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Recent experiments have shown that spatial dispersion may have a conspicuous impact on the
response of plasmonic structures. This suggests that in some cases the Drude model should be
replaced by more advanced descriptions that take spatial dispersion into account, like the hydro-
dynamic model. Here we show that nonlocality in the metallic response affects surface plasmons
propagating at the interface between a metal and a dielectric with high permittivity. As a direct
consequence, any nanoparticle with a radius larger than 20 nm can be expected to be sensitive to
spatial dispersion whatever its size. The same behavior is expected for a simple metallic grating
allowing the excitation of surface plasmons, just as in Woods famous experiment. Finally, we care-
fully set up a procedure to measure the signature of spatial dispersion precisely, leading the way
for future experiments. Importantly, our work suggests that for any plasmonic structure in a high
permittivity dielectric, nonlocality should be taken into account.

For more than a century now, Drude’s model[1], cou-
pled to Maxwell’s equations[2], has been able to describe
very accurately the optical response of metals, even for
quite extreme geometries[3–7]. Many advanced theo-
ries describing metal-vacuum interfaces[8, 9] have been
developed during the second half of the twentieth cen-
tury, especially with the development of Electron Energy
Loss Spectroscopy (EELS) which provided experimental
data to better ground the theoretical discussions[10–12].
These new approaches were able to take into account
complex phenomena, like spatial dispersion or electron
spill-out, and allowed to better understand the success
of Drude’s model. It turns out in fact that the Drude’s
theory is the zero-th order approximation of all more ad-
vanced descriptions introduced later on. All these studies
however, seemed to conclude that spatial dispersion and
spill-out have a limited impact[13–16] on surface plas-
mons (SPs) such that optical experiments were not likely
to show any difference from Drude’s predictions[17–19].
Moreover, because most resonances in metallic structures
can actually be explained as cavity resonances of some
sort for SPs, it has become widely accepted that plas-
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monic resonances could be very accurately described by
Drude’s model. For decades, then, there has not been
any urge to adopt advanced descriptions of the response
of metals in plasmonics. Only in the case of metallic
clusters, due to the extremely small size, spatial disper-
sion and spill-out were expected to play a significant role,
requiring the most advanced descriptions[13, 20–22].

However, a recent experiment with film-coupled
nanoparticles showed that the frequency of the reso-
nance of modes that are localized in small volumes (of
the order of 1 nm3) is simply not correctly predicted
by Drude’s model, whereas the linearized hydrodynamic
model[23], in its simplest formulation (the Thomas-Fermi
approximation) seemed to be accurate enough. This
is the case even with an optical excitation and rela-
tively large metallic particles. This can be linked to
the fact that the small gaps between the nanoparti-
cle and the metal support a gap-plasmon – a guided
mode which is particularly sensitive to spatial disper-
sion because it has a very large wavevector[24–28] what-
ever the frequency. This allows to better understand
why small gaps, which are more and more common in
plasmonics[3, 5, 29–31], may require more advanced de-
scriptions of the metallic response. Furthermore, this ex-
plains why the hydrodynamic model, despite its well doc-



2

umented deficiencies[32], is probably a good replacement
for Drude’s model in plasmonics[33, 34]: high wavevector
plasmonic modes enhance spatial dispersion effects[26–
28], but not the impact of the spill-out, especially since
noble metals present a high extraction work. The spa-
tial dispersion which arises from the repulsion between
free electrons inside the metal is taken into account ac-
curately by a hydrodynamic model, which presents in
addition the advantage of being relatively easy to imple-
ment numerically[35–38].

Here we show that the impact of spatial dispersion
on the SP propagating at the interface between a metal
and a dielectric is enhanced when the refractive index
of the dielectric is large. We show, as a direct conse-
quence, that even large nanoparticles can be expected
to be sensitive to nonlocality and that, using a grat-
ing coupler, it is theoretically possible to estimate the
main parameter of the linearized hydrodynamic model,
in a situation where other more complex phenomena can
be ruled out. We underline that such a well controlled
setup differs strongly from previous experiments which
all involved chemically synthesized nanoparticles[20, 39–
41] whose geometry cannot always be fully controlled.

I. SURFACE PLASMON

In this first part we study the influence of spatial dis-
persion on a SP propagating along a metal-dielectric in-
terface (especially for dielectrics with high refractive in-
dices). A SP can be seen as current loops propagating
beneath the surface of a metal. Such a phenomenon is ac-
companied by an electromagnetic field in the metal (with
relative permittivity εm) and in the dielectric (with rel-
ative permittivity εd) which is transversely evanescent
in both media due to the fact that its effective index
neff = kSP

k0
is always larger than the refractive index of

the dielectric medium.
First, neglecting losses, the dispersion relation can be

written as

neff =

√
εdεm

εd + εm
, (1)

where we assumed a simple Drude model εm = 1 − ω2
P

ω2 .
In this case, the curve of a SP has a horizontal asymp-
tote at ωSP = ωP√

1+εd
. It is however unrealistic to ne-

glect the losses inside the metal because the frequency
ωSP is usually in a wavelength range, the UV, where the
interband transitions make the metal highly lossy. As
a consequence, a bend-back can be seen on the disper-
sion curve of the SP, which thus never reaches very high
wavevectors (see local dispersion curves in Fig. 1).

