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Abstract—In the present paper, we show the benefit of a
multi-resolution approach that allows to encode the relevant
information contained in unprocessed time domain acoustic
signals. TimeScaleNet aims at learning an efficient representation
of a sound, by learning time dependencies both at the sample level
and at the frame level. The proposed approach allows to improve
the interpretability of the learning scheme, by unifying advanced
deep learning and signal processing techniques. In particular,
TimeScaleNet’s architecture introduces a new form of recurrent
neural layer, which is directly inspired from digital IIR signal
processing. This layer acts as a learnable passband biquadratic
digital IIR filterbank. The learnable filterbank allows to build a
time-frequency-like feature map that self-adapts to the specific
recognition task and dataset, with a large receptive field and
very few learnable parameters. The obtained frame-level feature
map is then processed using a residual network of depthwise
separable atrous convolutions. This second scale of analysis aims
at efficiently encoding relationships between the time fluctuations
at the frame timescale, in different learnt pooled frequency bands,
in the range of [20 ms ; 200 ms]. TimeScaleNet is tested both
using the Speech Commands Dataset and the ESC-10 Dataset.
We report a very high mean accuracy of 94.87± 0.24% (macro
averaged F1-score : 94.9± 0.24%) for speech recognition, and a
rather moderate accuracy of 69.71±1.91% (macro averaged F1-
score : 70.14±1.57%) for the environmental sound classification
task.

Index Terms—Machine hearing, Audio recognition, Learnable
Biquadratic filters, Deep Learning, Time domain modelling,
Multiresolution

I. INTRODUCTION

IN early years of machine hearing, conventional recognition
tasks involved hand-crafted features [1], [2] such as Mel-

frequency cepstral coefficients (MFCCs) [3] or Perceptual
Linear Prediction coefficients (PLPs) [4] as inputs to the
developed models. The rise of deep learning algorithms based
on convolutional neural network – along with their ability
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to learn from localized patterns in two-dimensional maps –
led to the use of time-frequency representations based on
short-time Fourier transforms as the most common choice
of input for machine hearing tasks. However, there is still
no consensus on the best representation to use in order to
better encode the information needed to recognize sounds,
since the parameters heavily depends on the type of sound
to be classified, and differ greatly for sound event detection,
speech recognition, music classification or environmental
sound recognition [5]–[10].

Since the unprocessed, time-domain audio signals contain
all the information to be extracted for the machine hearing
task, the scientific community has recently put some efforts
to directly use the raw waveforms as inputs for deep learning
models [11]–[16]. Acoustic model learning from the raw
waveform has therefore emerged as an active area of research
in the last few years, and recent works have shown that this
approach allows to successfully learn the temporal dynamics
scales of the waveforms. While they show promising results,
the models mostly use large filters, which can model
passband filters [14] approximating time-domain cochlear
filter estimates.

These studies, along with recent advances in machine learn-
ing architectures for one-dimensional signals [17]–[19] has
motivated the present work, which aims at showing the benefit
of an efficient multi-resolution approach for machine hearing,
that allows to avoid the need to pre-process the waveforms
in order to encode the relevant information contained in the
acoustic signal. The proposed approach avoids using large
convolutional kernels, by introducing a new form of recurrent
neural cell, directly inspired from IIR digital signal processing.
The proposed deep neural network aims at learning an efficient
representation of a sound, by specializing at both the sample
level and the frame level. In the following, TimeScaleNet’s
architecture is detailed, and its links with digital signal pro-
cessing and cognitive models are highlighted. Its performances
for sound recognition are detailed for both speech recogni-
tion on a keyword spotting task, and environmental sound
recognition. We also derive and analyze the learnt equivalent
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filterbank magnitudes in order to give further interpretability
of the machine hearing process in the scope of auditory filters
models.

II. METHODS

The proposed method takes a raw audio waveform as
input for a multi-class classification task. The global neural
network architecture is detailed in II-A. As shown on Fig. 1,
this architecure can be split in two major subnets, aiming
at extracting relevant features from the raw waveform at
two different timescales. The architecture and the detailed
implementation of these two subnets are explained in II-B and
II-C. The training procedure is also detailed in II-D.

A. Global neural network architecture
In the present section, we detail the neural network model

we use for our experiments. In the following, the global
neural network will be referred as TimeScaleNet, in reference
to the fact that our model aims at optimizing the learnt
representation of raw audio waveforms, at two different
timescale levels.

As shown on Fig. 1, the first subnet of TimeScaleNet’s
architecture is called BiquadNet (see II-B), in reference
to the similarity between its first layer and the standard
biquadratic filters in digital signal processing. BiquadNet acts
at the sample level, and aims at encoding the information for
time scales in the range of [100 µs ; 20 ms], corresponding
to a frequency range of [50 Hz ; 10 kHz]. This learnable
IIR filterbank allows to compute a time-frequency-like
representation, that is fed to the next subnet of our architecture.
The first layer of BiquadNet is a non-conventional recurrent
neural network (RNN) layer, in comparison to vanilla RNNs
[20], standard Gated Recurrent Units (GRU) [21], or Long
Short Term Memory (LSTM) layers [22], whose architectures
have less similarities with standard digital signal processing
than the proposed layer. The proposed “biquadratic” RNN
filter can be thought as a set of infinite impulse-response
(IIR) filters, expressed as a biquadratic filterbank [23].
Digital biquadratic filterbanks have already been used in
the signal processing literature for the modelling of the
human auditory function [24], [25]. However, to the best
of author’s knowledge, this is the first time that a Deep
neural network uses a biquadratic-form RNN layer with
learnable coefficients, that self-adapts to the audio dataset
that has to be classified. The proposed approach allows a
computationally-efficient IIR bandpass filtering, using only
two learnable parameters for arbitrarily long receptive fields,
rather than 1-dimensional convolutional neural networks
with wide kernels. In previous studies, authors reported the
use of large one-dimensional convolutions as equivalent of
FIR bandpass filtering, in order to approximate perceptual
filterbanks – such as a gammatone filterbank [14], [16],
[26]. The overall output of BiquadNet is a two dimensional
map, where the first dimension represents different pooled
frequency channels, since the last layer of BiquadNet is a
pointwise convolution which aims at aggregating different
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Fig. 1. (Color online) Schematical representation of the global architecture of
TimeScaleNet. This neural network takes a raw waveform as input. The overall
architecture aims at optimizing the learnt representation at two timescales
levels (see II-B and II-C for more details on BiquadNet and FrameNet). On
the left (resp. on the right) of each subnets, the output dimensions (resp. the
number of learnable parameters, depending on the number of classes) are
given for each subnet. GM(N1, N2) stands for geometric mean of N1 and
N2. For a 10-class recognition task, the total number of learnable parameters
is 10.7× 106

frequency bins together in order to better encode vowels
formants and consonants. The second dimension represents
overlapping frames, where an energy-like feature is computed
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by the subnet. The overall architecture of BiquadNet and its
implementation are detailed in II-B.

The obtained time-frequency-like representation at the
output of BiquadNet is then fed to the second subnet, referred
in the following as “FrameNet” (see II-C), because it acts
at the frame level, in order to efficiently encode the time
fluctations in the range of [20 ms ; 200 ms]. This second
scale of analysis aims at extracting the relevant relationships
between time fluctuations in different learnt pooled frequency
channels, with a large receptive field. For this purpose, we
propose the use of residual networks of one-dimensional
depthwise separable atrous convolutions, which allow to
operate on channel-wise frames in a computationally efficient
way.

