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COMBINATORICS OF FULLY COMMUTATIVE INVOLUTIONS

IN CLASSICAL COXETER GROUPS

RICCARDO BIAGIOLI, FRÉDÉRIC JOUHET, AND PHILIPPE NADEAU

Abstract. An element of a Coxeter group W is fully commutative if any

two of its reduced decompositions are related by a series of transpositions of
adjacent commuting generators. In the present work, we focus on fully com-

mutative involutions, which are characterized in terms of Viennot’s heaps. By

encoding the latter by Dyck-type lattice walks, we enumerate fully commu-
tative involutions according to their length, for all classical finite and affine

Coxeter groups. In the finite cases, we also find explicit expressions for their

generating functions with respect to the major index. Finally in affine type
A, we connect our results to Fan–Green’s cell structure of the corresponding

Temperley–Lieb algebra.

Introduction

Let W be a Coxeter group. An element w ∈ W is said to be fully commutative
(FC) if any reduced expression for w can be obtained from any other one by trans-
posing adjacent pairs of commuting generators. Fully commutative elements were
extensively studied by Stembridge in a series of papers [18, 19, 20] where, among
others, he classified the Coxeter groups having a finite number of FC elements and
enumerated them in each case. It is known that these elements index a basis for the
associated (generalized) Temperley–Lieb algebra ([7, 10]). The growth function of
such an algebra can then be obtained by computing the generating function, with
respect to the length, of fully commutative elements in W . This function has been

computed by Barcucci et al [2] in type A, by Hanusa and Jones [12] in type Ã, and
by the present authors [4] in all finite and affine types. A striking fact is that, in
each affine case, the corresponding growth sequence is ultimately periodic.

In the present work we focus on FC involutions for all classical Coxeter groups.
As explained by Stembridge in [20], a FC element w is an involution if and only
if its commutation class R(w) is palindromic, meaning that it includes the mirror
image of some (equivalently, all) of its members. We will reformulate this in terms
of heaps and certain Dyck-type lattice walks which encode them.

As a first consequence, we will be able to enumerate, in types A, B, and D, FC
involutions according to the major index. This was recently done by Barnabei et
al. [3] for the symmetric group (type A), by using the 321-avoiding characterization
of such elements, the Robinson-Schensted correspondence, and a nice connection to
integer partitions. Our approach in terms of heaps uses neither pattern-avoidance
characterizations nor the Robinson-Schensted correspondence. However, it also
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yields a connection to integer partitions through our Dyck-type lattice walks, which,
as will be explained, turn out to be in bijection with the ones used in [3]. The
advantage of our point of view is that it naturally extends to types B and D
for which major indices can be defined, whereas the use of Stembridge’s pattern-
avoiding characterizations [20, Theorems 5.1 and 10.1] seems hard to handle. In
type B, our result can for instance be written as follows (see Proposition 2.5):

∑

w∈B̄FC
n

qmaj(w) =

n∑

h=1

qh
h−1∑

i=0

[
h− 1

i

]

q

+

[
n

bn/2c

]

q

,

where the square brackets are the so-called q-binomial coefficients, B̄FCn is the set
of FC involutions in Bn, and maj is the major index.

As a second consequence of our characterizations of FC involutions, we will also
give the t-weighted generating functions for all types of classical finite and affine
Coxeter group. More precisely, if W̄FC denotes the subset of FC involutions of
W and ` denotes the Coxeter length, we will define W̄FC(t) :=

∑
w∈W̄FC t`(w)

as the length generating function for FC involutions in W . We will use both our
characterization in terms of heaps and the way these are encoded by Dyck-type
lattice walks to compute W̄FC(t) when W is finite or affine. In the affine case,
we will also show that the corresponding growth sequences are ultimately periodic,
with periods dividing the values recorded in the following table (see Propositions 3.3
and 3.4):

Affine Type Ãn−1 (n even) C̃n B̃n+1 D̃n+2

Periodicity n 2n+ 2 (2n+ 1)(2n+ 2) 2n+ 2

(if n is odd, the number of fully commutative involutions in Ãn−1 is finite.)

Finally, as a third consequence of our approach, we will relate our previous

characterization in affine type Ã to Fan–Green’s cells structure of the associated
Temperley–Lieb algebra described in [8]. More precisely, we will see how the use of
heaps highlights and simplifies some of their results connected to FC involutions,
such as [8, Theorem 3.5.1].

This paper is organized as follows. In Section 1, we recall definitions and basic
results on Coxeter groups, fully commutative involutions, heaps and walks. In
Section 2, we enumerate FC involutions with respect to the major index in classical
finite types. Section 3 is devoted to the characterization of FC involutions and their
enumeration with respect to the Coxeter length in classical finite and affine types.
Finally, in Section 4, after recalling the cell structure on FC elements defined in [8]

using the type Ã Temperley–Lieb algebra, we show how the use of heaps makes the
combinatorics of these cells more explicit.