However, when the permittivity of the dielectric in-
creases, the frequency ωSP decreases. At the same time,
losses due to the interband transitions can be expected
to be low enough as to enable a support of high wavevec-
tor SPs. Such modes are more likely to be sensitive to
spatial dispersion[24].
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FIG. 1. Surface plasmon dispersion curves (see relation (3))
along a single dielectric−Ag interface, assuming material pa-
rameters for silver[42]. The permittivity of the dielectric εd
ranges from 1 (most left) to 10 (most right) with a step size
1. The blue lines correspond to the local dispersion (Ω = 0)
and the orange ones to nonlocal dispersion (Ω 6= 0).

In order to take nonlocality into account we rely on
the linearized hydrodynamic model for the free electrons,
already introduced in previous works [35, 43–48]. The
electric current J inside the metal is linked to the electric
field E by

−β2∇(∇ · J) + J̈ + γJ̇ = ε0ω
2
PĖ, (2)

where ωP is the plasma frequency, ε0 the vacuum permit-
tivity, γ the damping factor and β the nonlocal parame-
ter. The β factor represents the increase of the internal
pressure in the electron gas due to exchange interaction
and Coulomb repulsion. There are actually several theo-
retical expressions for this parameter[49]. We rely on the
experimental data available[39, 40], which consistently
point to a value of β = 1.35× 106 m/s. Finally, the elec-
tric current inside the metal can always be considered
as an effective polarization Pf due to the free electrons
and is then given by Ṗf = J. In that framework, the
metal can then be described as a nonlocally polarizable
medium.

We use accurate material parameters[42] that allow a
distinction between the response of the free electrons,
that is subject to spatial dispersion, and the response
of bound electrons, that can be considered to be purely
local[50]. In the following the metal is always assumed
to be silver, which is favorable since silver is less lossy
than gold. The total metal polarization reads then
P = Pf +Pb, where Pb = ε0χbE with χb being the local
susceptibility associated to the bound electrons. In order
do obtain χb, we fit the experimental data of silver per-
mittivity with a generalized dispersion model based on
Padé series[51] (which is sufficient to perform nonlocal
time-domain simulations) and subtract the local Drude
contribution χf . Throughout this work, we rely on the
DIOGENeS [52] Discontinuous Galerkin Time Domain
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(DGTD) suite[37]. Finally we consider additional bound-
ary conditions that are both the most natural (vanishing
normal component of the polarization current J at the
metal boundary, thus forbidding free electrons to escape
the metal) and the most conservative (they reduce the
impact of nonlocal effects)[24].

We first study the influence of nonlocality by consid-
ering the dispersion relation of a SP propagating along a
perfectly plane dielectric-metal interface. Assuming time
dependence of the form e−iωt , solving relation (2) for J,
injecting the result in Maxwell’s equations and consid-
ering both classical and additional boundary conditions,
the nonlocal dispersion reads

km

εm
+
kd

εd
− iΩ = 0. (3)

Here, kj =
√
εjk2

0 − k2
SP, j = m,d, are the vertical com-

ponents of the SP wavevector and Ω is the parameter
including β and thus taking nonlocality into account.
Presuming Ω = 0 allows to retrieve the usual dispersion
relation for SPs, the kj = k′j + ik′′j being here essentially
imaginary (k′′j >> k′j). The expression of this parameter
is[24]

Ω =
k2

SP

κl

(
1

εm
− 1

1 + χb

)
, (4)

where κ2
l = k2

SP +
(
ω2

P

β2

)(
1
χf

+ 1
1+χb

)
is the vertical com-

ponent of the wavevector associated with the longitu-
dinal part of the SP appearing only when considering
non-locality[24].

As can be seen from (4), the parameter Ω is roughly
proportional to the square of kSP, which clearly indicates
that the higher the wavevector, the higher the impact of
nonlocality. Fig. 1 shows local and nonlocal SP dispersion
curves for different values of the dielectric permittivity
εd ranging from 1 to 10. We can easily see that, for a
fixed frequency, an increasing εd pushes the SP towards
higher neff , and thus causes the SP to be more sensitive
to nonlocality. The leftmost curve, obtained using air
as dielectric (εd = 1) clearly shows that the effective
index neff is too small to show any impact of nonlocality.
However, after a certain εd value, the characteristic bend-
back occurring at the SP frequency ωSP just disappears
when spatial dispersion is taken into account.

This corresponds exactly to a recent theoretical
study[25] which shows that an artificial decrease of the
metallic losses can induce exactly the same behavior on
the dispersion curves of plasmonic guided modes. This
occurs when the impact of nonlocality overcomes the in-
fluence of the metallic losses.

The impact of the dielectric’s permittivity overcomes
the one of losses for two reasons. First, as explained
above, increasing εd lowers ωSP and thus takes the fre-
quency away from the interband transitions. Addition-
ally, a higher dielectric permittivity directly gives to the
SP a higher neff and thus enhances the influence of spa-

tial dispersion, leading to a large impact of nonlocality
even well below ωSP.

We underline that, despite extensive studies on
nanoparticles, such a behavior of the SP has seemingly
not been reported previously. Straightforwardly, this
suggests that nonlocality will have an impact on (i) the
resonances of relatively large nanoparticles of noble met-
als (with a diameter well above 20 nm, as they can be
considered as resonant cavities for the surface plasmon)
and (ii) SP grating couplers very similar to the canonical
experiment of Wood[53] provided the grating is buried in
high index dielectrics.

II. NANOPARTICLES

The resonance of large metallic nanoparticles can be in-
terpreted as cavity resonances for the surface mode with
a resonance condition[54] which can be written as

2πR = m
λ0

neff
(5)

or simply as kSP = m
R , where R is the radius of the

particle. Such a condition is strictly valid only (i) for a
cylinder instead of a sphere and (ii) if the curvature of
the particle can be neglected, which is almost never the
case. However, this condition being roughly valid even
for spherical nanoparticles instead of cylinders[54, 55], it
allows to understand that if the wavevector of the SP is
influenced by nonlocality, the resonance frequencies of a
nanoparticle should be influenced as well, irrespective of
its size.

