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The group velocity of a plasmonic guided mode can be
written as the ratio of the flux of the Poynting to the
integral of the energy density along the profile of the
mode. This theorem, linking the way energy propa-
gates in metals to the properties of guided modes and
Bloch modes in a multilayer, provides a unique phys-
ical insight in plasmonics. It allows to better under-
stand the link between the negative permittivity of met-
als and the wide diversity of exotic phenomenon that
occur in plasmonics – like the slowing down of guided
modes, the high wavevector and the negative refraction.
© 2019 Optical Society of America
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Deeply subwavelength metallic structures give us an unprece-
dented control of visible light, allowing to focus, concentrate,
absorb, scatter light very efficiently, or to even enhance the emis-
sion of light by fluorophores[1] at totally new levels. Metals
actually present a very peculiar optical response that dielectrics
are totally incapable of - which can be linked to the presence
of a free electron gas, a plasma, inside even the tiniest metallic
nanoparticles[2].

Plasmonic resonators are the smallest optical resonators pos-
sible and their resonances can always be linked to the excitation
of some kind of plasmonic guided mode. There is thus a large di-
versity of these modes, from the well known surface plasmon[3]
to long and short-range surface plasmons[4], gap-plasmons[5] or
modes supported by hyperbolic metallo-dielectric multilayers[6].
Most of them present very high wavevectors which explains
the reduced size of the plasmonic resonators[7, 8]: they are es-
sentially cavities for guided modes with very small effective
wavelength. One must finally underline that exotic phenom-
ena like negative refraction may also occur in metallo-dielectric
multilayers[9–12].

All these features lack a unified view that would enable to
give a physical insight into the reasons why large wavevector
guided modes and negative refraction are common in plasmon-
ics and very exotic in dielectric structures - requiring the careful
tailoring of photonic crystals, for instance[13, 14]. We think
that considering the way that energy flows when such modes
propagate provides this kind of insight.

The average flux of the Poynting vector has actually been
used in the context of metamaterial and negative index materi-
als as a useful tool to predict in which direction a mode really
propagates (i.e. the sign of its group velocity). Such a approach
relies on a theorem showing that the energy velocity is equal
to the group velocity for modes propagating in non-dispersive,
dielectric media[15, 16]. This theorem has been mostly ignored
because, except in a few cases like when a mode approaches a
cut-off condition, the group velocity does not present any exotic
behaviour.

Assuming this link holds even in the case of plasmonic or
metamaterial waveguides, it can prove very useful to determine
the sign of the group velocity by simply using the profile of the
guided modes at a given frequency without having to actually
compute the dispersion relation[17–19]. However, the optical
response of metals is linked to the presence of free electrons, that
transport a part of the guided mode energy and whose kinetic
energy can not be neglected. For a plane wave propagating
in a plasma, provided the energy of the electrons is taken into
account both in the energy flux and in the energy density, it
has been shown by Bers[20] that the energy and flux velocity
are the same. This underlines that Yariv and Yeh’s theorem[15]
can not be applied to plasmonic waveguides. Since metals are
highly dispersive and can be considered as boxes containing a
real plasma, it is even surprising that computing the average
flux of the Poynting vector could be successful in predicting the
sign of the group velocity.

Here we show that it is actually possible to generalize Yariv
and Yeh’s theorem in the context of dispersive media, including
metals. This means that there is no need to modify the expres-
sion of the energy flux and only to adapt the energy density
expression, to make the theorem valid – despite what has been
established for plasma[20]. Said otherwise, the group velocity
of a guided mode in a plasmonic multilayer is equal to the en-
ergy velocity of the electromagnetic field alone, and the energy
transported by the free electrons, while not negligible[20], can be
completely ignored. We then show using several examples how
considering the energy velocity can provide a unifying vision of
the optical response of plasmonic multilayers.