FrameNet shares some of the characteristics of the SliceNet
architecture, recently introduced by Kaiser et al. [18] for
neural machine translation. The main ingredients of FrameNet
are stacked residual atrous convolutions, which have already
been recently emerged as an efficient architecture for audio
generation [17] and denoising [19]. Each depthwise separable
convolutional layer is followed by a Selu nonlinear activation
[27], which has been introduced in the literature in order
to avoid standard batch normalization processes, without
degrading the computational efficiency of deep neural
networks. In comparison to RELU, the Selu activation has
self-normalizing properties, because the activations that are
close to zero mean and unit variance, propagated through
many network layers, will converge towards zero mean and
unit variance. This, in particular, makes the learning highly
robust and allows to train networks that have many layers.
We also use residual connections between each depthwise
separable convolutional layers, in order to allow the network
to be deeper without impacting accuracy and vanishing
gradients problems [28]. The overall architecture of FrameNet
and its implementation are detailed in II-C.

The use of residual connections between each atrous depth-
wise separable convolutional layer requires that the output
of each layer has the same dimension as the overall output
of BiquadNet. As a consequence, each atrous convolution
is computed using zero-padding. At the end of FrameNet
however, in order to keep the overall portion of the output
which is valid, i.e. not using any padding zeros, the output
of FrameNet is then cropped in the timeframe dimensions,
therefore only keeping the time frames corresponding to the
to the valid part for all the atrous convolutional layers used
in FrameNet. The obtained map is then flattened, and fed to
two full-connected layers with Selu activations and optional
dropout, in order to compute a vector of dimension Nc
representing the probability of belonging to the classes of the
dataset.

B. BiquadNet architecture : raw waveform processing

As introduced in the previous subsection, from machine-
learning point of view, the first layer of BiquadNet is a

non-conventional recurrent neural network cell. From a
digital signal processing point of view however, this RNN
cell is directly derived from a widely used infinite impulse
response (IIR) filter architecture. In digital signal processing,
IIR filters are the most efficient type of filter to implement,
because they require less computation and memory than
FIR filters in order to perform similar filtering operations.
However, IIR filters present the main disadvantage of having
a nonlinear phase response. We address this problem by
implementing a bidirectional biquadratic RNN cell, which
allows to achieve forward-backward filtering [29], [30], in
order to perform a perfect zero-phase filtering in the time
domain. The other main disadvantage of IIR filters is their
potential numerical instability : high-order IIR filters can be
highly sensitive to quantization of their coefficients, and can
easily become unstable. The use of first and second-order
IIR filters only makes the stability problem more tractable.
This is the main reason why most digital signal processors
implement stacks of biquadratic IIR filters. This kind of
topology can be easily transposed to machine learning,
where deep neural network topologies often use stacking of
similar layers. In the following, we will use the normalized
direct-form I of biquadratic filters, which have the following
difference equation (1), which defines the value of the current
output value y[n] at sample n, using the current input value
x[n] and the two previous values of the output and the input :

y[n] = b(0)x[n] + b(1)x[n− 1] + b(2)x[n− 2]

−a(1)y[n− 1] − a(2)y[n− 2] (1)

Using the Z-transform, this filter exhibits two zeros and
two poles, and corresponds to the ratio of two biquadratic
functions, as shown in equation (2):

H(z) =
b(0) + b(1)z−1 + b(2)z−2

1 + a(1)z−1 + a(2)z−2
(2)

This learnable biquadratic filter structure has been
implemented using the Tensorflow open source software
library [31]. The chosen implementation corresponds to a
Direct-Form I [30], which can be represented as the flow
graph depicted on Fig. 2. This flow graph also explicitly
shows the adjustable parameters (b

(0)
i , b

(1)
i , b

(2)
i , a

(1)
i , a

(2)
i )

used in each RNN cells of BiquadNet.

Using (2), the stability of biquadratic filters is ensured if
and only if a(1) and a(2) are inside the ”stability triangle”
[32] depicted on Fig. 3. Since we aim at obtaining a “time-
frequency”-like representation at the output of BiquadNet,
we restrict the possible values of the coefficients of the
learnable IIR filterbank to correspond to passband versions of
a biquadratic IIR filter. This allows to simplify the stability
properties of the learnt filters, since passband biquadratic
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x[n] b
(0)
i yi[n]

z−1 z−1

b
(1)
i −a

(1)
i

z−1 z−1

b
(2)
i −a

(2)
i

Fig. 2. (Color online) Flow graph of the learnable biquadratic infinite impulse
response filters used in the proposed BiquadNet. x[n] is the time domain
waveform input, yi[n] is the ith output of the filterbank. The slanted arrows
behind gains (b

(0)
i , b

(1)
i , b

(2)
i , a

(1)
i , a

(2)
i ) indicate that these parameters are

adjustable (learnable).

filters are unconditionally stable. However, for floating point
implementations, the quality factor of digital passband filters
is usually restricted in order to avoid numerical instabilities
when approaching the boundaries of the stability triangle. It is
also particularly interesting to note that passband biquadratic
filters (also referred as two-poles two-zeros filters in the
literature) have been demonstrated to be good numerical
models of auditory filterbanks [24], [25], where the quality
factors of perceptual filters match a viable stability region,
even for floating point implementations.

-2 -1 1 2

-1

1

a 1

a 2

 Stability triangle

Minimum Q value 

 used in BiquadNet

Maximum Q value 

 used in BiquadNet

Fig. 3. Stability triangle of a biquadratic filter. In order to be stable, the
coefficients a(1) and a(2) values should respect a set of inequalities that
correspond to the depicted light-grey zone. In BiquadNet, we implement
learnable passband biquadratic filters, with constraints on both the central
frequency fc and the quality factor Q. The corresponding learnt values of
a(1) and a(2) are in the depicted dark grey zone, therefore ensuring that the
learnt IIR filters are numerically stable, even with floating point precision.

Each biquadratic bandpass filter of the learnable
filterbank represented by the biquadratic RNN layer
can be fully determined using only two parameters,
K(i) = tan

(
πf

(i)
c /fs

)
and Q(i), where fs is the sample

frequency, f (i)c is the central frequency of the ith bandpass
filter, and Q(i) is the quality factor of the ith bandpass

filter. f
(i)
c and Q(i) physically represent the exact same

quantities as in analog, second-order bandpass filters, and can
be linked to models of auditory filterbanks [24], [25]. The
parameter K(i) is derived from the bilinear transformation
with frequency warping compensation [30] in order to
compute the coefficients of the equivalent digital second order
bandpass filter. In respect to the Nyquist-Shannon sampling
theorem, f (i)c is constrained to strictly lower values than the
Nyquist frequency.

The two parameters K(i) and Q(i) are therefore chosen
to be the learnable variables in TimeScaleNet, and the five
coefficients used in the difference equation can be expressed

using (3) , with ν(i) =
[
1 +K(i)/Q(i) +

(
K(i)

)2]−1

. These
expressions have been obtained using a standard bilinear
transformation of continuous-time, second-order bandpass
filters, with frequency warping compensation [30]:

b
(0)
i =

(
K(i)/Q(i)

)
× ν(i)

b
(1)
i = 0


b
(2)
i = −b(0)i (3)

a
(1)
i = 2 ×

[(
K(i)

)2
− 1

]
× ν(i)

b
(2)
i =

[
1 −

(
K(i)/Q(i)

)
+
(
K(i)

)2]
× ν(i)

In order to keep the phase information the same as in
the initial waveform for each filters, we implemented a
zero-phase filter using forward-backward time filtering: x[n]
is filtered using (1) and (3). The output is then time-reversed,
filtered a second time using the same difference equation and
coefficients, and time-reversed again. Using this procedure,
the phase response of each learnable filters in the biquadratic
RNN layer is truly zero : no matter what nonlinear phase
response the IIR forward filter may have, this phase is
completely canceled out by forward and backward filtering.
The amplitude of the frequency response of the IIR filters,
on the other hand, are squared, which allows to double the
stopband attenuation in dB.