For decades now, the community has actually focused
on nanoparticles with a diameter much smaller than 20
nm[20, 41], hoping that enhanced nonlocal effects would
take place - since spatial dispersion is linked to supple-
mentary pressure terms in the description of the elec-
tron gas[49, 56]. However, with very small nanopar-
ticles (i) other effects like the spill-out[22, 33, 57, 58]
kick in and (ii) the geometry of the nanoparticles is not
well controlled[20, 41]. Given the relatively poor agree-
ment between experiments and the prediction of the hy-
drodynamic model[41, 59], it seems difficult to consider
the hydrodynamic model to be sufficient at such small
scales. It may even be a little bit early to introduce fur-
ther improvements of the hydrodynamic model[60] based
on these results. The simple analysis above suggests
that larger nanoparticles buried in a high permittivity
medium could actually be a better setup to test the hy-
drodynamic model.

In order to further strengthen this analysis, we used
Mie theory[54, 55] and adapted the formalism proposed
by Ruppin[61] for metallic cylinders, for which formula 5
is the most relevant. We use the most realistic material
parameters possible[42] and a supplementary boundary
condition which can be written[24]
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Pf .n =

(
E− (1 + χb)

β2

ω2
p

∇(∇.E)

)
.n = 0 (6)

where n is the unitary vector normal to the interface.
When the field is decomposed on the cylindrical harmon-
ics, the Mie coefficients[61] are

an =

√
εdJn(kdR)(J ′n(kmR) + αn)−√εmJn(kmR)J ′n(kdR)

√
εmH ′n(kdR)Jn(kmR)−√εdHn(kdR)(J ′n(kmR) + αn)

(7)

where

αn =
n2

kmR2 Jn(kLR)Jn(kmR)

−kLJ ′n(kLR) + (1 + χb)
β2

ω2
p

[
k2
LJ
′′′
n (kLR) +

k2L
R J
′′
n(kLR)− kL

R2 J ′n(kLR) + 2n2

R3 Jn(kLR)
] (8)

with km =
√
εm k0, kd =

√
εd k0 and

kL =

√
−
ω2
p

β2

[
1

1 + χb
+

1

χf

]
. (9)

We then compute the absorption cross-section as

Ce = − 2

kdR

∞∑
n=−∞

<(an). (10)

We underline that when αn = 0, the expression (7) re-
duces to the regular Mie expression.

We have computed the local and nonlocal response of
nanoparticles with different sizes when they are in water
(as is common) or in TiO2 (see Fig. 2). The latter is
a good choice to enhance the influence of spatial disper-
sion because of its high refractive index. Its permittivity
εTiO2

is described by a generalized dispersion model fit-
ted to experimental data corresponding to thin films of
TiO2 grown by atomic layer deposition[62]. This results
in a real part of the refractive index of TiO2 comprised
between 2.25 and 2.5 over a wavelength spectrum rang-
ing from 2000 nm to 400 nm. The extinction coefficient
is of the order of 10−7.

In water, nonlocality has a noticeable impact only for
a radius approaching 10 nm, whereas in TiO2 nonlocal-
ity tends to blueshift all the resonances of more than 4.8
nm in wavelength even for a radius of 100 nm. We stress
here that a high index dielectric is able to sufficiently en-
hance the magnitude of the nonlocal effects to make it
observable on the response of particles/cylinders 5 times
larger than the ones usually considered by the commu-
nity. This should be enough to rule out any other effect
like the spill-out and with such a large size, the geom-
etry of the nanoparticles are better controlled - or the
nanoparticles could even be probed individually[55, 59].
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FIG. 2. Local (blue) and nonlocal (orange) absorption for a
cylinder cross-section of radius (from left to right) R = 10, 50,
100 nm as a function of the impinging wavelength λ using (a)
: water or (b) : TiO2 as dielectric. The theoretical blueshifts
(for the maxima) are from left to right 2.1, 1.2, 0.9 nm on (a)
and 9.3, 6.0, 4.8 nm on (b).

III. GRATING COUPLER

We now discuss the structure shown on Fig. 3(a), which
is a simple 1D metallic grating buried in a high index di-
electric with infinite extent in the lateral directions. Nor-
mal incident illumination is assumed from the top and we
recover the zero-th reflected order for a broadband spec-
trum of the incident wavelength. In such a simple con-
figuration many diffraction orders, including evanescent
ones, are excited.
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FIG. 3. (a): Schematic representation of a grating coupler.
(b): Schematic representation of a SP propagating along a
dielectric−metal interface, taking the finite height of the
dielectric into account. The red dashed line illustrates the
SP’s magnetic profile. While the SP propagates along the
dielectric−metal interface, the upper evanescent tail extends
into air but the lower one does not extend into the substrate
allowing to neglect it in computations.

For the m-th order, and since we only consider normal
incidence here, the coupling condition to the SP can be
simply written as

kSP = m
λ

dG
, (11)

where λ is the wavelength, m the diffraction order and dG

the grating pitch. Such a relation is valid only for a very
shallow grating when the surface mode can be considered
undisturbed. It is equivalent to assuming that the spatial
periodicity of the grating is a multiple of the periodicity
of the SP. Such a condition is proper to the periodicity of
the structure[63] and thus is expected to be valid whether
spatial dispersion (which will modify kSP) is taken into
account or not. This allows to find the wavelength λc,m

for which the grating is able to excite the SP

λc,m =
<(neff)

m
dG, (12)

where neff = kSP

k0
is the SP effective index.