We consider a multilayered structure invariant in the x and
y directions, and a guided mode, solution of Maxwell’s equa-
tions presenting a ei(kx x−ω t) dependency in x and t. We will
assume the mode is p-polarized, because nothing exotic occurs
for the s polarization in metallo-dielectric structures. Maxwell’s
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equations reduce to

∂zEx − ikxEz =iωµ0Hy (1)

∂z Hy =iωε0εEx (2)

ikx Hy =− iωε0εEz (3)

Any change in the mode will be linked to a small change in its
propagation constant, noted δkx, its pulsation δω, its electric and
magnetic field, respectively δE and δH. These small changes are
all linked by Maxwell’s equations, whatever the dispersion rela-
tion of the guided mode which is considered. These equations
can thus be differentiated to yield

−i δkx Ez − ikx δEz + ∂z δEx =i δω µ0Hy + iωµ0 δHy (4)

∂z δHy =i δω ε0ε Ex + iωε0 δε Ex

+ iωε0εδEx (5)

i δkx Hy + ikx δHy =− i δω ε0εEz − iωε0 δε Ez

− iωε0ε δEz (6)

and since ε is only a function of ω, we can write that δε = δω ∂ε
∂ω .

Following Yariv and Yeh[15, 16], we introduce now the quan-
tity

F = δE⊗H∗ + δH∗ ⊗ E + H⊗ δE∗ + E∗ ⊗ δH, (7)

where ∗ denotes the complex conjugate.
Since we restrain ourselves here to a multilayered structure,

we only need to calculate ∂z Fz = 2i∂z=
(

δEx H∗y − Ex δH∗y
)

.
Given its expression, we calculate the quantity

A =∂z

(
δEx H∗y − Ex δH∗y

)
=∂zδEz.H∗y + δEx.∂z H∗y − ∂z δH∗y .Ex + δH∗y .∂zEx

Using respectively Eq. (4),Eq. (5) and Eq. (6) we find that the
different terms can be written

∂z(δEx)H∗y =i δkx Ez H∗y + ikx H∗y δEz + i δω µ0|Hy|2

+ iωµ0 δHy H∗y (8)

∂z H∗y .δEx =− iωεεE∗x δEx (9)

−∂z(δH∗y )Ex =i δω ε0

(
ε + ω

∂ε

∂ω

)
|Ex|2 + iωε0ε δE∗x Ex (10)

−δH∗y ∂zEx =− ikxEz δH∗y + iωµ0Hy δH∗y (11)

Using Eq. (3) and Eq. (6), we have in addition

ikx

(
δEz H∗y − Ez δH∗y

)
=δEz iωε0εE∗z + iωε0ε δE∗z Ez

+ δkx Ez H∗y + iωε0

(
ε + ω

∂ε

∂ω

)
|Ez|2.

(12)

Adding all the terms to calculate A and using Eq. (12), we
finally get

∂zFz = 4i δkx<
(

Ez H∗y
)

+ 2i δω

(
µ0|H|2 + ε0

{
ε + ω

∂ε

∂ω

}
|E|2

)
(13)

where all the real terms have been eliminated.
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Fig. 1. (a), (b), (c) Magnetic field and Poynting vector profiles
in the case of the surface plasmon for different values of ω

ωp
.

(d) Dispersion curves for the surface plasmon, showing the
frequencies ω1, ω2 and ω3.

Now if we consider a mode guided along the x axis in a mul-
tilayered structure containing metallic layers, then the radiation
condition impose vanishing fields amplitudes at infinity and
thus a vanishing Fz, which allows to write that over a section of
the waveguide we have

∫ +∞

−∞
∂zFz dz = 0. (14)

This allows to conclude that the group velocity vg is given by

vg =
δω

δkx
=

−
∫ 1

2<
(

Ez H∗y
)

dz∫ 1
4 µ0|H|2 + 1

4 ε0

{
ε + ω ∂ε

∂ω

}
|E|2dz

(15)

that is, the ratio of the total x-directed time averaged Poynting
vector, in the numerator, to the total time averaged energy, in
the denominator.

We underline that such a proof naturally yeld the classical
expression of the energy density in a dispersive media whose
permittivity depends on the frequency – so that this constitutes
a fourth way, after the approaches of Brillouin, Landau and
Loudon[21] to reach this expression. This way may even be the
most natural.