The corresponding custom RNN cell has been implemented
using high order operations of the Tensorflow open source
software library [31] that allow to recursively scan functions
over arbitrarily long sequences and to unfold dynamically
the computational graph at runtime. This implementation is
compatible with a back-propagation-through-time process,
in order to compute the derivative chain rule and to update
the neural network parameters at each iterations of the
machine learning process [33]. The expression of the custom
biquadratic bidirectional RNN is fully differentiable, which
allows to be compatible with the proposed machine learning
approach for audio recognition, while being directly linked to
standard digital audio signal processing approaches.
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The ith output of the biquadratic RNN Layer with learnable
variables

(
K(i), Qi)

)
is still a time-domain signal which

shares the same sampling frequency than the input waveform
x[n], and can be expressed using equation (4), where h(i)[n]
is the inverse Z-transform of (2), defined by the coefficients
(b

(0)
i , b

(1)
i , b

(2)
i , a

(1)
i , a

(2)
i ) in (3). In (4), Flip(·) denotes the

time-reversal operator :

s(i)[n] = Flip
(
h(i)[n] ∗

(
Flip

(
h(i)[n] ∗ x[n]

)))
(4)

In the following, the set of outputs s(i)[n] will be denoted
as Si,n – where i stands for the frequency channel index, and
n for the time sample – the bold notation signifying that this
is a two-dimensional tensor. Si,n is fed to the next module in
the neural network which is a deterministic module, without
learnable parameters, and allows to compute a framed log-
energy, in order to obtain a time-frequency-like representation.

Si,n

Framed log-energyModule

Time Slicing
(size = 23.2 ms, stride = 5.8 ms)

Window tappering
Conv1d on each slice

(Kernel : Hanning , size = 23.2 ms)

(·)2

Meanpool
(size = 23.2 ms, stride = 5.8 ms)

Stabilized log nonlinearity

Framed log-energyModule

Time Slicing
(size = 23.2 ms, stride = 5.8 ms)

Window tappering
Conv1d on each slice

(Kernel : Hanning , size = 23.2 ms)

(·)2

Meanpool
(size = 23.2 ms, stride = 5.8 ms)

Stabilized log nonlinearity

M
(1)
j,k

Fig. 4. (Color online) Inner architecture of the framed log-energy module,
following the biquadrat ic RNN layer, and preceding the Layer Normalization
Layer in BiquadNet.

As shown on Fig. 4, the framed log-energy module slices in
the time domain Si,n in order to obtain overlapped windows
of 23.2 ms with a stride of 5.8 ms. These obtained frames
in each frequency channels centered at the learnt frequencies
f (i) are then multiplied with a Hanning window, squared, and
averaged on each overlapping frames. This process is similar
to the computation of a sliding mean quadratic value over
successive overlapping timeframes in audio signal processing.

From a machine learning point of view, these successive
operations correspond to a one-dimensional convolution
with a kernel of width 23.2 ms, squaring, and a meanpool
operation. In order to keep a lower computational cost

for these deterministic operations, the one-dimensional
convolution with the deterministic Hanning kernel and the
meanpool operation could be replaced by a simple maxpool
operation followed by rectification, as proposed in [14]. This
simplification of the learnt time-frequency representation led
to a weak worsening of accuracy in the classification task in
our preliminary tests. We therefore chose to keep the sliding
mean quadratic value computation in our implementation.

The framed log-energy representation M
(1)
j,k is finally

computed using a stabilized logarithmic compression of each
mean quadratic values, in order to produce a two-dimensional
frame-level feature map. This frame-level feature map M

(1)
j,k

– where j stands for the frequency channel index, and k
for the time frame index – is intended to replace standard
time-frequency representations based on short-time Fourier
transforms such as mel-spectrograms, which are the most
common choice of input in the majority of state-of-the-art
audio classification algorithms.

This module is followed by layer normalization [34], which
allows to compute layer-wise statistics and to normalize the
Selu [27] nonlinear activations across all summed inputs
within the layer, instead of within the batch. On contrary to
batch normalization [35], [36] , whose application to RNN
has been shown not to be straightforward and to lead to poor
performances [37], the layer normalization approach has been
shown to give promising results on RNN benchmarks, and
has the great advantage of being insensitive to the mini-batch
size [34].

The last layer of BiquadNet aims at achieving feature
pooling across the whole frequency channels, by applying
1x1 convolutions (pointwise convolutions) followed by a
Selu nonlinear activation. This kind of layer has been used
for dimensionality reduction in popular computer vision
approaches such as Inception [38] and its variants. In our
approach, the intent of its use necessarily is not to reduce
the frequency channel dimensionality, but rather to pool
frequency channels together, even when the “frequency”
dimension is the same as the number of filters used in the
biquadratic RNN layer. In the following, this pooling property
will be illustrated using experimental results, by comparing
Fig. 9 and Fig. 11. For speech recognition, we think that this
approach can be pertinent in order to obtain a representation
that has the ability to encode well phonemes such as vowels
formants and consonants, by aggregating relevant learnt
frequency channels together. The output of this last layer
is denoted M

(2)
l,k – where l stands for the pooled frequency

channels index, and k for the time frame index – is then fed
as the input of FrameNet, whose architecture and detailed
implementation are described in the following subsection.

C. FrameNet architecture : large-scale time relationship
learning on a “time-frequency-like” map

FrameNet acts at the time frame level, in order to efficiently
encode the relevant relationships between time fluctuations
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in different pooled frequency channels, with a large time
receptive field over M

(2)
l,k , thanks to one-dimensional atrous

convolutions. Similarly to Wavenet [17], [19] architectures,
we use dilation rates which are multiplied by a factor of two
for each successive layers. As shown on Fig. 5, this allows to
achieve a large receptive field (31 frames for a single residual
subnetwork of depthwise separable atrous convolutions) with
only 4 sets of one-dimensional convolutions with kernels of
size 1 × 3. The stacked residual atrous convolutions therefore
allow the network to operate on multiple time scales in the
range of [20ms; 200ms] without impacting too much the
computational efficiency.

M
(2)
l,k

M
(3)
l,k

Overall receptive field : 31 time frames
(≈200 ms of the initial waveform)

k0

k0(k0 − 15) (k0 + 15)

Fig. 5. (Color online) Schematics of one of the two stacks of depthwise
separable atrous layers used in FrameNet, from data point of view. Each layer
of this stack consists in independent convolutions for each pooled frequency
channels (represented as depth on the 2D tensors of data), with only 3 nonzero
coefficients. We use dilation rates which are multiplied by a factor of two for
each successive layers. Only the depthwise convolution is shown here, with
arrows showing the frame indexes involved in atrous convolutions for the
computation of the output M(2)

l,k at frame index k0.

In our approach, we use non-causal depthwise separable
convolutions, which present the considerable advantage of
making a much more efficient use of the parameters available
for representation learning than standard convolutions [18].
The convolutions are performed independently over every
pooled channel (depthwise separable convolutions). This
approach has been motivated by preliminary analysis of
the energy fluctuations in different frequency channels
using classical spectrogram representations. These computed
depthwise convolutions are then projected onto a new channel
space for each layer using a pointwise convolution (the
pointwise convolution and the residual connections are not
shown on Fig. 5 for sake of readability of the scheme).
From a signal processing point of view, this approach aims
at pooling together the contents in the soundwave that share
similar time fluctuations, in order to ease the recognition
task: the pointwise convolution aims at combining the pooled
frequency channels in order to enhance the expressivity of
the network.