Each time this condition is satisfied, a dip due to the
excitation of a SP will appear in the reflectivity. Spatial
dispersion should cause blueshifts of the resonances with
respect to a fully local approach because the effective
index is always smaller when nonlocality is taken into
account. We define this blueshift as the positive quan-
tity ∆λc,m = λlocal

c,m −λnonlocal
c,m ∝ nlocal

eff −nnonlocal
eff . As the

different resonances correspond to different orders being
coupled to the SP, the corresponding wavevectors will be
different and thus the impact of spatial dispersion will
change from one resonance to another. To better under-
stand the impact of nonlocality on the resonances, it is
crucial to be able to identify them, hence the interest in

the relation (12). We have thus taken the finite thick-
ness of the dielectric layer into account by computing
the properties of the guided mode of the non-corrugated
structure (see Fig. 3(b)) using an open-access numerical
tool[36, 64]. Aiming for a proper interpretation of the
resonances, we have then carefully increased the depth
of the grating, in order to allow a thorough physical dis-
cussion (see Fig. 5). We use Rigorous Coupled Wave
Analysis (RCWA)[65, 66] for these simulations.

A. Parameters of the grating coupler

1. Materials

Although we restrict ourselves to silver in the scope of
this work, we underline that gold or any other metal and
even semi-conductors[67] (claiming an equivalent elec-
tronic mean free path[68]) could have been used and
would have led to the same conclusions. Again, in or-
der to observe the largest possible effects, we consider
TiO2 as a high permittivity dielectric.

2. Thickness of the dielectric and metallic layer

We have taken hm = 150 nm for the thickness of the
metallic layer, thus being several times thicker than the
skin depth and ensuring that the substrate does not play
any significant role.

The thickness of the dielectric hD layer is a distinctly
more crucial parameter. In order to excite a SP with
the highest possible wavevector, a dielectric of the high-
est possible thickness would be desirable. However, since
the dielectric layer is finitely thick, increasing hD leads
to a higher number of classical guided modes. That hin-
ders a clear interpretation of the resonances or renders
it even impossible. Luckily, since we are considering the
excitation of high wavevector guided modes that show a
fairly low vertical extension, a thickness of hD = 85.0 nm
turns out to be a good trade-off. No other guided mode
than the SP exist for this choice of hD in most of the
spectrum.

Fig. 4(a) shows the dispersion curve for a mode propa-
gating at an air-TiO2-Ag interface for hD = 85 nm with
and without spatial dispersion. Obviously, the difference
with the dispersion curve of the SP at a TiO2-Ag inter-
face is small. The impact of nonlocality is clearly the
same and the bend-back disappears.

3. Grating pitch

Using the coupling condition (12) and the local and
nonlocal dispersion curves as shown in Fig. 4(a), a raw
estimation of the blueshift due to spatial dispersion can
be made. Fig. 4(b) shows the expected blueshift for dif-
ferent diffraction orders and sweeps over the grating pe-
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FIG. 4. (a): Dispersion relation of a SP propagating at an
air− TiO2 −Ag multilayer. Local results are in blue and non-
local ones are in orange. For comparison, the two dashed
lines are the nonlocal dispersion relation respectively for an
Air−Ag interface (left) and a TiO2 −Ag interface (right).
The black vertical lines indicate the coupling condition given
by (12) for a grating pitch of 500 nm considering the five first
diffraction orders (1 to 5 from left to right). (b): Estimation
of the blueshift ∆λc,m as a function of the grating pitch dG.
m varies 1 to 5 (bottom to top).

riodicity dG. The higher the diffraction order, the higher
the wavevector of the excited SP – which leads to an in-
creased impact of nonlocality. We have finally chosen a
pitch length dG = 500 nm according to a maximum of the
predicted blueshift of about 5.5 nm for m = 5. Keeping
the pitch below the shortest working wavelength guaran-
tees that only the zero-th order propagates, even if the
evanescent orders of diffraction are coupled to the SP. In
other words, all of the non-reflected light must be ab-
sorbed by the guided modes along the structure.

4. Groove width and grating thickness

The determination of the two remaining geometrical
parameters, i.e. the groove aG and the grating thickness
hG, is less straightforward. We have to establish a trade-
off, such that the excitation of the SP for different orders
of diffraction can be done efficiently without perturbing
the guided mode too much. In order to avoid gap plas-
mons to build up in the slits[69], a large enough aG value
is needed. We choose aG = 1

3dG here. Starting from
hG = 2 nm we have increased the grating depth until an
efficient coupling to the SP mode was found - we relied on
a pure RCWA method[65, 66] to adjust this parameter.

It is easy to associate a diffraction order m for most of
the resonances supported by the grating described above
(see Fig. 5). However, starting from almost zero and pro-
gressively increasing the height hG, the resonance that we
first attributed to be of order m = 1 exhibits a splitting

FIG. 5. (a): Reflectivity of the grating illuminated in nor-
mal incidence for different values of hG computed using a local
RCWA for λ ∈ [480, 850] nm. (b): Reflectivity of the grating
for different values of hG for λ ∈ [850, 1700] nm. Each verti-
cal coordinate system has been chosen to maximize visibility.
The horizontal one is kept constant from top to bottom. (c):
Magnetic field amplitudes illustrating the splitting of diffrac-
tion order 1 into two sub-orders. The corresponding (hG, λ)
couples (in nm) are from top to bottom : (2,940), (30,1086),
(68,980) on the left and (68,1540) on the right.

(see Fig. 5).