1. Fully commutative involutions, heaps and walks

1.1. Coxeter groups, length and major index. We refer to [13] for standard
notations and terminology pertaining to general Coxeter groups. A Coxeter system
is a pair (W,S) where W is a group and S ⊂ W is a finite set of generators
for W subject only to relations of the form (st)mst = 1, where mss = 1, and
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mst = mts ≥ 2, for s 6= t ∈ S. If st has infinite order we set mst = ∞. These
relations can be rewritten more explicitly as s2 = 1 for all s ∈ S, and

sts · · ·︸ ︷︷ ︸
mst

= tst · · ·︸ ︷︷ ︸
mts

,

where mst < ∞. They are the so-called braid relations. When mst = 2, they are
simply named commutation relations, st = ts.

The Coxeter graph of (W,S) will be denoted by Γ. The irreducible Coxeter
systems corresponding to finite and affine Coxeter groups are completely classified
(see [6, 13]), and the Coxeter graphs corresponding to the classical families are
depicted in Figures 1 and 2. Here, and all along this paper, the indexing of the
classical Coxeter graphs is slightly different from the more standard one used in [18]–
[20], and [4], but it is more appropriate when one considers both the Coxeter length
and the major index.

4

s1 sn−1 s1 s1 sn−1sn−1
An−1 Bn Dn+1

s2 s2

sn+1

sn
sn

Figure 1. Coxeter graphs for classical irreducible finite types.

4 4 4

C̃n D̃n+2Ãn−1 B̃n+1

s1s1 sn−1

s0

s1 sn−1 sn−1

sn+1

sn
sn s1 sn−1

sn

sn+1

un un
un

un+1

Figure 2. Coxeter graphs for classical irreducible affine types.

For w ∈ W , the length of w, denoted by `(w), is the minimum length l of any
expression w = s1 · · · sl with si ∈ S. These expressions of length `(w) are called
reduced, and we denote by R(w) the set of all reduced expressions of w.

The (right) descent set of an element w ∈W is defined as follows:

DesR(w) = {s ∈ S | `(ws) < `(w)},
and its cardinality is usually called the descent number des(w).

We define the major index of w ∈W as the sum of the labels of the descents of
w; more precisely

maj(w) :=
∑

si∈DesR(w)

i.

It is clear that the major index depends on the indexing of the generating set S
of W . In the case of the symmetric group An−1, the notion of major index is
standard, and a very famous result states that the major index and the length are
equidistributed over An−1 (see [15, 9]). For other Coxeter groups, several definitions
exist. With our previous indexing of the Coxeter graphs, the major index defined
above corresponds to the one already used by Reiner [16], and Steingŕımsson [17]
in the type B case.
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1.2. Fully commutative elements and heaps. In this section, we recall the
definition of fully commutative elements in Coxeter groups and its relation with
the theory of heaps. We then explain how the subfamily of alternating heaps
corresponding to involutions can be encoded by various classes of Dyck-type lattice
walks.

According to the well known Matsumoto-Tits word property, any expression in
R(w) can be obtained from any other using only braid relations (see for instance [6,
Section 3.3]). The notion of full commutativity is a strengthening of this property.

Definition 1.1. An element w is fully commutative if any reduced expression for
w can be obtained from any other by using only commutation relations.

We let S∗ be the free monoid generated by S. The equivalence classes of the
congruence on S∗ generated by the commutation relations are usually called com-
mutation classes. We recall from Stembridge in [18, Prop. 2.1] that an element
w ∈ W is FC if, and only if, all its reduced words avoid all factors of the form
sts · · · with length mst ≥ 3.

By definition the set R(w) forms a single commutation class; we will see that
the concept of heap helps to capture the notion of full commutativity. We use the
definition as given in [11, p. 20] (see also [14, Definition 2.2]), and we refer to [4]
for details of the relation with FC elements.

Definition 1.2 (Heap). Let Γ be a finite graph with vertex set S. A heap on Γ (or
of type Γ) is a finite poset (H,≤), together with a labeling map ε : H → Γ, which
satisfies the following conditions:

(1) For any vertex s, the subposet Hs := ε−1({s}) is totally ordered, and for
any edge {s, t}, the subposet H{s,t} := ε−1({s, t}) is totally ordered.

(2) The ordering on H is the transitive closure of the relations given by all
chains Hs and H{s,t}, i.e. the smallest partial ordering containing these
chains.

Two heaps on Γ are isomorphic if there exists a poset isomorphism between
them which preserves the labels. The size |H| of a heap H is its cardinality. Given
any subset I ⊂ S, we will note HI the subposet induced by all elements of H with
labels in I. In particular H{s} is the chain Hs = s(1) < s(2) < · · · < s(k) where
k = |Hs| is its cardinality. If s, t are two labels such that mst ≥ 3, note that H{s,t}
is also a chain.