As shown on Fig. 1 and Fig. 6, two of these subnetworks
are stacked, and residual connections are added between each
layers of the two subnetworks, thus forming two residual
networks of depthwise-separable atrous 1-D convolutions. The

Depthwise Separable Atrous convolution
(dilation rate = D, width = 3, channel multiplier = m)

Selu nonlinearity

Fig. 6. (Color online) Residual connection between the successive layers
of FrameNet. Each frame corresponds to a different dilation rate D, taking
values 1,2,4, and 8. For the first residual network of depthwise separable
atrous convolutions, the channel multiplier m is chosen to be 8, and 32 for
the second one.

use of residual connections between each depthwise separable
convolutional layers is intended to offer shortcut connections
between layers: residual networks have been shown to offer
increased representation power by circumventing some of
the learning difficulties introduced by deep layers [39].
The skip connections offered by residual networks allow
the information flow across the layers easier by bypassing
the activations from one layer to the next. This identity
mapping therefore therefore allows to prevent the saturation
or deterioration of the learning process both for forward and
backward computations in deep neural networks [28], [39],
[40].

FrameNet shares the same ingredients as the SliceNet
architecture introduced by Kaiser et al., who extensively
detailed the mathematical background and the advantages of
depthwise separable convolutions in [18]. In their publication,
Kaiser et al. conclude that depthwise separable convolutions
do not need really need atrous convolutions to be efficient for
neural translation. However, our findings when developing
the present TimeScaleNet architecture revealed that in our
case, the use of stacked residual atrous convolutions were
efficient for the intended audio recognition task, when used
in conjunction with depthwise separable convolutions.

D. Training procedure
In our experiments, TimeScaleNet is trained with one-hot

encoded labels, therefore allowing to compute the cross-
entropy loss between estimated labels and ground truth
labels. The learning and backpropagation of errors through
the neural network is optimized using the Adaptive Moment
Estimation (Adam) [41] algorithm, which performs an
exponential moving average of the gradient and the squared
gradient, and allows to control the decay rates of these
moving averages. In addition to the natural decay of the
learning rate that Adam performs during the learning process,
we set a maximum learning rate of λmax = 5 × 10−4 for
the first 20 % of the total learning iterations. λmax is then
divided by a factor of 10 for the next 40 % of the total
learning iterations, and for the remaining 40 % of the total
learning iterations. The models have been implemented and
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tested using the Tensorflow open source software library
[31], and computations were carried out on four Nvidia GTX
1080Ti GPU cards, using mini-batches of 70 raw waveforms
for spoken words recognition (resp. 120 raw waveforms for
environmental sound classification) for each training steps.
On this architecture, the mean computation time is only 100
ms for the whole learning process involved, for one second
of audio signal (feed forward propagation, cross entropy loss,
back-propagation, gradients computations, variables update
using Adam). Since most of the feed-forward operations
involved in TimeScaleNet could be implementable on standard
audio digital signal processors, this gives us confidence that
TimeScaleNet could be used for realtime inference on this
kind of processors with a few adaptations, given that a
considerable amount of these 100 ms are dedicated to the
optimization of the learning process, which are not needed
for the inference with a frozen model.

All the weights involved in layers followed with Selu
activations were initialized using the He initialization [42],
which relies on the idea that the variance of the weight
initialization should depend on the number of inputs and
outputs of the involved layer, in order to keep the variance
constant from layer to layer in both the feed forward direction
and back-propagation direction, which eases the learning
process. The He initialization has been specifically developed
for rectified linear units activations, which share some
of the characteristics with the Selu activations we use in
TimeScaleNet. Our experiments showed that this initialization
scheme allowed to achieve a better convergence than with
naive random initialization schemes.

Two types of initialization schemes were tested for the
learnable parameters K(i) and Q(i) used in the biquadratic
RNN layer. First, we tested clipped random initializations
with minimum and maximum values corresponding to the
equivalent rectangular bandwidth cochlear model introduced
by Patterson [43], for central frequencies spaning from 40 Hz
to fs/2.1.
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Fig. 7. (Color online) Magnitude response of the biquadratic filterbank
matching the Patterson’s cochlear model [43]–[45] where the bandwidth of
each cochlear filter is described by an Equivalent Rectangular Bandwidth,
whose parameters are chosen to match those defined by Glasberg and Moore
[46].

Since this allowed a faster convergence for the model, we
then chose to initalize the two learnable parameters with the
values obtained using the perceptual model of critical bands
introduced by Glasberg and Moore [46] (see Fig. 7). In all
the studied cases, the learnt coefficients allowed to achieve
significantly better classification performances than with
frozen initial parameters shown on Fig. 7, therefore validating
the added value of the proposed joint feature learning in the
time domain achieved by BiquadNet.

III. EVALUATION

A. Datasets
In the present paper, we evaluate the performances of the

proposed TimeScaleNet for raw audio recognition, using two
publicly available datasets : the Google speech commands
dataset v2 [47] for speech recognition (keyword spotting)
with a large dataset, and the ESC-10 dataset [48], for
environmental sound classification with a rather small dataset,
therefore allowing to test TimeScaleNet against overfitting
problems.

The Google speech commands dataset v2 [47] consists of
105 829 utterances of 35 words recorded by 2,618 speakers,
stored as one-second audio clips consisting of only one word.
The audio files are encoded as 16 bits PCM / 16 kHz audio
files. This dataset has recently served a competition hosted by
Kaggle, which consisted in recognizing the ten words “Yes”,
“No”, “Up”, “Down”, “Left”, “Right”, “On”,“Off”, “Stop”,
and “Go” along with the “silence” class (i.e. no word spoken)
and “unknown” class, which is randomly sampled from the
remaining 25 keywords from the dataset. The dataset is split
into training, validation and test sets in the ratio of 80:10:10
while making sure that the audio clips from the same person
stays in the same set, using the exact procedure detailed by
the maintainer of the dataset in [47].

The ESC-10 dataset [48] consists of 400 utterances of 10
types of environmental sounds, stored as five-seconds audio
clips only containing one class. The 10 categories of ESC-10
are : “dog bark”, “rain”, “sea waves”, “baby cry”, “clock tick”,
“person sneeze”, “helicopter”, “chainsaw”, “rooster”, and “fire
crackling”. The audio files are encoded as 32 bits PCM / 44.1
kHz audio files. The maintainer of this dataset prearranged
the files in five folds for comparable cross-validation. As a
consequence, all the performance evaluations were performed
using 5-fold cross-validation, using the original fold settings.
In order to treat these files the exact same way than the
Speech Commands dataset, we completely removed zero-
valued portions at the beginning or at the end of the soundfiles,
randomly cut the non-silent portions into one-second length
audio files, and converted all sound files to monaural 16-bit
PCM / 16 kHz audio files.

B. Evaluation metrics
In order to analyze precisely the performances of the

proposed TimeScaleNet for the task of supervised multi-class
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classification, several evaluation metrics will be used in the
following. All these metrics are computed using the number
of correctly recognized class examples (true positives, tpi ),
the number of correctly recognized examples that do not
belong to the class (true negatives, tni

), and examples that
either were incorrectly assigned to the class (false positives,
fpi ) or that were not recognized as class examples (false
negatives, fni ) [49]. Using these values, for each class i
of the dataset, we compute the class accuracy. The class
recall Ri, which represents the effectiveness of the classifier
to identify positive labels for the class i is also evaluated,
along with the class precision Pi, which evaluates the class
agreement of the data labels with the positive labels given
by the classifier. These class-dependent metrics give more
insight of the classification capabilities, and can be seen
as complimentary metrics to the useful confusion matrix
vizualization.

Since we achieve multi-class classification, we also compute
the overall accuracy, but also the macro-averaged versions of
the precision (PM ), of the recall (RM ). From RM and PM
values, the macro-averaged F1 score is derived, in order to
evaluate the relations between data’s positive labels and those
given by the classifier, which allow full understanding of the
overall classification task achieved by the neural network.
Since the two datasets we use are relatively well balanced
between classes, there is no need to evaluate micro-averaged
versions of these metrics. Formulae are given in Table I for
reference.