In order to illustrate when the theorem provides a better
understanding of plasmonics in general, we first consider the
emblematic surface plasmon propagating at the interface be-
tween a metal with a permittivity εm and a dielectric with a
permittivity εd. Surface plasmon dispersion relation reads

κm

εm
+

κd
εd

= 0, (16)
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Fig. 2. (a), (b), (c) Magnetic field and Poynting vector profiles
of the gap plasmon for different values of the dielectric gap
width h and ω

ωp
= 0.25. (d) Dispersion curves in the case of the

gap plasmon, for, from left to right, h1, h2 and h3.

where κi =
√
(k2

x − k2
0εi) are wavevectors in the ẑ direction de-

fined such that the waves are ’propagating’ away from interface
as e±κzz. To compute vg one only need the mode wavevector
kx by solving dispersion relation and from it, the knowledge of
fields amplitudes implied in Eq. (15) allow interpretation of vg in
term of energy. In this way we have numerically checked the va-
lidity of Eq. (15) ensuring vg = vE. The mode profile, as well as
the Poynting vector and the dispersion curve are shown on Fig.
1. Since the Poynting vector is proportional to 1

ε |Hy|2 and since
εm < 0, the energy flux is negative in the metal and positive in
the dielectric. Far below the plasma frequency, this phenomenon
has no real impact on the propagation: the permittivity is very
large, the negative flux is thus very small. When the frequency
gets closer to the plasma frequency, the permittivity in the metal
decreases, the negative flux of the energy increases and the en-
ergy velocity of the whole mode is thus decreasing. When the
frequency is approaching ωsp =

ωp√
1+εd

the permittivity in the
metal is negative but close to the permittivity of the dielectric
in absolute value. Since the magnetic field is continuous at the
interface, this means that the negative flux almost balances the
positive one. The energy velocity thus goes to zero, and thanks
to the theorem above, we know the group velocity does too.
Since the group velocity is the inverse of ∂kx

∂ω this means that this
quantity is increasing and finally kx is thus increasing when the
frequency approaches ωsp. There is thus a direct link between
the fact that the Poynting flux vanishes and the high wavevector
presented by the surface plasmon. This effect in extreme in the
sense that the phase velocity vanishes too, and the mode ap-
proaches cut-off condition. More generally, as light propagates
close to a metal, the energy propagates backward in the metal,
which slows down the propagation of light itself. Light thus

experiences what we call a plasmonic drag.
This phenomenon is even more obvious in the case of the

gap-plasmon[5], because a geometrical parameter (instead of
the frequency) allows to control the Poynting balance. A gap-
plasmon is a mode in a dielectric sandwiched between two
metals. The dispersion relation of this guided mode reads

κm

εm
+

κd
εd

tanh(
κdh
2

) = 0. (17)

The thickness of the dielectric h is small enough so that the
picture of coupled surface plasmons does not hold any more[22].
The fundamental mode presents a diverging wavevector when
the gap goes to zero. Fig. 2 shows the profile of a gap-plasmon,
its Poynting vector and dispersion curves for different gap width.
The whole behavior of the mode is easier to understand from the
energy point of view: when the gap closes or when the frequency
is getting close to ωsp the energy flux in the metal begins to
balance the flux in the dielectric. The mode is thus slowed down.
The dispersion curve of the gap-plasmon resemble to the one
of a surface plasmon, but when the gap closes the energy (and
thus the group) velocity goes to zero, pushing the wavevector to
correspondingly larger values.

The same reasoning can be applied to more complex struc-
tures, like the multilayers alternating dielectric layers of thick-
ness hd and metallic ones with a thickness hm. The plasmonic
drag is largely present too. The modes in that case present very
high wavevector when the ratio hm

hd
is large enough and have

the advantage of propagating in a thicker structure compared to
the gap-plasmon. They are thus easier to excite using end-fire
coupling methods, and the resonators that can be obtained using
such structures (hyperbolic wire antennas) are deeply subwave-
length while preserving their cross-section[8]. Dispersion rela-
tion and amplitudes of guided modes in such structures, or in
any arbitrary multilayer can be found by solving an eigenvalue
problem based on the transfer[23] or scattering[24] matrix meth-
ods then allowing an energy point of view interpretation thanks
to Eq. (15). An homogenization procedure even leads to simpli-
fied expressions for the wavevector and the field amplitudes[8]
for such modes.