Fix a word w = s1 · · · sl in S∗. Define a partial ordering ≺ of the index set
{1, . . . , l} as follows: set i ≺ j if i < j and {si, sj} is an edge of Γ, and extend by
transitivity. We denote by Heap(w) this poset together with ε : i 7→ sai . It is easy
to see that this indeed forms a heap as in Definition 1.2.

Proposition 1.3 (Viennot, [21]). Let Γ be a finite graph. The map w→ Heap(w)
induces a bijection between Γ-commutation classes of words and isomorphism classes
of finite heaps on Γ .

As explained in [4], if w is a FC element and w is a reduced word for it, we
can define Heap(w) := Heap(w), and heaps of this form are called FC heaps. In
Figure 3, we consider the Dynkin diagram B7, and we give two examples of words
with the corresponding FC heaps. In the Hasse diagram of Heap(w), elements with
the same labels are drawn in the same column.
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s1 s2 s3

s5

w1 = s5s7s4s6s1s3s5s7s2s4s6s3s5s7s4 w2 = s6s3s5s7s2s4s6s1s3s5s7s2s4s6s3s5s7s6
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s6

s7
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s6 s7

Figure 3. Two heaps on B7, the one on the right corresponding
to a FC involution.

Let us point out a simple operation on heaps: if (H,≤, ε) is a heap, then its dual
is (H,≥, ε), which is the heap with the inverse order, and where the labels are kept
the same. We will say that a heap is self-dual if it is isomorphic to its dual. Then
we have the following result, which is essentially proved in [20].

Lemma 1.4. Let W be a Coxeter group with corresponding Coxeter graph Γ. A
fully commutative element w ∈ W is an involution if and only if Heap(w) is self-
dual.

Proof. A FC element w ∈ W is an involution if and only if for a (equivalently,
any) w = si1 · · · sin ∈ R(w), the reverse ←−w := sin · · · si1 is also in R(w). This is
equivalent to Heap(w) = Heap(←−w), which is by definition the dual of Heap(w). �

1.3. Alternating heaps and self-dual right-peaks. In this section we recall the
classification of the FC involutions in the classical finite Coxeter groups essentially
given in [20]. We use a description in terms of heaps derived from [4, §2.5, §4.4],
together with Lemma 1.4.

First, we need to recall a few definitions. We fix mv0v1
,mv1v2

, . . . ,mvn−1vn in
the set {3, 4, . . .} ∪ {∞} and we consider the Coxeter system (W,S) corresponding
to the linear Coxeter graph Γn = Γn((mvivi+1

)i) of Figure 4.

v0 v1 vnv2

mv0v1 mv1v2 mvn−1vn

vn−1

Figure 4. The linear Coxeter graph Γn.

Note that this linear diagram contains as special cases the Coxeter diagrams of
types An−1, Bn and C̃n.

Definition 1.5. Consider the linear graph Γn, and a heap H on Γn. We say that H
is alternating if for each edge {vi, vi+1} of Γn, the chain H{vi,vi+1} has alternating
labels vi and vi+1.

Next, we will need the following families of heaps, which are specific to the types
B and D.
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Definition 1.6. A self-dual right-peak of type Bn is a heap such that there exists
j ∈ {1, . . . , n− 1} satisfying:

(a) H{sj ,...,sn} = Heap(sj · · · sn−1snsn−1 · · · sj);
(b) H{sj−1,sj} = sjsj or sj−1sjsjsj−1 for j > 1, and s1s1 for j = 1;
(c) H{s1,...,ṡj} is self-dual alternating, where ṡj means that one sj is deleted.

sj sn

Figure 5. A self-dual right-peak of type Bn.

The Coxeter diagram of type Dn+1 is not linear. We can nevertheless define self-
dual alternating heaps and self-dual right-peaks based on the previous definitions
in type Bn. More precisely, self-dual alternating heaps of type Dn+1 are obtained
from self-dual alternating heaps of type Bn having either zero or an odd number of
elements labeled sn, by replacing these by sn or sn+1 alternatively, or by snsn+1 if
there was originally exactly one label sn, cf. Figure 6.

s1

s8

s7

s8

s1 s7s8

(s7)

(s8)

(s7)

Figure 6. Two self-dual alternating heaps of type D8.

Self-dual right peaks of type Dn+1 are heaps satisfying conditions (b) and (c)
above, and such that there exists j ∈ {1, . . . , n− 1} with:

(a’) H{sj ,...,sn+1} = Heap(sj · · · sn−1snsn+1sn−1 · · · sj).
Remark 1.7. In the above families of right-peaks the index j is uniquely deter-
mined; this will be particularly useful for enumerating purposes.

From [4, Theorem 3.10] and Lemma 1.4, we have the following result.

Proposition 1.8 (Classification of FC involutions in classical types). A FC element
w ∈ An−1 is an involution if and only if Heap(w) is a self-dual alternating heap.
Moreover, a FC element w ∈ Bn ( resp. w ∈ Dn+1) is an involution if and only
if Heap(w) is either a self-dual alternating heap of type Bn ( resp. Dn+1) or a
self-dual right-peak of type Bn ( resp. Dn+1).
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1.4. Motzkin type lattice walks. Next, we define the lattice walks we will use
in the sequel to compute generating functions for FC involutions.