TABLE I
EVALUATION METRICS DEFINITIONS. N IS THE NUMBER OF CLASSES.

Metric Class i Macro-averaged

Precision Pi =
tpi

tpi + fpi
PM =

1

N

N∑
i=1

Pi

Recall Ri =
tpi

tpi + fni

RM =
1

N

N∑
i=1

Ri

F1 score F1i =
2tpi

2tpi + fni + fpi

2PMRM

PM +RM

IV. RESULTS AND DISCUSSION

In this section, we present the experiment results of sound
classification for both the task of keyword recognition using
the Speech Commands Dataset and the task of environmental
sound classification using the ESC-10 Dataset.

For the Speech Commands Dataset, the learning process
has been performed using TimeScaleNet during 45 epochs,
without dropout regularization. These 45 epochs correspond
to 25000 iterations, each with a batch of 70 soundfiles of
1 second. Each 50 iterations, the model was tested on the
evaluation set, without updating nor computing the gradients
used for learning. Using model parallelization with the four
Nvidia GTX 1080Ti GPU cards, this whole process took
approximately 117 hours of computation, for a total of 1200

hours of audio waveforms processed by the proposed model.

For the ESC-10 Dataset, the learning process has been
performed using TimeScaleNet during 200 epochs, with
dropout regularization applied to the full connected layers,
with a dropout probability of 0.5. These 200 epochs
correspond to 2500 iterations, each with a batch of 120
soundfiles of 1 second. Each 50 iterations, the model was
tested on the evaluation fold, without updating nor computing
the gradients used for learning. Using model parallelization
with the four Nvidia GTX 1080Ti GPU cards, this whole
process took approximately 9 hours of computation, for each
fold. Since we performed a 5-fold cross-validation process
for ESC-10, the whole process took approximately 45 hours
of computation, for a total of 450 hours of audio waveforms
processed iteratively by the proposed model.

Table II shows the obtained evaluation metrics on both the
Speech Commands and the ESC-10 datasets. For the Speech
Commands dataset, the mean value and standard deviation are
calculated by estimating these metrics on 4 different learning
processes, showing a great reproducibility. Since the ESC-
10 is evaluated using a 5-fold cross-validation process, the
estimation metrics are also presented with their mean value
and standard deviations over the 5 experiments.

A. Speech Commands recognition performance evaluation

The evaluation metrics shown on Table II show that for
speech commands recognition, TimeScaleNet appears to
classify the 12 classes with a very high accuracy (94.87% for
the evaluation set, 94.78% for the testing set, after 45 epochs
of learning), with a very good homogeneity for all the classes
as seen on the confusion matrix obtained for the testing set
shown on Fig. 8a). The same task has also been evaluated
using different configurations, including comparisons with
previously published methods. The results are shown on
Table III.

For reference, we first evaluated the performances of
TimeScaleNet on the Speech Commands dataset with a
frozen BiquadNet, using a deterministic (non-learnable)
biquadratic filterbank matching the Patterson’s cochlear
model with Glasberg and Moore parameters, which achieved
92.4% accuracy over the testing set. A similar experiment
has also been performed using a log-mel-spectrogram as
an input to FrameNet, which achieved 89.7% accuracy
over the testing set. For comparison purposes, this log-mel
spectrogram has been computed on 128 frequency bins
spanning between 40 Hz and fs/2.1, and computed on
overlapping Hanning-windowed frames of 23.2 ms with a
stride of 5.8 ms. This parametrization allowed to build a
deterministic feature map having the same dimension as the
output of BiquadNet. During this comparison test, the number
of parameters of FrameNet and the learning hyperparameters
were kept the same than with the proposed approach. This
procedure ensures a fair comparison of the proposed joint
feature learning achieved by BiquadNet with a commonly
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TABLE II
EVALUATION METRICS OBTAINED AFTER CONVERGENCE (45 EPOCHS OF LEARNING), FOR THE SPEECH COMMANDS DATASET [47] AND THE

ENVIRONMENTAL SOUND CLASSIFICATION TASK (ESC-10), [48] USING THE PROPOSED TIMESCALENET.

Data Cardinality Accuracy PrecisionM RecallM F1,M

Speech Evaluation Set 4916 94.87± 0.24% 94.91± 0.22% 94.88± 0.26% 94.9± 0.24%

Speech Testing Set 5157 94.78± 0.26% 94.87± 0.25% 94.87± 0.25% 94.87± 0.25%

ESC-10, 5-fold cross-validation 364± 6 69.71± 1.91% 70.56± 1.99% 69.78± 1.40% 70.14± 1.57%

used handcrafted time-frequency feature representation.
These two preliminary experiments mainly motivated the
development of the BiquadNet part of TimeScaleNet, because
this time domain approach allows to achieve a significant
performance boost (over 2.5% improvement in accuracy) over
handcrafted time-frequency features representations.

It is important to note that the 94.78% accuracy achieved
on the testing set using the proposed TimeScaleNet matches
the highest values found in [50], where the authors
exhaustively benchmarked several deep learning models
after careful hyperparameter tuning, for keyword spotting
using the Speech Commands dataset. The different methods
tested by Zhang et al. [50] are deep neural network (DNN),
convolutional neural network (CNN), recurrent neural network
(RNN), convolutional recurrent neural network (CRNN) and
depthwise separable convolutional neural network (DS-CNN).
To the best of author’s knowledge, the only published model
that significantly outperforms TimeScaleNet on this particular
dataset is res15 [51], which exhibits the best results to
date with a mean accuracy of 95.8 %. res15 shares some
characteristics with the FrameNet subnet, and could be
compatible with the 2D map at the output of BiquadNet.
Although not being in the scope of the present paper, we
intend to evaluate the performances of an approach mixing
the BiquadNet approach with a subnet following the same
kind of architecture than the ones proposed by Tang et al. in
[51].

In order to further compare the performances of
TimeScaleNet with existing methods, we performed the same
keyword recognition task using the cnn−trad−fpool3 model
proposed by Sainath et al. in [52]. We evaluated this CNN ar-
chitecture both with a 40 MFCC map computed using the same
window length and strides than those used in TimeScaleNet,
and a with a 128 frequency bins log-mel spectrogram shar-
ing the exact same characteristics as described before. The
learning process has been performed during 45 epochs, and
repeated 4 times in order to evaluate a standard deviation of
the obtained classification accuracies. The obtained results are
shown on Table III along with those obtained using res15
in [51], where the authors state that they applied a band-
pass filter of 20 Hz / 4 kHz to the input audio before
computing the 40 MFCCs. It is also interesting to note that the
chosen window lengths and strides, the different learning rate
schedule and the Adam optimizer used in our implementation
of cnn− trad− fpool3’s, along with the fact that we did not
filter the signals before MFFC maps computation allowed to

increase the accuracy of cnn−trad−fpool3 by approximately
2% when compared with the reported results with the same
model in [51]. Even with this improvement, the obtained
results show that TimeScaleNet performs significantly better
that cnn − trad − fpool3, which appears to be better fitted
to MFCC map inputs than to log-mel spectrograms. The net
difference between TimeScaleNet and cnn − trad − fpool3
in its best configuration is 2.25%, which is ten times larger
than the standard deviation obtained on both accuracies over
4 different learning processes, validating the fact that this net
difference is statistically significant.