Finally, we would like to underline that, as in the original
work of Yariv and Yeh, the theorem can be applied not only to
guided modes, but to Bloch modes too. For Bloch modes in
periodical structures[16], the same conclusion can be reached
except that the integration has only to be done on one period of
the multilayer, whatever its complexity[11]. We consider now
a multilayer with a period composed of a metallic layer with a
thickness hm and a dielectric layer with a thickness hd. Using
the periodicity D = hm + hd, the theorem can be written

vg =
− 1

D
∫ D

0
1
2<
(

Ez H∗y
)

dz

1
D
∫ D

0
1
4 µ0|H|2 + 1

4 ε0

{
ε + ω ∂ε

∂ω

}
|E|2dz

, (18)

In that case, the results would be very similar to what
has been published recently in the case of periodical lossy
structures[25]. This allows to better understand when such a
mode will present a negative group velocity for instance. Such a
phenomenon emerges when the energy and the group velocity
are opposite to the wavevector along the interfaces. In the limit
where the layers are all very thin compared to the wavelength,
the homogenization regime, the magnetic field does not really
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change from one layer to the other, given how thin they are. In
that case, the numerator of Eq. (18) can be recast as

− 1
D

∫ D

0

1
2
<
(

Ez H∗y
)

dz =
1
D

kx

2ωε0

(
hm

εm
+

hd
εd

)
|Hy|2, (19)

=
kx

2ωε0εe f f
|Hy|2, (20)

with εe f f = D
hm
εm

+
hd
εd

which is precisely the zz component of an

effective permittivity tensor corresponding to an equivalent ho-
mogeneous anisotropic medium for the periodic multilayer[1].

When the above quantity is negative then group velocity and
the wavevector along the x axis signs are opposite, leading to
negative refraction. That is, energy along the interfaces prop-
agate in the opposite direction of the impinging wavevector x
component - the dispersion curve is in that case hyperbolic[12].
The condition εe f f < 0 can be written

hm

εm
+

hd
εd

< 0 (21)

and under this form, it can be interpreted as a simple Poynting
balance over one period: the Poynting flux in the metal is pro-
portional to hm

εm
while the Poynting flux in the dielectric layer is

proportional to hd
εd

because Hy is essentially constant. The con-
dition for which negative refraction occurs can thus be seen as
equivalent to requiring the global Poynting flux to be opposite
to the wavevector. This example shows how general the vision
of plasmonics through the prism of energy can be. We underline
that this also allows to easily understand why dielectric multilay-
ers are completely unable to produce negative refraction: there
is no way the average Poynting flux can be negative when all the
permittivities are positive[19], which underlines how peculiar
the response of plasmonic multilayers is in comparison.

In conclusion, we have extended Yariv and Yeh’s theorem
to dispersive media, allowing the expression for the energy
density in dispersive media to appear naturally, and shown its
importance in the framework of plasmonics by illustrating it on
various examples. The theorem shows that even in plasmonics
where electrons store a lot of the energy, the energy velocity of
the electromagnetic wave alone is equal to the group velocity.
This probably means that there should be a way to define an
energy flux and an energy velocity that take into account the
free electrons, and probably to get an equivalent result[20], but
this is beyond the scope of the present paper – and it would not
be as a powerful tool to understand plasmonics. Considering
the way the energy flows, through the calculation of the average
Poynting flux essentially, actually provides a physical picture
that spans the whole zoology of plasmonic guided modes. The
Poynting vector along the propagation direction is indeed neg-
ative in metals, leading to a slowing down of any light propa-
gating in their vicinity. When this plasmonic drag is extreme,
it leads to very small group velocity and large wavevectors, a
crucial parameter to explain the extraordinary way metals can
concentrate light in deeply subwavelength volumes. When the
energy flux in metals overwhelms the one in the dielectric, as
has been shown in metallo-dielectric structures, negative refrac-
tion occurs. While we don’t expect this vision to allow any new
discovery in such a thoroughly studied field, we think it really
explains why the properties of metals in the plasmonic regime,
characterized by relatively low absolute values of the negative
permittivity of metals, are so peculiar.
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