Definition 1.9 (Walks). A walk of length n is a sequence P = (P0, P1, . . . , Pn)
of points in N2 with its n steps in the set {(1, 1), (1,−1), (1, 0)}, such that P0 has
abscissa 0 and all horizontal steps (1, 0) can only occur between points on the x-axis.

The set of all walks of length n will be denoted by G∗n. The subset of walks
starting at P0 = (0, 0) will be denoted by Q∗n, and the subset of Q∗n ending at
Pn = (n, 0) will be denoted by M∗n. To each family F∗n ⊆ G∗n corresponds the
subfamily Fn consisting of those walks with no horizontal step, and F̌n ⊆ Fn
consisting of the ones which hit moreover the x-axis at some point.

The total height ht of a walk is the sum of the heights of its points: if Pi = (i, hi)
then ht(P ) =

∑n
i=0 hi. To each family F∗n ⊆ G∗n we associate the series F ∗n(t) =∑

P∈F∗n t
ht(P ), and we define the generating functions in the variable x by

F ∗(x) =
∑

n≥0

F ∗n(t)xn, F (x) =
∑

n≥0

Fn(t)xn and F̌ (x) =
∑

n≥0

F̌n(t)xn.

Notice that M(x) (resp. Q(x)) counts Dyck paths (resp. prefixes of Dyck paths),
taking into account the height. Moreover, the generating function M∗(x) can easily
be related to M(x): a path inM∗n can be seen as a concatenation of Dyck paths and
horizontal steps which alternate, remembering that the set of Dyck paths contains
the empty one. Therefore one can write:

M∗(x) =
M(x)

1− xM(x)
. (1)

Recall that, setting t = 1, the series M(x) simply becomes the generating func-
tion for the famous Catalan numbers, and is therefore equal to the generating
function for 321-avoiding permutations, or equivalently FC elements of type A
(see [4, 5, 20]).

Moreover, we have the recursive relation

M(x) = 1 + tx2M(x)M(tx), (2)

as can be seen by considering the first return to the x-axis, as follows:

+

tM(tx) M(x)

=

We also point out that for all the subfamilies F∗n of G∗n that will naturally appear
later in our enumerations, there will be some equations of the form (1) relating
F ∗(x), F (x) and M(x), and recursive relations like (2) for F (x).

1.5. Bijective encoding of alternating heaps. We now define a bijective en-
coding of self-dual alternating heaps by walks, which will be especially handy to
compute generating functions in the next sections. It is obtained by understanding
how the encoding of heaps defined in [4] restricts to self-dual heaps.
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Proposition 1.10. Let H be a self-dual alternating heap of type Γn. To each
vertex vi of Γn we associate the point Pi = (i, |Hvi |). We define ϕ(H) as the
walk (P0, P1, . . . , Pn). Then the map H 7→ ϕ(H) is a bijection between self-dual
alternating heaps of type Γn and G∗n. The size |H| of the heap is the total height of
ϕ(H).

Proof. For any alternating heap H and any i ∈ {0, . . . , n − 1}, we have −1 ≤
|Hvi | − |Hvi+1

| ≤ 1. Moreover if H is self-dual and |Hvi | 6= 0, then |Hvi | 6=
|Hvi+1

|. Therefore the map is well defined. Fix (P0, P1, . . . , Pn) ∈ G∗n. If the
step Pi = (i, hi) → Pi+1 = (i + 1, hi+1) is equal to (1, 1) (resp. (1,−1)), then we
define a convex chain Ci of length 2hi (resp. 2hi+1) as (vi+1, vi, . . . , vi+1) (resp.
(vi, vi+1, . . . , vi)). If the step Pi → Pi+1 is (1, 0), then hi = hi+1 = 0, and we let
Ci be the empty chain. Next we define H as the transitive closure of the chains
C0, . . . , Cn−1. It is acyclic since Γn is linear, so we get a heap H which is uniquely
defined, alternating, and satisfies ϕ(H) = (P0, P1, . . . , Pn). Since hi = |Hvi | the
result follows. �

s1 s2 s10
0 11

u11
s11

H ϕ(H)

Figure 7. The heap of a FC involution in C̃11 and its associated walk.

Remark 1.11. In the type An−1 case, if we consider alternating FC heaps, since
they have either zero or one occurrence of the labels s1 and sn−1, we can add an
initial and a final step to the paths obtained through Proposition 1.10, to get a
bijection with paths in M∗n. Similarly, since alternating FC heaps on Bn are in
bijection with paths in G∗n−1 starting at height zero or one, we can add an extra
initial step, to obtain a bijection with paths in Q∗n.