B. Environmental sound classification performance evalua-
tion

Motivated by the excellent results obtained with
TimeScaleNet for word recognition on the Speech Commands
dataset, we investigated the environmental sound classification
task, using the ESC-10 dataset, in order to investigate sound
classification on waveforms that did not exhibit the same kind
of time fluctuations than speech, for which the TimeScaleNet
has been initially thought. It is important to note that for
this particular task, we did not perform any hyper-parameters
optimization. The waveforms of ESC-10 have been split in
1 seconds excerpts, and downsampled to 16 kHz. The main
reason behind these choices is the fact that we intend to
allow a comparison between the learnt representations at the
output of BiquadNet for these two particular dataset, in order
to highlight the fact that BiquadNet allows to automatically
build a time-frequency like representation that adapts to the
particular dataset on which TimeScaleNet is trained. The
particular choice of the ESC-10 has also been motivated
by the fact that its small size would allow us to investigate
sensitivity to overfitting problems, since there was no sign of
overfitting with the Speech Commands dataset, even without
dropout regularization. One another major motivation behind
the use of ESC-10 dataset is the fact that the maintainer of
the dataset fully documented it in order to ease reproducible
comparisons across publications.

As shown on Table II, for the ESC-10 dataset, TimeScaleNet
only allows to achieve environmental sound classification with
a mean accuracy of 69.71% and a standard deviation of 1.91%
across the five folds. This result is far from matching the best
results on environmental sound classification using raw audio
on the ESC-10 dataset [53]. In [53], the authors described
RawNet, whose intent is also to achieve joint feature learning
in the time domain, along with sound classification. Their
approach allowed to achieve 85.2% of accuracy, which is
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TABLE III
COMPARISON OF WORD RECOGNITION ACCURACY USING THE SPEECH COMMANDS DATASET [47] WITH DIFFERENT KINDS OF MODELS AND INPUTS

Model Input Accuracy

TimeScaleNet (this paper) Raw audio 94.87± 0.24%

TimeScaleNet (this paper) Frozen BiquadNet with Patterson’s cochlear model 92.4%

FrameNet (this paper) log-mel spectrogram, 128 frequency bins 89.7%

cnn− trad− fpool3 [52] 40 dimensional MFCC map 92.62± 0.21%

cnn− trad− fpool3 [52] log-mel spectrogram, , 128 frequency bins 88.12± 0.14%

res15 (data from [51]) 40-dimensional MFCC map on 20 Hz / 4 kHz bandpass filtered signal [51] 95.8± 0.484%

much better than the obtained performance of TimeScaleNet
using the ESC-10 dataset, which only slightly outperforms the
baseline methods proposed by the maintainer of the dataset
in [48] and [54].

In the present paper, for comparison purposes, we
deliberately chose not to change any hyperparameters for
the environmental sound classification task. This may be
one of the main causes of the moderate performances on
this particular task. We also suspect that the rather moderate
performances of TimeScaleNet for ESC could be linked to
the fact that the number of parameters of TimeScaleNet are
too large for such a small sized dataset. As a comparison,
the number of learnt parameters used by Li et al. in [53]
is 1.14 M, which is approximately 10 times smaller than in
TimeScaleNet, for the same ESC task.

Similarly to the Speech Commands dataset, we also
performed the learning process by replacing BiquadNet with
a deterministic log-mel spectrogram as an input to FrameNet.
The log-mel spectrogram corresponds to 128 frequency bins
spanning between 40 Hz and fs/2.1, computed on overlapping
Hanning-windowed frames of 23.2 ms with a stride of 5.8
ms. This process allowed to achieve environmental sound
classification with a mean accuracy of 71.0% and a standard
deviation of 3.31% across the five folds. This result is
also far from matching the accuracy obtained in [53]. This
confirms that the FrameNet part of the network could
be greatly improved for such a recognition task. The net
difference between TimeScaleNet and FrameNet with log-mel
spectrogram as input is 1.3%. However, considering the fact
that the standard deviation is 2.5 times greater than this
value, this difference could not be interpreted as statistically
significant though, especially with such a small sized dataset.

This further confirms that the moderate performances of
TimeScaleNet for ESC could be linked to the fact that
FrameNet has been developed to capture time fluctuations
in timescales that are commonly found in speech utterances.
This assumption is motivated by the analysis of the cumulative
confusion matrix obtained for the 5 cross-validations involved
in the evaluation process of ESC-10 classification. As shown
on Fig. 8b, the classes with the smallest recall are “sea waves”,
“helicopter”, and “firecrackling”, which are rather stationary
sounds. Interestingly, previously published works on efficient
environmental sound classification methods have shown that
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Fig. 8. (Color online) Confusion matrix for the proposed neural network on
the (a) testing set (5157 items) of the Speech Commands Dataset [47] and
(b) the cumulative results of the 5-fold cross-validation of the ESC-10 dataset
[48] (1821 items), after convergence ((a) : 45 epochs, (b) : 200 epochs). At
the end of each row and columns, the individual class recall and precision
are indicated.



BAVU et al.: TIMESCALENET : A MULTIRESOLUTION APPROACH FOR RAW AUDIO RECOGNITION 11

convolutional network approaches show relatively poor per-
formances for sounds with short-scale temporal structures
[54], [55], but allow to better categorize stationnary sounds.
This indicates that further improvements to TimeScaleNet
for environmental sound classification could be achieved by
modifying the FrameNet subnetwork in order to better encode
stationary sounds, for which it was not intended initially.

C. Analysis of the learnt representation from raw waveforms
using BiquadNet

In this subsection, we analyse the variables learnt in
BiquadNet, in order to give further insight on the learning
process involved. The architecture of BiquadNet has been
specifically developed to automatically build a 2D map M

(2)
l,k ,

that can be interpreted as an energy-like representation in 128
pooled frequency channels, with a time domain granularity of
a 5.8 ms, in time frames of 23.2 ms length. As a consequence,
the proposed joint feature learning process in the time domain
achieved by BiquadNet allows to obtain a bi-dimensional
map, which can be interpreted as a tunable time-frequency
feature representation, that replaces the usual time-frequency
representations commonly used as input in machine hearing.

In order to build this representation, BiquadNet first uses
the previously described biquadratic RNN layer, which is
directly inspired from biquadratic IIR filters used in digital
signal processing. As an illustration, Fig. 9 shows the H(1)

dB ,
which is the dB-magnitude response map of the 128 learnt
filters obtained after convergence, before any nonlinearities,
for the Speech Commands dataset. This representation has
been obtained directly from the IIR filters expression, by
computing the complex magnitude of the Z-transform of
each learnt filter (see (2)), evaluated for z = ej2πf [30].
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Fig. 9. (Color online) H
(1)
dB : Magnitude response of the learnt biquadratic

filterbank before nonlinearities in the first layer of BiquadNet after conver-
gence (45 epochs of learning), for the Speech Commands Dataset v2 [47].
The filters are sorted by ascending order of frequency at which the maximum
magnitude occurs for each filters.

In order to allow a visual comparison of this learnt
filterbank to the perceptual filterbank of Fig. 7, the filters
on Fig. 9 are sorted by ascending order of frequency at
which the maximum magnitude occurs. Although the filters
share some similarities with the Patterson’s cochlear model,
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Fig. 10. (Color online) Comparison of the Patterson’s ear model [43]–[45]
parameters defined by Glasberg and Moore [46] with the central frequency
f

Speech
c (a) and the quality factor QSpeech (b) of the learnt biquadratic filters in

the first layer of BiquadNet (before nonlinearities). The values are plotted both
for the Speech recognition experiment (solid line) and for the environmental
sound classification experiment (dashed line : mean value for the 5 folds
cross-validation, continuous shaded error bar : standard deviation).

a detailed analysis of the learnt IIR filters shows that there
are some important modifications, mostly for filters having
their central frequency fc below 1 kHz. This confirms the
observations made by Sainath et al. in [14], where the authors
also attempted to obtain a representative filterbank, using a
bank of 40, 1-dimensional convolutions of width 400 in the
first stages of their neural network. As shown here, these
rather large convolutions (1600 learnable parameters for 40
filters) can be replaced by an IIR approach (256 learnable
parameters, for 128 filters), at the cost of using a recurrent
neural network, which requires back-propagation through
time for the learning process.

