organized 3D architectures in the nucleus of higher eukaryotes. Chromosome conformation capture (3C) techniques, such as Hi-C [START_REF] Eagen | Principles of Chromosome Architecture Revealed by Hi-C[END_REF], revealed widespread existence of longrange gene interactions within the so-called topologically associating domains (TAD).

Within the TAD, distal and proximal cis-elements relative to transcription starting sites (TSS) form cell-type specific long-range interactions that in many cases are established by architectural proteins such as cohesin [START_REF] Yan | Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites[END_REF][START_REF] Rao | Cohesin Loss Eliminates All Loop Domains[END_REF], CTCF [START_REF] Phillips | CTCF: Master Weaver of the Genome[END_REF][START_REF] Ren | CTCF-Mediated Enhancer-Promoter Interaction Is a Critical Regulator of Cell-to-Cell Variation of Gene Expression[END_REF], Yin Yang 1 (Weintraub et al., 2018) and others [START_REF] Rada-Iglesias | Forces driving the three-dimensional folding of eukaryotic genomes[END_REF]. Such interaction is a highly conserved mechanism for eukaryotes to achieve spatiotemporal gene expression [START_REF] Sanyal | The long-range interaction landscape of gene promoters[END_REF][START_REF] Harmston | Chromatin and epigenetic features of longrange gene regulation[END_REF][START_REF] Dekker | Long-Range Chromatin Interactions[END_REF]. TADs therefore form territories within which more frequent gene interaction occurs, whereas less interaction happens beyond these territories. Disruption of TAD boundaries can lead to ectopic activation of gene expression and eventually to noticeable phenotypes [START_REF] Lupiáñez | Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions[END_REF][START_REF] Franke | Formation of new chromatin domains determines pathogenicity of genomic duplications[END_REF][START_REF] Lupiáñez | Breaking TADs: How Alterations of Chromatin Domains Result in Disease[END_REF].

Although it seems that Arabidopsis thaliana does not form TADs likely due to not having the architectural proteins such as CTCF that is important for TAD maintenance [START_REF] Liu | Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis[END_REF], in many other plant species, such as maize, rice, and tomato, TADs are clearly detected according to Hi-C data [START_REF] Dong | 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B Compartments[END_REF].

Nevertheless, long-range gene interactions are still widespread in the Arabidopsis genome but in a less compartmentalized manner compared with other plant species [START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at singlegene resolution[END_REF]. Apart from architectural proteins, TFs are usually the links mediating cell-type specific long-range gene interactions, for which the transactivation domains (TD) found in majority of TFs appear to play an essential role. In general, TDs are enriched with acidic and hydrophobic residues, and residues that are able to form intrinsically disorder structures, such as serine, glycine and proline [START_REF] Staller | A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain[END_REF]. These properties appear to allow TDs to interact with or recruit various factors with modest affinity but high specificity under various contexts. One such factor is Mediator, a mega protein complex that can be recruited by divergent TFs to connect distal and proximal cis-elements [START_REF] Soutourina | Transcription regulation by the Mediator complex[END_REF].

Another factor is the SAGA complex, which has recently been shown to be a general factor that is required for the construction of the pre-initiation complex at the TSS for transcription initiation in animal systems [START_REF] Baptista | SAGA Is a General Cofactor for RNA Polymerase II Transcription[END_REF]. Despite being less well characterized in plants, homolog protein components for both factors are well conserved in plants [START_REF] Elfving | The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development[END_REF][START_REF] Mathur | The Mediator Complex in Plants: Structure, Phylogeny, and Expression Profiling of Representative Genes in a Dicot (Arabidopsis) and a Monocot (Rice) during Reproduction and Abiotic Stress[END_REF][START_REF] Moraga | Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses[END_REF].