2. Enumeration with respect to the major index

Recall the following enumerative expressions for the number of FC involutions
in classical finite types, which were first proved in [20, Section 4].

Proposition 2.1. We have for n ≥ 1

|ĀFCn−1| =

(
n

bn/2c

)
, (3)

|B̄FCn | = 2n +

(
n

bn/2c

)
− 1, (4)

|D̄FC
n+1| =





2n +

(
n+ 1

n/2

)
− 1 if n even,

2n +
3

2

(
n+ 1

(n+ 1)/2

)
− 1 if n odd.

(5)
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The striking observation is that by considering the major index defined in Sec-
tion 1 we can obtain nice q-analogues for formulas (3)–(5). For type A this analogue
was recently computed by Barnabei et al. in [3], by using the 321-avoiding charac-
terization of FC involutions, the Robinson–Schensted algorithm, and a connection
with integer partitions. A non-bijective proof of this result, using the principal
specialization of Schur functions, has also been given by Stanley, and a third one
has been found by Dahlberg and Sagan (see [3, §6]).

In this section, we show that our different approach in terms of heaps will allow
us to derive this result and extend it to types B and D. In type A, we will shortly
explain in Proposition 2.4 below that our approach and the one of Barnabei et al.
are equivalent, and yield the same connection to integer partitions. In types B and
D, we will still use our characterization in terms of heaps and the idea from [3] to
connect walks to integer partitions; here the approach through pattern avoidance
in signed permutations seems harder to use.

Before giving our result, we recall a classical property relating q-binomial co-
efficients and integer partitions. A partition of the integer N is a nonincreasing
sequence λ = (λ1 ≥ · · · ≥ λl > 0) of positive integers whose sum is equal to N ,
which we denote by |λ| and call the weight of λ. The integer l is the length of λ,
while the λi’s are called the parts of λ. It will be convenient to use Frobenius nota-
tions for partitions. Let j be the rank of a partition λ, namely the largest integer i
such that λi ≥ i: it is also the size of the Durfee square of λ. For 1 ≤ i ≤ j, define
αi = λi − i and βi = λ′i − i. The Frobenius notation for λ is the array

(
α1 α2 . . . αj
β1 β2 . . . βj

)
.

We have the following classical generating function (see for instance [1]).

Lemma 2.2. The generating function in the variable q, according to the weight,
of integer partitions with largest part smaller or equal to k and length smaller or
equal to n− k, is given by the q-binomial coefficient

[
n

k

]

q

:=
(1− q) · · · (1− qn)

(1− q) · · · (1− qk)(1− q) · · · (1− qn−k)
.

2.1. Type A. We prove the following result, which can be found in [3].

Proposition 2.3. For any positive integer n, we have

∑

w∈ĀFC
n−1

qmaj(w) =

[
n

bn/2c

]

q

. (6)

Proof. Recall from Proposition 1.8 that each FC involution w ∈ ĀFCn−1 corresponds
bijectively to a self-dual alternating heap H = Heap(w), which is itself in one-to-one
correspondence with a walk in M∗n, thanks to Proposition 1.10 and Remark 1.11.
Note that i ∈ DesR(w) if and only if there exists in the poset H a maximum element
labeled si. In the path encoding this corresponds to a peak (i.e. an ascending step
followed by a descending one) at coordinates (i, |Hsi |). Therefore the position i of
such a descent is equal to the number of steps from the origin to this peak.

Fix a walk γ ∈M∗n and let k be its number of horizontal steps. Note that k and n
have the same parity. Replace the first bk/2c (resp. the last dk/2e) horizontal steps
by descending (resp. ascending) ones. Next replace all descending (resp. ascending)
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steps by horizontal (resp. vertical) ones, yielding γ̄ in Πn, the set of walks with
n horizontal or vertical steps, starting at the origin and ending at (bn/2c, dn/2e).
These operations are invertible, and an example of the bijection γ → γ̄ is provided
in Figure 8.

2 8 10

γ̄ ∈ Π13

(0, 2)

(3, 5)

(4, 6)

γ ∈M∗
13

2 8 10

Figure 8. An example of the walk-to-partition bijection.

It is not difficult to see that descents of γ coincide in γ̄ with corner points (formed
by a vertical step followed by a horizontal one). Moreover the position of a descent
in γ is given by the sum of the coordinates of the corresponding corner point in γ̄.

Denote by P1(a1, b1), . . . , Pj(aj , bj), with bn/2c > a1 > · · · > aj ≥ 0 and dn/2e ≥
b1 > · · · > bj > 0 the corner points of γ̄. Summarizing, we have

∑

w∈ĀFC
n−1

qmaj(w) =
∑

γ̄∈Πn

qa1+b1+···+aj+bj . (7)

Since any walk γ̄ ∈ Πn is uniquely determined by its corner points, it can be
associated with an integer partition λ defined in Frobenius notation as

λγ̄ =

(
a1 a2 . . . aj

b1 − 1 b2 − 1 . . . bj − 1

)
.