The field maps on Fig. 5 clearly show that one of the
resonances corresponds to a cavity-like resonance, which
is entirely located in the grooves of the grating, i.e it
is reflected back and forth horizontally. The other reso-
nances are cavity resonances of SPs that propagate on top
of the grating and are reflected by the edges of the metal.
We label those resonances with 1b (where ’b’ stands for
’bottom’) and 1t (where ’t’ stands for ’top’), respectively.
Since the thickness of the dielectric is different for both
kinds of plasmons, their wavevector cannot be the same,
therefore the splitting. We finally chose to take hG = 68
nm.

Were the depth of the grating much larger, the 1t mode
would enter a spoof SP regime[70–76] where the grat-
ing could be considered as an effective medium. In the
present case, the conditions to be in this regime[73] are
however not fulfilled, as the pitch is roughly one third of
the wavelength at most – for the 1t mode. In addition,
the grating is too shallow to allow for spoof SPs to be
excited, making 1b and 1t modes more similar to the hy-
brid SPs evoked in the literature[70]. As the following
will show, the 1t mode can be considered as insensitive
to nonlocality, suggesting that spoof SPs may be equally
insensitive.
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B. Influence of nonlocality on the grating
reflectivity

Now that the grating has been designed and its physics
is well understood, we use a software taking spatial dis-
persion into account in order to assess its influence on
the reflectivity of the grating. This is necessary, since
analytical solutions do not exist anymore and we have to
rely on a numerical algorithm. Here, we use a DGTD
method for the simulations of the grating. The result is
shown in Fig. 6 for wavelengths ranging from λ = 500
nm to λ = 2000 nm. The small discrepancy between
local DGTD and RCWA is due to a known problem of
the latter in very peculiar conditions[77] and occurs only
far off the resonances. We can clearly identify 5 dips
due to SP excitation corresponding to 4 diffraction or-
ders, the first order being split as discussed above. The
results show a considerable influence of the spatial disper-
sion, which is significantly stronger than what has been
predicted theoretically. This can be attributed to the
grating itself and to the shift of the resonances towards
large wavelengths (and larger wavevectors for the SP).
The resonances linked to the diffraction orders m = 4
and m = 2 (see inset on Fig. 6) experience blueshifts of
respectively 1.8 nm and 6.5 nm compared to the local
prediction. Especially for m = 2 this is clearly higher
than the expected shift of 3 nm (see Fig. 4(b)). For
m = 4 the shift is slightly smaller than expected. Fi-
nally, we can identify two wavelength bands of interest.
The first one for λ = [550, 800] nm (see inset) shows
the highest difference between local and nonlocal simu-
lations. It comprises two blueshifted diffraction orders,
and the whole response between the two is also clearly af-
fected by nonlocality - making this regime a good choice
to estimate the parameter β. The second region of in-
terest is the rightmost part of Fig. 6 for λ = [800, 2000]
nm. It comprises the two suborders 1t and 1b, which are
less sensitive to nonlocality. For this reason, we believe
that this region is not useful to probe nonlocality, but
well-suited for a geometrical parameter characterization.
We have to keep in mind that any estimation of β relies
merely on a comparison between material models. Such
comparisons are very sensitive to the geometrical param-
eters. Since we are trying to measure discrepancies of the
order of 1% of the wavelength, we must ensure that non-
locality will not be concealed by uncertainties on local
parameters.

IV. TELEMETRY AND PARAMETER
ESTIMATION

In the previous section we have theoretically predicted
that the metallic grating that we have designed is sen-
sitive to nonlocality. The goal of the present section is
to present the challenges which would have to be faced
by experimentalists and to propose a methodology rely-
ing on the solution of inverse problems and Uncertainty

Quantification (UQ), which could be used to assess real-
istically the presence of nonlocality and to estimate the
crucial β parameter.

In order to take into account the fact that, whatever
the geometry and the imperfections of the grating, the
spectra will be noisy, we have generated an artificial
but realistic reflectance spectrum. We use nonlocal sim-
ulations and then added a noise whose characteristics
are similar to actual experimental spectra provided by
experimentalists[78]. The noise has been chosen with a
correlation length of 0.001 nm and a maximum difference
of 0.04 with the original, unperturbed spectrum. We have
then tested whether the parameters of the grating and of
the model could be retrieved despite this realistic level of
noise.

A. Post-fabrication telemetry

1. Grating parameters

The grating parameters would have to be determined
before any dielectrics is deposited. A natural way of de-
termining these geometrical parameters would be to rely
on a Scanning Electron Microscope (SEM) or an Atomic
Force Microscope (AFM) which would both allow to di-
rectly measure the precise parameters for each of the
grooves of the grating. However, for a structure with-
out any dielectrics, the impact of nonlocality is negligi-
ble - which means that the geometrical parameters can
be determined using telemetry, without any assumption
on the non local parameter, i.e with a local model. The
optical response of a grating actually depends more on
average geometrical parameters[79], as the grooves may
be all slightly different. Telemetry has the advantage of
allowing the determination of these average parameters
(especially the period of the grating), which will consti-
tute our geometric model.

We generate an artificial measurement spectrum, that
we denote Rmeas(λ). Furthermore, it is possible, for given
dG, aG and hG to compute a theoretical spectrum R(λ).
We define the distance between the two spectra as

||Rmeas(λ)−R(λ)||2L2(λ1,λ2) =

∫ λ2

λ1

(Rmeas(λ)−R(λ))
2

dλ.