As an illustration, Fig. 10 shows the percentage of relative
change for fc and Q, when comparing the learnt filters
and the Patterson’s cochlear model. This percentage of
change is simply computed using the following formula :
∆% (µ, ν) =

µ− ν

ν
× 100, and has been computed after

convergence, both for the speech recognition experiment and
for the environmental sound classification experiment. Fig. 10a
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shows that most of the learnt filters for speech recognition
have a higher central frequency than in the perceptual model
of equivalent rectangular bandwidth, thus accumulating the
number of filters in the range of [500−800Hz]. Some of these
learnt filters in this frequency range are sharper, some have a
decreased quality factor. Interestingly, the particular frequency
range corresponds to the typical F1 frequency zones of many
formants of vowels in english speech [56], and could help
TimeScaleNet to discriminate efficiently some phonemes
present in the spoken words of the Speech Commands dataset.

When analyzing the results with ESC-10 on Fig. 10, we
also observe that the learnt filters differ less from the Glasberg
and Moore model than for speech recognition. Although, it
is interesting to note than for the 5 folds cross-validation
process, the learnt IIR filters have converged to the same
kind of parameters: the standard deviation, depicted as a
continuous shaded error bar, has a rather low value for
frequencies above 100 Hz, which confirms that BiquadNet
learns an IIR filterbank that adapts itself to the sound database
automatically, rather than randomly selecting parameters for
the bandpass filters. This is an interesting property, which
helps explaining the excellent results obtained for speech
recognition. However, potential reasons for the moderate
performances obtained for environmental recognition without
further optimization may be the small size of the database, or
an inadapted way of encoding mid-range time dependencies
using TimeScaleNet.

In order to further investigate the way BiquadNet builds
a the 2D feature map M

(2)
l,k fed to FrameNet, we applied

to H
(1)
dB the mathematical operations operated by the Layer

Normalization (LN) layer and the Pointwise convolution
(PC) layer, along with their nonlinear activation functions.
Indeed, the magnitude response shown on Fig. 9 is the strict
equivalent to the output of the Framed Log-Energy Module
shown on Fig. 1 and 4, that would have been obtained with
a linear frequency chirp between 40 Hz and 8000 Hz taken
as an input x[n]. This equivalence strictly stands for a linear
chirp, which allows to replace the frequency axis on Fig. 9 by
a timeframe number, which would give a time-frequency-like
representation or the chirp x[n].

This allows to compute the frequency response H(BiquadNet)
dB

of the equivalent (nonlinear) filterbank of the whole
BiquadNet, therefore giving a higher level of interpretation
of the learnt model, using the following operations :

H
(BiquadNet)
dB = Selu

(
PC
(

Selu
(
LN

(
Selu

(
H

(1)
dB

)))))
,

(5)

Selu(u) =

{
λ× u if u > 0,
α× (eu − 1) if u ≤ 0

(6)

(PC(Uj,k))l,k =
∑
j

Uj,k × wj,l (7)

(LN(Aj,k))j,k = γk ×
(
Aj,k − µA

σA

)
+ βk, (8)

where µA and σA stand for the mean and variance of A in
respect to the activation values of the next layer. The values
of the learnt coefficients wj,l, γk and λk for these two layers
have been extracted from the frozen model, after the 45 epochs
of learning. The numerical values of α and λ used in Selu
activations have been defined in [27].
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Fig. 11. (Color online) H
(BiquadNet)
dB : Magnitude response of the equivalent

filterbank at the output of BiquadNet, after convergence for the Speech
Commands Dataset [47]. The filters are sorted by ascending order of frequency
at which the maximum magnitude occurs for each filters.

Fig. 11 shows the computed magnitude response H(BiquadNet)
dB

using equations (5) to (8), for the Speech Commands Dataset.
In order to ease the reading of this map, the filters were
sorted by ascending order of frequency at which the maximum
occurs for each filters. BiquadNet learns to build a selective
filterbank which pools several frequency bands together, in
order to pass them to FrameNet, which then encodes the time
fluctuations in those pooled frequency bands at the frame level.
Interestingly the obtained filterbank for the ESC-10 dataset
does not share the same characteristics (data not shown),
which supports the hypothesis that BiquadNet adapts the learnt
filterbank to the dataset. Some of the channels shown on
Fig. 11 exhibit frequency patterns that could be linked to
vowels or nasals, whereas the last channels exhibit a frequency
patterns that could serve the purpose of encoding fricatives
or plosives only, with wideband, high frequency content. It
is also interesting to note that the frequency at which the
maximum occurs for each filters does not match the Patterson’s
ear model frequencies at which it has been initialized at
all. The pooled frequency channels representation build by
BiquadNet for speech recognition further increases the density
of activations by frequencies between 200 Hz and 1000 Hz,
and may explain why TimeScaleNet allows a better accuracy
than with a frozen version of BiquadNet with the Patterson’s
cochlear model using the parameters of Glasberg and Moore.

This property is visible on Fig. 12, where the initial setting
is plotted (Glasberg and Moore, between 40 Hz and 7620 Hz,
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Fig. 12. (Color online) Center frequencies of the initial Patterson’s cochlear
model with Glasberg and Moore parameters (dotted), Frequencies at which the
maximum magnitude occurs in the magnitude of H(BiquadNet)

dB (solid line), and
center frequencies of a 128-channels mel scale bandfilter, spanning between
150 Hz and 5000 Hz (dash-dotted line).

dotted line) together with the frequency at which the maximum
occurs for each filters (solid line). The learnt maximum fre-
quencies exhibit a linear evolution on a much larger frequency
range than the Patterson’s model. Interestingly, for the 100
first channels, which may mainly encode vowels and nasals,
the learnt channels follow a very similar evolution than the
Mel scale, which is plotted for a mel filterbank of 128 filters
between 150 Hz and 5000 Hz. This is a really interesting
property, since the Patterson’s model and the mel scale differ
greatly in the breaking frequency, and that there was initially
no intent to use the mel scale in the present study. However, for
the highest channel numbers depicted on Fig. 11 and 12, where
the frequencies at which the maximum magnitude occurs at a
larger frequency than 2500 Hz, the learnt filterbanks switches
back to a Glasberg model, and clusters high frequencies
together, which could help in recognizing consonants. This
analysis allows to give further insight to usual handcrafted
time-frequency representations used in speech recognition,
and shows that there may be no best representation, since
BiquadNet builds its own representation, and converges to a
mix of a mel-like and a Patterson-like filterbank in the present
case.

D. IIR versus FIR filtering: comparison of the proposed
biquadratic RNNs with traditional CNNs for time-domain
joint feature learning

In digital signal processing, filters can be designed
from a given specification using either Finite Impulse
Response (FIR) and Infinite Impulse Response (IIR) filters.
As discussed earlier in the manuscript, both designs have
their respective advantages and disadvantages. In machine
learning, 1-D convolutional layers are the strict equivalent to
FIR filterbanks. In the present paper, we developed a new
kind of RNN cell, referred as biquadratic RNN, which is
implemented as the strict equivalent to a tunable biquadratic,
direct-form I IIR filter. In digital signal processing, when

stability is ensured, IIR filters are often preferred to FIR filters
because they require less computation and memory in order
to perform similar filtering operations. As shown in Fig. 3, in
our machine learning implementation, the Biquadratic RNN
stability is ensured thanks to the range constraints on the
learnable parameters K(i) and Q(i). Phase linearity is also
achieved using backward-forward filtering.