This is a bijection: for a proof see [3, Theorem 3.4] to which we refer for more
detail. As any such partition has length ≤ dn/2e and greatest part ≤ bn/2c, we
obtain (6) through (7) and Lemma 2.2. �

By comparing our resulting bijection with that of [3], we observed a striking
coincidence. Starting from a FC involution w ∈ An−1, we considered the following
sequence of bijective transformations:

w −→ H −→ γ ∈M∗n,
where H = Heap(w) and γ = ϕ(H) (see Remark 1.11). Barnabei et al. [3] consider
a different sequence of transformations, namely:

w
RS−→ T −→ β ∈ Qn,
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where T is the two rows standard tableau obtained by the Robinson–Schensted
correspondence, and β is the classical associated Dyck-path prefix. The following
proposition shows that the two constructions essentially coincide.

Proposition 2.4. The walk β is obtained from γ by replacing in the latter all
horizontal steps by ascending ones.

Proof. If w(i) = i, then w(j) < i for all j < i (equivalently, w(j) > i for all j > i):
otherwise w(j) > i > j would be an occurrence of the pattern 321. This shows that
H splits naturally into two heaps corresponding to elements smaller, resp. larger
than i. Moreover H contains elements labeled neither by si−1 nor by si, which
means the ith step of γ being a horizontal step. In the RS construction, we also
easily see that such a fixed point i will correspond to an up step in β, where β
leaves at abscissa i a certain height for the last time.

Thus the statement of the proposition is proved if we can show that β = γ
whenever w has no fixed points, which we now assume. In this case β and γ are
Dyck paths in Mn, and their construction is illustrated in Figure 9.

1

1

2 3

4 5
6 7 8

9 10

11
12

2 3
4 5

6 7 8

9 10

11
12

1 2 3 4 5 6 7 8 9 10 11 12
3 4 1 2 5 67

6
8 910 11 12

w =

H =

RS

T =

γ = β

1 2

3 4 7

5 6 8 9

10 11 12

Figure 9. Two constructions of the same correspondence.

Note that we superimposed a cell on each vertex from the heap H. This is useful
to read off the involution directly, see for instance [21]. More precisely, pick any
labeled edge, say i, on the top side, and follow the corresponding “column” of cells
until the bottom side is reached: the label that can be read off is w(i). By the
construction of γ from w, it is then clear that its ith step is an up step if and only
if w(i) > i.

On the other hand, the ith step in β is an up step if and only if it appears in the
top row of the tableau T obtained from w. Now one can show by induction that,
in the RS insertion algorithm, an entry j < i will bump i from the first row if and
only if j = w(i). Putting things together, the ith step in β is an up step if and
only if w(i) > i. Comparing with the previous paragraph, this shows that β and γ
coincide, and concludes the proof. �
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2.2. Type B. In type B, we have the following generalisation.

Proposition 2.5. For any positive integer n, we have

∑

w∈B̄FC
n

qmaj(w) =

n∑

h=1

qh
h−1∑

i=0

[
h− 1

i

]

q

+

[
n

bn/2c

]

q

. (8)

Proof. By Proposition 1.8, we have to inspect separately self-dual alternating heaps
and right-peaks of type Bn. By definition right-peaks can be split for a j ∈
{1, . . . , n − 1} into two heaps H{s1,...,ṡj} and H{sj ,...,sn}, and this decomposition
is unique by Remark 1.7. These two parts can be bijectively reassembled by as-
sociating to the first one a walk in Q∗j ending at height one, and to the second
one a walk starting with a (1,−1)-step, followed by n− j − 1 horizontal steps, and
then gluing these two walks together. This yields a walk in M∗n with less than n
horizontal steps. For instance, the walk associated to the right-peak in Figure 5 is
depicted below.

j = 7

We remark that if w ∈ B̄FCn corresponds to a right-peak, then sn 6∈ DesR(w),
so by applying the same arguments as in type An−1, we find that the generating
function for those elements is equal to

[
n

bn/2c

]

q

− 1. (9)

The remaining heaps are the self-dual alternating ones, which are by Proposi-
tion 1.10 in one-to-one correspondence with walks in Q∗n.

First, replace in these walks all (1, 0) steps by (1,−1) steps. Secondly, replace as
in type An−1 all descending (resp. ascending) steps by horizontal (resp. vertical)
ones. We obtain this time a bijection with length n walks with horizontal or vertical
steps, starting at the origin but ending at any height, whose set is denoted by Π′n,
as can be seen on the illustration below.