(13)
The integration interval [λ1, λ2] will be chosen differently
in the following, depending on which parameters have
to be retrieved. We performed multiple optimization
runs with different algorithms (particle swarm, pattern
search and a derivative-based optimizer combined with a
kriging-based meta-model) in order to find the parame-
ters (dG, aG and hG) which would produce the minimum
distance between the theoretical spectrum and the arti-
ficially generated one. We underline that we constrained
the optimization to look for geometrical parameters in
intervals which would be in accordance with the preci-
sion of the etching process. The fabrication tolerances of
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FIG. 6. Reflectivity R of the whole structure as a function of the wavelength λ. The orange line corresponds to the nonlocal
DGTD result, the blue line to the local DGTD result and the black, dotted line to the local RCWA result. The annotations
1t, 1b, 2, 4 and 5 refer to the excitation of the SP with respect to the diffraction order m of (12). The inset plot zooms into the
wavelength range 550− 800 nm, where the impact of nonlocality is the most prominent.

state-of-the-art nano-processing still lead to a priori tol-
erances of about ±5 nm for the etching process [80] and
about ±11% [81] for the dielectric deposition.

Considering spectra between 400 nm and 1200 nm
to retrieve the parameters, we have found that the
derivative-based optimization method performed best,
followed by pattern search and particle swarm, the latter
seemingly being less appropriate for this type of opti-
mization problem. The geometrical parameters could be
retrieved with an excellent accuracy despite the noise (see
Fig.7).

2. Dielectric thickness

The dielectric thickness has to be determined by
telemetry. While the previous step can be performed
with purely local simulations, here nonlocality clearly
plays a role. This time, our artificially measured data
are generated using the nonlocal spectrum correspond-
ing to the right part of Fig. 6 i.e [λ1, λ2] = [800, 2000]
nm. Since the resonances 1t and 1b are almost insensi-
tive to nonlocality, trying to retrieve hD by minimizing
the distance between the measured non local spectrum
and a local in this wavelength range makes sense and ac-
tually yields results that are very close to the real value
(the retrieved value was hD = 84.8 nm, with the real
value being hD,init = 85 nm).

1

500 700 900 1,100

0.7

0.9

λ (nm)

R

Rmeas

Original solution

Inverse solution500 700 900 1,100

0.7

0.9

λ (nm)

R

Rmeas

Original solution

Inverse solution

FIG. 7. Reflectivity spectrum. An artificial white noise has
been added to the original spectrum (in blue) obtained for a
grating illuminated in normal incidence without any dielectric
layer and with hG = 68.0 nm, dG = 500.00 nm and aG =
166.7 nm. In orange: The result of the optimization. This
spectrum corresponds to hG = 68.1 nm, dG = 499.2 nm and
aG = 165.4 nm. The constraint intervals are chosen to be
hG ∈ [62, 73] nm, dG ∈ [495, 505] nm and aG ∈ [161, 171] nm.

B. Geometric uncertainty vs. nonlocality

The geometric telemetry has led to the fabricated ge-
ometries in Table I, where, for each parameter z with
initial values zinit used to create Rmeas, z = zopt is the
mean value and δz = |z − zinit| the maximum deviation.
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Given the uncertainties due to the retrieval process
(with other means of measuring the geometric parame-
ters these uncertainties would likely be of the same mag-
nitude), we need to be sure that we will be able to dis-
tinguish the impact of nonlocality from an unavoidable
small error in the determination of the geometric pa-
rameters. We use Uncertainty Quantification (UQ) to
provide us with answers and, in order to estimate the
impact of nonlocality we use, again, a β value from the
literature[39].

We recast the geometrical parameters hG, dG, aG and
hD as random variables (RVs) following uniform distribu-
tions U [z − δz, z + δz] (see I). We then perform an UQ
[82] study, in order to estimate the expectation value and
variance of the reflectivity in two resonance regions corre-
sponding to the diffraction orders 2 and 4. In particular,
we consider 25 wavelengths in the range [550, 600] nm
(m = 4) and 50 wavelengths in the range [700, 800] nm
(m = 2).

Since the underlying computational model is a complex
one, we rely on black-box UQ methods, i.e. the model
and its numerical solvers are used without any modifi-
cations. In the context of the present work, we employ
a spectral method [83, 84], in particular the stochastic
collocation method [85–87], taking advantage of a num-
ber of factors. First of all, we deal with a small number
of RVs, therefore the costs of the method remain afford-
able. Moreover, numerical tests indicate that the depen-
dence of the reflectivity upon the RVs is smooth, which
is a prerequisite for fast convergence. Finally, we assume
that the RVs are mutually independent, which greatly
simplifies the method’s implementation.

The first step is to choose M different set of values for
the geometrical parameters z = (hG, dG, aG, hD), called
the collocation points. For each wavelength mentioned
above, the reflectance R(λ) can be considered as a func-
tion f(z) which is approximated by

f (z) ≈
M∑
m=1

f
(
z(m)

)
Ψm (z) , (14)

where z(m) are realizations of the random vector (the col-
location points) and Ψm are multivariate Lagrange poly-
nomials. The collocation points are based on univari-
ate Clenshaw-Curtis quadrature nodes and are produced
by Smolyak sparse grid rules [88, 89]. The multivari-
ate polynomials are formatted as products of univariate
Lagrange polynomials, defined by the corresponding uni-
variate Clenshaw-Curtis nodes.