With the accumulation of datasets from Hi-C and related methods, it is now possible to predict spatiotemporal TF binding more precisely. In plants, Hi-C has been carried out from species including Arabidopsis thaliana [START_REF] Liu | Genome-wide analysis of chromatin packing in Arabidopsis thaliana at singlegene resolution[END_REF], rice (Oryza sativa) [START_REF] Dong | Genome-wide Hi-C analysis reveals extensive hierarchical chromatin interactions in rice[END_REF], barley (Hordeum vulgare) [START_REF] Mascher | A chromosome conformation capture ordered sequence of the barley genome[END_REF], tomato (Solanum lycopersicum), maize (Zea mays), sorghum (Sorghum bicolor), foxtail millet (Setaria italica) [START_REF] Dong | 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B Compartments[END_REF] and cotton (Gossypium spp.) [START_REF] Wang | Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication[END_REF][START_REF] Wang | Evolutionary dynamics of 3D genome architecture following polyploidization in cotton[END_REF]. Considering that chromosome conformation is highly cell-type specific, these Hi-C datasets have to be carefully examined when applied to other cell types. For example, in the process of flowering initiation, it is more relevant to perform Hi-C using flower meristems at a certain stage in order to map long-range gene interactions of the stage. 3C assays can also be performed for a specific TF using chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [START_REF] Fullwood | An oestrogen-receptor-αbound human chromatin interactome[END_REF][START_REF] Li | Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application[END_REF] and HiChIP [START_REF] Mumbach | HiChIP: Efficient and sensitive analysis of protein-directed genome architecture[END_REF]. These methods combine ChIP with 3C to produce a directed view of long-range interactions associated with a TF of interest. To our knowledge, ChIA-PET or HiChIP has not yet been applied in floral TFs despite its high potential to correlate chromatin 3D structure with TF binding. For example, MADS-box TF homo-or hetero-tetramer complex has been shown to bind to two CArG boxes in short linear distance to form loops that are essential for target gene expression [START_REF] Melzer | The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro[END_REF][START_REF] Mendes | MADS Domain Transcription Factors Mediate Short-Range DNA Looping That Is Essential for Target Gene Expression in Arabidopsis[END_REF]. However, it is not clear if MADS-box TFs (or other oligomeric TFs) also enable long-range looping or even cause 3D chromatin structural rearrangement, such as breaking TAD boundaries as shown for Yamanaka factors during cell fate reprogramming [START_REF] Stadhouders | Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming[END_REF]. These are potential mechanisms that could explain functional diversity of MADS-box TFs and their potential pioneer activity in flower organ specification, respectively, for which ChIA-PET or HiChIP might provide valuable insight.

TF cooperative binding

Cooperative binding affects TF-DNA affinity and specificity. It is a widespread mechanism in eukaryotes for maximizing TF functional complexity by utilizing the minimum number of TFs. For example, Hox TFs in Drosophila bind highly similar sequences as monomers, whereas heterodimerization with the cofactor Extradenticle from the same TF family evokes significant differences in DNA binding affinity and specificity as revealed by SELEX-seq [START_REF] Slattery | Cofactor binding evokes latent differences in DNA binding specificity between hox proteins[END_REF]. In plants, MADS-box TFs are prominent examples of cooperative binding. They form heterotetrametric complexes, so-called floral quartets, to regulate distinct set of genes in the processes of flower formation and flower organ specification [START_REF] Ruelens | The Origin of Floral Organ Identity Quartets[END_REF]Hugouvieux and Zubieta, 2018). It has been shown, both in vivo and in vitro, that different combinations of MADS-box TFs confer unique DNA binding specificity and affinity [START_REF] Smaczniak | Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[END_REF][START_REF] Muiño | Structural determinants of DNA recognition by plant MADS-domain transcription factors[END_REF][START_REF] Smaczniak | Differences in DNA-binding specificity of floral homeotic protein complexes predict organ-specific target genes[END_REF]Hugouvieux et al., 2018).

In some cases, a co-factor can be a non-DNA binding protein. For instance, two non-DNA-binding cofactors in yeast, MET4 and MET28, enhance DNA-binding specificity of TF Cbf1 through forming MET4-MET28-Cbf1 complex, which is required for activation of downstream genes [START_REF] Siggers | Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex[END_REF]. In plants, the Evening Complex (EC), consists of ARRHYTHMO (LUX), EARLY FLOWERING 3 (ELF3) and ELF4, is a key component of the circadian clock [START_REF] Greenham | Integrating circadian dynamics with physiological processes in plants[END_REF][START_REF] Huang | Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock[END_REF]. While only LUX is a TF, the in vivo functioning of the EC in the process of temperature and circadian clock-dependent flowering pathway requires non-DNA binding cofactors ELF3 and ELF4 [START_REF] Nusinow | The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth[END_REF].