γ′ ∈ Q∗12 γ̄′ ∈ Π′12

2

7

12

(0, 2)

(4, 3)

(7, 5)

As before, if we fix w ∈ B̄FCn , the descents of w correspond in γ̄′ ∈ Π′n to corner
points, together with the last point if it ends a vertical step. Denote all these
points by P1(a1, b1), . . . , Pj(aj , bj); they satisfy a1 > · · · > aj ≥ 0 and b1 > · · · >
bj > 0, with the additional condition a1 + b1 ≤ n, and again maj(w) is equal to
a1 + b1 + · · · + aj + bj . As in type A, the corner points define a unique partition
λγ̄′ in Frobenius notation, such that a1 + b1 ≤ n.
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Summarizing, alternating FC involutions in Bn are in bijection with such integers
partitions λγ̄′ satisfying a1 + b1 ≤ n. If λγ̄′ is not empty, note that a1 = λ1 and
b1 = l − 1, where l is its length. Set h := a1 + b1 and i := b1, therefore we have
1 ≤ h ≤ n and 0 ≤ i ≤ h − 1. Remove from λγ̄′ its first part λ1 and decrease
by one all the remaining parts, therefore giving a partition µ of weight |λγ̄′ | − h.
Moreover, µ satisfies the conditions of Lemma 2.2 with n replaced by h− 1 and k
by i, therefore giving the generating function

1 +

n∑

h=1

qh
h−1∑

i=0

[
h− 1

i

]

q

,

which concludes the proof. �

Thanks to the previous proof, we can refine as follows this result, as was done
in [3] for type A.

Corollary 2.6. For any integer 1 ≤ k ≤ n, we have

∑

w∈B̄FC
n

des(w)=k

qmaj(w) = qk
2
n−2k−1∑

h=0

qh
h∑

i=0

[
i+ k − 1

k − 1

]

q

[
h+ k − 1− i

k − 1

]

q

.

Moreover, when k = 0, this generating function is equal to 1.

Proof. We analyse more precisely the structure of the partition λγ̄′ from the pre-
vious proof when the FC involution has k descents. Obviously, if k = 0, then this
partition is empty, which yields the result. Otherwise k ≥ 1 is the row length in
the Frobenius notation of λγ̄′ , so it corresponds to the size of its Durfee square. We
can define as before the integers h and i, satisfying this time 2k − 1 ≤ h ≤ n and
k − 1 ≤ i ≤ h− k, respectively. Moreover, the partition µ obtained from λγ̄′ has a
Durfee square of size k − 1, so the desired generating function is equal to

n∑

h=2k−1

qh
h−k∑

i=k−1

q(k−1)2

[
i

k − 1

]

q

[
h− 1− i
k − 1

]

q

.

The result is then obtained by shifting accordingly the indices h and i. �

2.3. Type D. Finally, for type D, we have the following result.

Proposition 2.7. For any positive integer n, we have

∑

w∈D̄FC
n+1

qmaj(w) = Pn(q) + (q2n+1 − qn)

[
n− 1

b(n− 1)/2c

]

q

+

[
n+ 1

b(n+ 1)/2c

]

q

, (10)

where for n even,

Pn(q) :=

n−1∑

h=1

qh
h−1∑

i=0

[
h− 1

i

]

q

+
1

2
qn(1 + q)

n−1∑

i=0

[
n− 1

i

]

q

,

and for n odd,

Pn(q) :=

n−1∑

h=1

qh
h−1∑

i=0

[
h− 1

i

]

q

+
1

2
qn(1 + q)

n−1∑

i=0

[
n− 1

i

]

q
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+

(n−1)/2∑

h=1

qn−h
[
n− h− 1

(n− 1)/2

]

q

+
1

2
qn(1 + q)

[
n− 1

(n− 1)/2

]

q

.

Proof. Obviously from their definition, self-dual right-peaks of type Dn+1 are in
bijection with the ones of type Bn, and have no descents at sn, sn+1, so their
generating function is equal to (9).

The alternating involutions containing snsn+1 are in bijection with walks in Q∗n
ending at height 1. Among these, the walks having an ascending last step are
enumerated by

q2n+1

[
n− 1

b(n− 1)/2c

]

q

.

Indeed both sn and sn+1 are descents, and the first n − 1 steps form a walk in
M∗n−1 so we can use Proposition 2.3.

The generating function for the previous walks having a descending last step can
be computed in the following way: first add an extra descending step to reach the
x-axis, thus obtaining a walk inM∗n+1 ending with two descending steps. Note that
neither sn nor sn+1 are descents for the corresponding involutions, so the generating
function is obtained by computing the generating function of all type A walks from
the origin to (n+ 1, 0), to which we must substract the generating function of the
walks having either a peak in position (n, 1) or ending with one horizontal step (see
the figure below).

− −=

Type Dn+1 Type An

n sn

Type An−2 Type An−1

Again by Proposition 2.3, the result is
[

n+ 1

b(n+ 1)/2c

]

q

− qn
[

n− 1

b(n− 1)/2c

]

q

−
[

n

bn/2c

]

q

.