TABLE I. Uncertain parameters extracted from telemetry

Parameter z δz Units

hG 68.1 0.1 (nm)
dG 499.2 1.0 (nm)
aG 165.4 1.5 (nm)
hD 84.8 0.3 (nm)

1
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0.7

0.9

λ (nm)

R

Rmeas

Inverse solution - local

Inverse solution - nonlocal

FIG. 8. Comparison of the local and nonlocal reflectivity for
diffraction order m = 4. The positions of the local resonances
are 579 nm and 577 nm for the nonlocal one. This leads to a
blueshift of almost 2 nm. In blue: the E [R]± 2σ area, being
an output of the UQ analysis based on a stochastic collocation
method. In orange: the min-max intervals of the reflectivity
for all interval bound combinations of the geometrical param-
eters given in Table I.

The reflectivity’s expectation value E [R] and variance
V [R] can now be estimated by post-processing the ap-
proximation terms of (14). Starting with the definitions

E [R] =

∫
Γ

f (z) % (z) dz, (15)

V [R] = E
[
(R− E [R])

2
]

= E
[
R2
]
− (E [R])

2
, (16)

where %(z) is the joint probability density function, we
approximate the corresponding integrals with the multi-
dimensional Gauss quadrature formulas

E [R] ≈
M∑
m=1

wmf
(
z(m)

)
, (17)

V [R] ≈
M∑
m=1

wm

(
f
(
z(m)

)
− E [R]

)2

, (18)

where wm denote the corresponding quadrature weights.
We use the UQ study results in order to estimate ±2σ
intervals around the optimized local reflectivity curve,
where σ =

√
V[R] refers to the standard deviation. The

results corresponding to each resonance area are pre-
sented in Fig. 8 and Fig. 9 (in blue), respectively. Since
the nonlocal DGTD simulations are too expensive for an
UQ of the same kind as we have performed for the local
model, i.e. the evaluation of (17) and (18), we rely on a
min-max study. Here, min-max represents solver calls for
all interval bound combinations (in orange) as depicted
in the corresponding figures.

According to Fig. 8, a clear measurement of the reso-
nance m = 4 is almost impossible due to the small dif-
ference between the local and nonlocal curves. Neverthe-
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FIG. 9. Same as Fig. 8 for order of diffraction m = 2. The
positions of the local resonances is 735 nm and the nonlocal
ones at 728 nm. This leads to a blueshift of almost 7 nm.

less, the second resonance, i.e. m = 2 (see Fig. 9) is sig-
nificantly more sensitive to nonlocality and stays distin-
guishable. For the sake of robustness, we have also per-
formed simulations (data not shown) with the lowest the-
oretically acceptable value for β = 0.85×106 m.s−1[90],
which still guarantees a blueshift of 5 nm for the second
resonance, i.e. stronger than the geometric uncertainty.

C. Model calibration

Knowing the geometry and estimating the impact of
nonlocality to be greater than geometric uncertainties,
we now want to extract the nonlocal material parameter
β. We underline that different theoretical expressions can
be found in the literature for this constant[43, 49, 90], so
that the theoretically acceptable values for β may lie be-
tween βmin ≈ 0.85×106 m.s−1 [90] and βmax ≈ 1.4×106

m.s−1. [43]. However, the experimental results available
so far[39, 40] point consistently towards a value close to
the upper estimation of β = 1.35×106 m.s−1. This un-
derlines how important the determination of β can be
and explains why we have considered this value so far.

In order to estimate how precise our estimation of β
could be with the grating setup, we proceed in the same
fashion as for the geometric telemetry but we use a wave-
length range of [550, 800] nm. Using DIOGENeS and
DGTD [38], we find the β value which minimizes the dis-
tance between R and Rmeas. The geometric size of the
structure, in combination with the very small effective
wavelengths and the short interaction range of nonlocal
effects, which is in the range of several nm at the metallo-
dielectric interface, result in a computationally expensive

procedure. The solution of the inverse problem can be
significantly accelerated by meta-model-based optimiza-
tion algorithms. We have used the kriging (Gaussian pro-
cess) meta-model in combination with a derivative-based
optimization implementation of the FAMOSA[91] opti-
mization toolbox. We find βinverse = 1.385×106 m.s−1,
which is reasonably close to the βinit = 1.35×106 m.s−1

(the value used to generate Rmeas), indicating that the
value of β can be retrieved with an error smaller than
10%.

V. CONCLUSION

We have first shown that, in the framework of the hy-
drodynamic model, SPs can be sensitive enough to spa-
tial dispersion – provided that the dielectric considered
has a sufficiently high permittivity, like TiO2. Such a
conclusion is in contrast with previous works that sug-
gested that the impact of spatial dispersion could be too
difficult to measure optically – which is only true for an
interface between metal and air.

Since there is a link between such guided modes and
the localized resonances of metallic nanoparticles, this
lead us to expect an impact of nonlocality on essentially
any metallic nanoparticle with a radius much larger than
20 nm, for which the geometry is more likely to be well
controlled, buried in a high index medium. Using Mie
theory, we estimate the blueshift brought by nonlocality
to be at least of 5 nm in wavelength in TiO2, an effect
that could potentially be observed experimentally.

Since high wavevector guided modes cannot be excited
using prism couplers, we have then studied how the SPs
can be excited using a grating coupler. We have shown,
using state of the art numerical tools, that such a struc-
ture would allow the observation of spatial dispersion
by means of blueshifted resonances up to almost 7 nm
(around 1% of the wavelength). Using uncertainty quan-
tification and inverse problem solving, we have identified
which resonance precisely could be used to estimate the
main parameter of the hydrodynamic model and shown
how such an estimation could be made. We underline
that such a procedure could well be applied to nanopar-
ticles as well.

As already evoked in several earlier works[59, 92, 93]
and clearly demonstrated in the present work, any plas-
monic structure surrounded by a high refractive index
medium like TiO2 will only be accurately described if
spatial dispersion is taken into account.