Furthermore, ChIP-seq data showed that G-box motifs are enriched adjacent to LUX binding sites, indicating additional cofactors that likely co-bind with EC to obtain further specificity and cooperativity for transcriptional regulation [START_REF] Ezer | The evening complex coordinates environmental and endogenous signals in Arabidopsis[END_REF].

Similar mechanisms have also been proposed for PHYTOCHROME INTERACTING

FACTOR 4 (PIF4), a key TF involved in thermoresponsive flowering in Arabidopsis.

Its DNA binding activity can be sequestered by ELF3 [START_REF] Nieto | ELF3-PIF4 interaction regulates plant growth independently of the evening complex[END_REF], or abrogated by DELLA proteins [START_REF] Lucas | A molecular framework for light and gibberellin control of cell elongation[END_REF], both through direct physical interactions. Taken together, it is crucial to taken into account of presence or absence of TF cofactors for in vivo binding prediction.

Incorporating TFBS models in current and future analyses of gene regulation

The capacity to detect TFBS, both in vitro and in vivo, in increasingly reliable ways offers the opportunity to better answer various types of biological questions. For example, it is now possible to manipulate TFBS with genome editing, study the way how TFBS are evolving, better predict gene regulation and understand the DNA recruitment of chromatin regulators.

From DNA binding to gene regulation and to regulatory networks

Once TFBSs are identified or reliably predicted, the next challenge is to understand whether, how and in which cellular context TF binding results in changes of target gene expression. Here, one can distinguish dedicated analyses of individual binding events and potential target genes ('bottom up') or make use of genome-wide expression data followed by mathematical modeling ('top down').

A classical and powerful way to identify regulators of a given biological process or developmental transition consists of building lists of co-regulated genes and identifying cis-elements overrepresented in their promoters. Once identified, these motifs can be compared to motifs in TFBS databases to identify TFs or TF families that are candidate regulators. Combined with detailed TF expression data, this represents a way to identify regulators. Several bioinformatics tools were developed based on this approach, such as Cistome [START_REF] Austin | New BAR tools for mining expression data and exploring Cis-elements in Arabidopsis thaliana[END_REF], PlantRegMap (Jin et al., 2017) and TF2Network [START_REF] Kulkarni | TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information[END_REF]. These tools take as an input a set of genes for which predicted regulators are searched. As a result, a set of potential regulators is identified and can be further validated using experimental approaches.

In the example of TF2Network, using a standard dataset based on experimental TF binding data revealed that it recovers 92% of the true regulators using the long region promoter definition and the overall of 56% of the correct regulators when fed with a set of differentially expressed genes [START_REF] Kulkarni | TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information[END_REF]. In a related approach, mathematical modeling using gene expression data can reveal gene network modules, and knowledge from known TF binding preferences can be used to validate predicted key gene-regulatory interactions [START_REF] Ichihashi | Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape[END_REF].

TFBS models are now widely applied not only to characterize gene regulatory networks (GRN), but also to understand mechanisms underlying gene activation or repression. For example, TFBS prediction helped to identify TFs that mediate recruitment of repressive Polycomb protein complexes to specific genomic locations [START_REF] Xiao | Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis[END_REF][START_REF] Zhou | Telobox motifs recruit CLF / SWN -PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis[END_REF]. A major challenge is still to identify and validate cell type-specific gene regulatory interactions, which can now be addressed by combining cell-type selection by Fluorescence Activated Cell/Nuclei sorting or INTACT with ChIP-seq or other epigenomic technologies (see review [START_REF] Wang | Technologies for systems-level analysis of specific cell types in plants[END_REF]). Another promising technology is single-cell approaches (see review [START_REF] Grün | Design and Analysis of Single-Cell Sequencing Experiments[END_REF]), which at the moment are still under development for plant tissues [START_REF] Brennecke | Accounting for technical noise in single-cell RNA-seq experiments[END_REF].