In order to compare a FIR-like CNN approach to the
proposed IIR-like biquadratic RNN, we implemented FIR-
TimeScaleNet, which is a model that simply replaces the
biquadratic RNN cells in TimeScaleNet with standard, 1-
dimensional CNN cells, as proposed in [14] for time-domain
joint feature learning. In order to follow Sainath et al.
implementation, this convolution layer in the time domain
is followed by rectification using a RELU nonlinearity. The
averaging over overlapping windows [14] of 23.2 ms is
performed using the exact same process as in the Framed
log-energy module in BiquadNet. This process allows a fair
comparison of a RNN/IIR-like approach with the CNN/FIR-
like approach. As explained in [14] and [57], for a CNN
approach of joint feature learning in the time domain, the
kernel width used for the CNN layer is determined through
extensive experimentation. This led Sainath et al. to use a
kernel of width W = 400, which matches the value used in
FIR-TimeScaleNet.

Table IV shows the computation efficiency (number of
learnable parameters and number of operations for the first
layer, when applied to 1 second of signal). The obtained
classification accuracy on the keyword spotting task on
the Speech Commands dataset [47] using the proposed
TimeScaleNet and FIR-TimeScaleNet are also shown, along
with the mean computation time for one iteration of the whole
learning process on one second of audio. This computation
time includes the feed forward propagation, cross entropy
loss computation, back-propagation, gradients computations
and variables updates using Adam, using four Nvidia GTX
1080Ti GPU cards and the same model parallelization on the
GPU units for both models.

Since each learnable IIR filter is fully determined by only
two learnable parameters in TimeScaleNet, the full number
of learnable parameters in the first layer of BiquadNet is
only 256. On the other hand, the FIR-like approach using
CNNs involves 400 × 128 = 51200 parameters in the
first layer, which represents 200 times more parameters
to learn. The total number of operations (multiplications
/ addings) for a bandpass IIR implementation of a signal
of length N = 16000 samples (1 second of signal) is
2 × (128 × (4 + 4)) × (N + 2) = 32.8 × 106 for the forward-
backward biquadratic RNN implementation in TimeScaleNet.
The CNN layer implemented in FIR-TimeScaleNet
corresponds to 2 × 128 × 400 × (N + 400 + 1) = 1.68 × 109

operations. In terms of computational cost, this is a clear
win for the IIR approach, by a factor of 51, as observed in
classical digital signal processing.
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TABLE IV
COMPUTATION EFFICIENCY AND CLASSIFICATION ACCURACY:

COMPARISON BETWEEN AN IIR AND A FIR APPROACH

Model TimeScaleNet (IIR) FIR-TimeScaleNet

Number of
parameters
(first layer)

256 51200

Number of
operations for

1 sec. of signal
32.8× 106 1.68× 109

Classification
accuracy

94.87± 0.24% 92.72± 0.11%

Mean computation
time for one learning

iteration (1 sec. of signal)
105 ms 7 ms

In order to further compare the performances of the
proposed IIR-like approach with a FIR-like approach, we
performed the keyword recognition task on the Speech
Commands Dataset using the FIR-TimescaleNet model,
whose first layer matches the one proposed by Sainath et
al. in [14]. The learning process has been performed during
45 epochs, and repeated 4 times in order to evaluate a
standard deviation of the obtained classification accuracies.
This FIR approach allowed to obtain a classification accuracy
of 92.72± 0.11% on the evaluation set, which is significantly
lower (by a net difference of 2.15% in accuracy) than
TimeScaleNet using the same data. The mean computation
time is however 15 times lower for a FIR-like implementation,
thanks to the optimizations for convolutional computations
on GPUs. The backpropagation through time required for
the IIR/RNN approach in BiquadNet is also a reason for
the longer learning computation time for TimeScaleNet.
This should not be a problem for realtime inference though,
since forward-backward filtering using IIR filters can easily
be implemented in real time, even on standard DSP units [58].

A possible reason for the lower accuracy obtained using a
FIR/CNN approach could be linked to the fact that the CNN
kernel width may not be well adapted for the whole audible
frequency range. This kernel width is the strict equivalent to
the number of taps of a FIR filterbank. However, the analysis
of Figure 13 highlights the fact that, at low frequencies, a
length of 400 samples for FIR filters may be insufficient to
efficiently encode relevant features from raw audio at low
frequencies. Figure 13 has been obtained for each of the 128
IIR learnt by BiquadNet, by calculating the number of samples
of the impulse responses, whose values are higher than 0.0001
times the highest value of each impulse response. This number
of samples corresponds to the length of the 128 equivalent FIR
filters that would be obtained by truncating the IIR filters and
discarding the smallest values of the impulse response.

Figure 13 shows that the number of coefficients proposed by
Sainath et al. is big enough to efficiently encode the frequency
content between 1100 Hz and 6700 Hz (corresponding to 67
filters out of the 128 filters learnt by BiquadNet). At low
frequencies however, between 100 Hz and 1100 Hz, where
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Fig. 13. (Color online) Impulse response lengths of equivalent FIR filters
that would match the behavior of the learnt IIR biquadratic filters (solid line).
These lengths are obtained by truncating the IIR to the portion that has values
larger than 0.0001 times the highest IIR value for each filter centered at fc.
The dash-dotted line shows a length of 400, as used in [14].

BiquadNet has learnt 55 filters, the kernel width of an equiva-
lent FIR should be much larger than 400 in order to efficiently
encode the learnt perceptual filters. This result suggests that a
possible improvement for a FIR/CNN approach [14] could be
obtained using different kernel widths for different frequency
ranges, as proposed in [59].

V. CONCLUSION

In this paper, we presented a machine learning approach
of multiresolution modelling of unprocessed, time domain
audio waveforms. The proposed deep neural network
(TimeScaleNet) aims at merging digital signal processing
techniques with new machine learning techniques, and has
been specifically thought for audio recognition, with a specific
intent of understanding the learning process, by justifying
the network architecture from the signal point of view and
visualizing the learnt representations.

The network acts at two different timescales. At the sample
level, we developed BiquadNet, based on a new form of
recurrent neural network cell, which is directly derived from
biquadratic IIR filters found in digital signal processing. This
learnable filterbank allows to build a relevant time-frequency
like representation, which we have shown to self-adapt to the
dataset, in order to optimize the recognition accuracy. At the
frame level, we use residual networks of one-dimensional
atrous convolutions (FrameNet), which help to model the
time fluctuations at the frame level.

We show that this whole process allows to achieve speech
recognition on a keyword spotting task with a very high
accuracy, which matches the performances of the best models
to date on the Speech Commands dataset. By analyzing the
learnt parameters in BiquadNet for this particular task and by
deriving the equivalent filterbank magnitudes from the frozen
model after convergence, we give further interpretability of
the proposed machine hearing process. We also show that
on this particular task, the proposed neural network builds
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a representation that both encodes the frequency content
between 200 Hz and 3000 Hz with a pattern matching the
mel-scale, and encodes higher frequency content with a
pattern matching the Patterson’s model. A comparison of the
proposed RNN/IIR approach with a conventional CNN/FIR
approach shows that BiquadNet is more computationally
efficient. This analysis also gives further insight into the FIR
length that would allow to efficiently learn features from raw
audio at low frequencies. The proposed approach also allows
to pool frequency bands together, which can efficiently encode
nasals, vowels, fricatives, and plosives for speech recognition.
These results allow to interpret the machine learning task
in light of cognitive models of audition, while standing on
both machine learning and digital signal processing solid basis.

However, the rather moderate performances for environmen-
tal sound recognition using a small dataset suggests the need
for further improvements for this specific task, in order to
minimize the number of parameters involved in learning for
small datasets, and to modify the FrameNet approach in order
to better handle stationary-like sounds, which occur more often
in environmental recognition than in speech recognition.
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