We believe that, by proposing a structure with realistic
parameters and a procedure to carefully estimate the im-
pact of spatial dispersion, this work will pave the way for
future experiments that shall give reliable answers to the
community on the limits of Drude’s model for plasmonics
and its potential replacements.



11

[1] P. Drude, Annalen der Physik 306, 566 (1900).
[2] J. C. Maxwell, A treatise on electricity and magnetism,

Vol. 1 (Clarendon press, 1881).
[3] A. Moreau, C. Cirac̀ı, J. J. Mock, R. T. Hill, Q. Wang,

B. J. Wiley, A. Chilkoti, and D. R. Smith, Nature 492,
86 (2012).

[4] X. Chen, C. Cirac̀ı, D. R. Smith, and S.-H. Oh, Nano
letters 15, 107 (2014).

[5] G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirac̀ı,
C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen,
Nature Photonics 8, 835 (2014).

[6] A. W. Powell, D. M. Coles, R. A. Taylor, A. A. Watt,
H. E. Assender, and J. M. Smith, Advanced Optical
Materials 4, 634 (2016).

[7] M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle,
A. Josten, M. Zahner, U. Koch, Y. Salamin, C. Hoess-
bacher, C. Haffner, et al., Science 358, 630 (2017).

[8] R. Fuchs and K. L. Kliewer, Phys. Rev. B 3, 2270 (1971).
[9] P. J. Feibelman, Physical Review B 12, 1319 (1975).

[10] M. Rocca, Surface science reports 22, 1 (1995).
[11] M. Rocca, L. Yibing, F. BuatierdeMongeot, and U. Val-

busa, Physical Review B 52, 14947 (1995).
[12] S. J. Park and R. E. Palmer, Physical review letters 102,

216805 (2009).
[13] A. Liebsch, Physical Review B 48, 11317 (1993).
[14] A. Liebsch, Physical review letters 71, 145 (1993).
[15] P. J. Feibelman, Phys. Rev. Lett. 72, 788 (1994).
[16] A. Liebsch, Phys. Rev. Lett. 72, 789 (1994).
[17] A. D. Boardman, Electromagnetic surface modes (Wiley,

1982).
[18] F. Frostmann and R. R. Gerhardts, Metal optics near the

plasma frequency, Vol. 109 (Springer-Verlag, 1986).
[19] R. Chang, H.-P. Chiang, P. Leung, and W. Tse, Optics

Communications 225, 353 (2003).
[20] J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature 483,

421 (2012).
[21] S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A.

Mortensen, Journal of Physics: Condensed Matter 27,
183204 (2015).

[22] R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpu-
rua, Nature communications 3, 825 (2012).

[23] C. Cirac̀ı, J. B. Pendry, and D. R. Smith,
ChemPhysChem 14, 1109 (2013).

[24] A. Moreau, C. Cirac̀ı, and D. R. Smith, Physical Review
B 87, 045401 (2013).

[25] S. Raza, T. Christensen, M. Wubs, S. Bozhevolnyi, and
N. Mortensen, Physical Review B 88, 115401 (2013).

[26] C. David, N. A. Mortensen, and J. Christensen, Scientific
reports 3, 2526 (2013).

[27] A. Wiener, A. I. Fernández-Domı́nguez, J. Pendry, A. P.
Horsfield, and S. A. Maier, Optics Express 21, 27509
(2013).

[28] G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao,
M. Wubs, A.-P. Jauho, S. I. Bozhevolnyi, and N. A.
Mortensen, Nanophotonics 2, 161 (2013).

[29] J. B. Lassiter, X. Chen, X. Liu, C. Cirac̀ı, T. B. Hoang,
S. Larouche, S.-H. Oh, M. H. Mikkelsen, and D. R.
Smith, Acs Photonics 1, 1212 (2014).

[30] C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann,
A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin,
A. Josten, U. Koch, et al., Nature Photonics 9, 525

(2015).
[31] M. P. Nielsen, X. Shi, P. Dichtl, S. A. Maier, and R. F.

Oulton, Science 358, 1179 (2017).
[32] H. Haberland, Nature 494, E1 (2013).
[33] G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl,

F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, Nature
communications 6, 7132 (2015).

[34] C. Cirac̀ı and F. Della Sala, Physical Review B 93,
205405 (2016).

[35] G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and
M. Wubs, Optics express 20, 4176 (2012).

[36] J. Benedicto, R. Pollès, C. Cirac̀ı, E. Centeno, D. R.
Smith, and A. Moreau, JOSA A 32, 1581 (2015).

[37] N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, and
J. Viquerat, Journal of Computational Physics 316, 396
(2016).

[38] N. Schmitt, C. Scheid, J. Viquerat, and S. Lanteri, Jour-
nal of Computational Physics 373, 210 (2018).

[39] C. Cirac̀ı, R. T. Hill, J. J. Mock, Y. Urzhumov,
A. I. Fernández-Domı́nguez, S. A. Maier, J. B. Pendry,
A. Chilkoti, and D. R. Smith, Science 337, 1072 (2012).

[40] C. Cirac̀ı, X. Chen, J. J. Mock, F. McGuire, X. Liu, S.-
H. Oh, and D. R. Smith, Applied Physics Letters 104,
023109 (2014).

[41] S. Raza, N. Stenger, S. Kadkhodazadeh, S. V. Fischer,
N. Kostesha, A.-P. Jauho, A. Burrows, M. Wubs, and
N. A. Mortensen, Nanophotonics 2, 131 (2013).

[42] A. D. Rakic, A. B. Djurǐsic, J. M. Elazar, and M. L.
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