Targeted TFBS perturbation

Testing the functional impact of a predicted TFBS usually involves targeted mutagenesis in a transgenic context, e.g. using reporter assays, or in an endogenous context using CRISPR-Cas9-based systems. By using reporter genes (e.g. GFP or luciferase) under control of the target gene regulatory regions with modified TFBSs it is possible to dissect spatiotemporal and quantitative changes in target gene expression depending on the presence or absence of a TFBS [START_REF] Benn | Quantitative Analysis of Cis -Regulatory Element Activity Using Synthetic Promoters in Transgenic Plants[END_REF][START_REF] Díaz-Triviño | Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems[END_REF]. For example, the tissue specificity of the AP3 promoter was altered by replacing native TFBS with the ones of predicted specificity towards SEP3-AG or SEP3-AP1 floral homeotic protein complexes [START_REF] Smaczniak | Differences in DNA-binding specificity of floral homeotic protein complexes predict organ-specific target genes[END_REF]. Combining results from TFBS prediction and reporter gene assays also helps reveal the mechanisms of TFBS recruitment in a native promoter context. For example, in Drosophila the combination of SELEX and reporter gene expression (lacZ and GFP) experiments revealed that clusters of low affinity binding sites are maintained and required for the proper tissue-specific expression of the Hox genes, homeotic genes crucial for segment specification [START_REF] Crocker | Low affinity binding site clusters confer HOX specificity and regulatory robustness[END_REF]. To which extent the clusters of TFBSs regulate gene expression in plants is yet to be determined through similar approaches.

With the advent of new technologies such as CRISPR-Cas9, mutations can now be introduced in endogenous genomic locations. For example, when a regulatory region of AG gene located in the second intron was deleted by the CRISPR-Cas9, mutant plants show partial homeotic transformations of stamens to petals, supporting an important role of this regulatory region [START_REF] Yan | Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene[END_REF]. One of the challenges for CRISPR-Cas9 strategy is that it requires TFBSs that contain a PAM motif 5'-NGG-3' for efficient cleavage. Thus, the generation of new versions of Cas9 with different sequence requirement or the possibility to perform directed mutagenesis with a template DNA will open new avenues for precise TFBS perturbation. Moreover, the modifications of the CRISPR-Cas9 system by fusing cytidine deaminases to catalytically inactive Cas9 allow for the targeted, programmable single nucleotide changes within a TFBS of interest [START_REF] Yan | Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene[END_REF]. This is a paradigm shift as genetics until now has mainly challenged regulatory networks by modifying their nodes-the protein coding genes, and TFBS mutations will allow challenging the links without compromising all functions of a potentially pleiotropic TF. Recently, Barakat et al., reported an assay that combines ChIP and a massively parallel reporter assay (ChIP-STARR-seq) to identify functional TFBS in primed and naive human embryonic stem cells [START_REF] Barakat | Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells[END_REF] (Table 1). The resulting functional TFBSs of a given TF were further validated by CRISPR-Cas9 followed by a transient expression assay, proving the robustness of such method. This method is potentially applicable in plants, but with a limitation that maintaining and transfection of plant cells in culture (e.g. leaf protoplast) of a stage of interest is more challenging than that of mammalian system.

Evolution of TFBS and plant diversity

Studying the conservation of cis-elements containing TFBSs between different species or between promoters of closely related paralogous genes in a genome can shed light on the evolution of a GRN. How changes in cis-elements relate to alterations in the expression pattern of a gene and subsequently lead to novel gene functions is not yet fully understood. At another level, understanding the evolutionary dynamics of gene-regulatory interactions can provide deeper insights into how developmental programs evolve. The first step into this direction is to develop experimental approaches to study TFBSs in different species. In a genome-wide comparative ChIP-seq study, Muino et al. studied binding of SEP3 in two closely related Arabidopsis species with similar flower morphology [START_REF] Muino | Evolution of DNA-binding sites of a floral master regulatory transcription factor[END_REF]. They found that TF binding conservation was associated with sequence conservation of CArG-box motifs and with the relative position of the TFBS to its potential target gene, and that loss/gain of binding sites tended to be associated with changes in gene expression. Their study revealed clear differences in SEP3-bound regions between the two species. A high level of binding divergence (13 % overlap) was also reported for two orthologous MADS-box TFs, FLC in Arabidopsis and PERPETUAL FLOWERING1 in Arabis alpine [START_REF] Mateos | Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species[END_REF]. Therefore, comparative ChIPseq studies can indicate conserved core target gene networks of developmental TFs in plants and distinguish plant lineage-specific functions and potentially less relevant binding sites. Interestingly, similar observation was also reported in animals, as revealed by ChIP-seq on livers of five vertebrates [START_REF] Schmidt | Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding[END_REF]. The authors observed highly conserved TFBS motif for two TFs, but highly divergent binding events on conserved genes of different species.

Besides genome-wide approaches, targeted analysis of individual promoters or regulatory regions can elucidate regulatory divergence after speciation or gene duplication. For example, absence/presence of a single CArG-box in the promoter regions of the two MADS-box TF paralogs, AP1 and CAL, determines spatiotemporal and quantitative differences in gene activity [START_REF] Ye | Gain of An Autoregulatory Site Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space and Level of Expression and Regulation of One Paralog by the Other[END_REF]. Studying the TFBSs of homologues from different species can also reveal the evolution of their molecular function. For example, analyzing TF binding specificity of the LFY homologues from different plant species, land plants, mosses and algae, has revealed subtle changes in their preferred TFBSs motifs, suggesting that LFY DNA binding specificity changed during land plant evolution [START_REF] Sayou | A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity[END_REF]. Thus, the combination of numerous TFBS models with novel genome sequences could ultimately unlock mechanisms of GRN evolution.

Future perspectives

Technological advances such as NGS has revolutionized TFBS identification. It is now possible to identify TFBSs for hundreds of TFs for any organism in a short time with limited costs. However, accurate quantitative TFBS modeling is not a trivial process and seems to lag behind the pace of NGS dataset generation. Innovative analyses will be required to better extract valuable information hidden in datasets and compensate for the biases and drawbacks inherent to each particular method. As an example, by combining DAP-seq data for auxin response factor 5 (ARF5), list of auxin induced genes and PWM model for dimeric ARF binding, we have uncovered a new ARF binding site configuration (inverted repeat 13) that seems to favor regulation and was not noticed before ( [START_REF] Stigliani | Capturing auxin response factors syntax using DNA binding models Advance Access[END_REF]; co-submitted paper). This experience highlights that re-examination of the publicly available datasets could lead to novel findings, and that TFBS modeling requires careful planning and implementation. Therefore, an important future goal is full automation for TFBS modeling. In this regard, emerging artificial intelligence and machine learning are projected to make important contributions. Indeed, machine learning approaches have already played an important role in TFBS modeling and shown to be more powerful than conventional algorithms in several aspects as discussed earlier.

Finally, integrating datasets from chromatin environments, such as chromatin accessibility and 3D genome maps, is of great importance to better predict TF binding and the concomitant transcriptional events. A dedicated and accessible tool that could integrate such complex datasets in a combinatorial way is still lacking and will likely be an important focus of future investigations. The TFBS logo represents the preference of the TF at each position of the binding site (e). This calculation represents one possible method among several to calculate a sequence score [START_REF] Stormo | DNA binding sites: representation and discovery[END_REF][START_REF] Wasserman | Applied bioinformatics for the identification of regulatory elements[END_REF][START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF]. 
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 1 Figure 1. Schematic overview of the TFBS modeling and application.

Figure 2 .

 2 Figure 2. Workflow to generate PWM for a set of known TFBS. Here, ARF5 bound sequences are retrieved from DAP-seq (O'Malley et al., 2016). The sequences of N different binding sites are aligned (a). The nucleotide frequency is computed at each position of the binding site to yield the position frequency matrix (b), which is then converted to a PWM (c). In the formula, W(b, i) stands for the weight of a nucleotide b at position i, f(b,i) is the frequency of this nucleotide, and fexp is the expected background frequency of the given nucleotide. If each nucleotide appearance is equal, one can take fexp=N/4 (c). One can score a given sequence by summing the corresponding PWM weights (d).The TFBS logo represents the preference of the TF at each position of the binding site (e). This calculation represents one possible method among several to calculate a sequence score[START_REF] Stormo | DNA binding sites: representation and discovery[END_REF][START_REF] Wasserman | Applied bioinformatics for the identification of regulatory elements[END_REF][START_REF] Stormo | Modeling the specificity of protein-DNA interactions[END_REF].

  uses recombinant TF to IP randomized DNA sequence in one or more cycles. The enriched DNA are sequenced by NGS and used to infer a model of specificity, typically a PWM, for a TF. Read Left Behind)NRLB provides scalable and quantitative method to identify functional in vivo binding sites of TF and to define relative binding affinities for any TF-DNA complex.
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In vivo genomic

ChIP-STARR-seq allows highthroughput identification of functional enhancer in vivo.

Endogenous TF [START_REF] Barakat | Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells[END_REF] (Wang et al., 2018a)