By adding the two previous expressions to (9), we get the two last terms in (10)
minus 1, therefore we now have to show that the generating function for the re-
maining alternating elements is equal to Pn(q) + 1. Consider such an element, and
let H be its corresponding heap. If there is no occurrence of sn and sn+1, then
H is encoded by a walk in M∗n. Otherwise notice that self-duality implies that
|H{sn,sn+1}| is odd. Therefore if the first label of H{sn,sn+1} is sn (resp. sn+1), then
H is in bijection with a walk γsn (resp. γsn+1) in Q∗n ending at an odd height.

Denote by M∗n(q) the generating function (6) for type An−1, and Q∗sn(q) the
generating function for the alternating FC involutions in Bn. Let also Q∗sn+1

(q)
be the generating function of alternating FC involutions in Bn but where each
occurrence of sn is replaced by sn+1.

We claim that if n is even, then the desired generating function is equal to

M∗n(q) +
1

2
(Q∗sn(q)−M∗n(q)) +

1

2
(Q∗sn+1

(q)−M∗n(q)). (11)

Recall that Q∗sn(q) counts walks in Q∗n. These walks can be split into three parts:
the ones ending at 0, at an even height ≥ 2, or at an odd height. Then (11) is
consequence of a bijection between these walks ending at an odd height, and those
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ending at an even ≥ 2 height. This bijection goes as follows: in a walk ending at
an odd height replace the last (1, 0) step (as n is even there is at least one) by a
(1, 1) step, and shift accordingly the remaining steps. For the reverse application,
change the last (1, 1) step starting from the x-axis into a (1, 0) step. This bijection
preserves the peaks of the walks (and therefore the descents of the associated FC
involutions).

Simplifying (11), we have to compute (Q∗sn(q) + Q∗sn+1
(q))/2, where thanks to

the analysis of the previous type B case,

Q∗sn(q) = 1 +

n∑

h=1

qh
h−1∑

i=0

[
h− 1

i

]

q

.

Notice that in type B, a FC involution has a descent at sn if and only if a1 +b1 = n,
with the notations above. Therefore Q∗sn+1

(q) can be computed similarly to Q∗sn(q),
except for h = n, in which case the corresponding term has to be multiplied by q.
This yields the desired expression Pn(q) + 1.

If n is odd, our previous bijection between walks ending at odd and even height
does not work anymore, as our walks can have no horizontal step. So after splitting
the walks inQ∗n as before, but where the walks ending at an odd height are separated
between those having or not an horizontal step, we can use the previous bijection
to see that one must therefore replace (11) by

1

2
(Q∗sn(q) +Q∗sn+1

(q)) +
1

2
(Qsn(q) +Qsn+1

(q)),

where Qsn(q) is the generating function for the walks in Q∗n having no horizontal
step, and Qsn+1

(q) is the same generating function, but where each occurrence of
sn is replaced by sn+1. Note that all these walks must end at an odd height. To
conclude, it is enough to prove that

Qsn(q) =

(n−1)/2∑

h=0

qn−h
[
n− h− 1

(n− 1)/2

]

q

.

To see this, consider any of the previous walks, which has, say j, steps of the
form (1, 1) leaving definitively a certain height (note that j has to be odd, like
n). Transform bijectively the (j − 1)/2 first of these steps in the previous walk
to steps (1,−1) and shift accordingly all remaining steps. Remark that peaks
are preserved by this transformation (this is a well known bijection, see [3] and
the references therein). Then transform our walk as in types A and B, to get a
walk of length n with paths (1, 0) and (0, 1), starting at the origin and ending at
((n− 1)/2, (n + 1)/2). The analysis is now the same as in type A, except that we
have to distinguish whether the last step corresponds to a descent (if it is of the
form (0, 1)) or not. To do this, denote by h the distance between the top extremity
of the last vertical step and the point ((n− 1)/2, (n+ 1)/2), as shown in the figure
below, and then proceed as in type A to relate our walks to integer partitions in a
box.
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n bn/2c

dn/2e
h

�

3. Enumeration with respect to the Coxeter length

3.1. Finite types. Recall from the introduction that for any Coxeter group W ,
the length generating function W̄FC(t) is defined as

∑
w∈W̄FC t`(w). In the three

classical finite types these series are polynomials, and we denote their generating
functions by

Ā(x) =
∑

n≥1

ĀFCn−1(t)xn, B̄(x) =
∑

n≥0

B̄FCn (t)xn, and D̄(x) =
∑

n≥0

D̄FC
n+1(t)xn,

where D̄FC
1 (t) := 1.

Proposition 3.1. We have

Ā(x) =
M(x)

1− xM(x)
− 1, (12)

B̄(x) =
Q(x)

1− xM(x)
+

x2t3

1− xt2
M(x)M(tx)

1− xM(x)
, (13)

D̄(x) = 2
Qo(x)

1− xM(x)
+

M(x)

1− xM(x)
+

xt2

1− xt2
M(x)M(tx)

1− xM(x)
, (14)

where Qo(x) denotes the generating function for t-weighted prefixes of Dyck walks
ending at an odd height. Note that the previous generating functions can all be
explicitly computed thanks to (2) and the following functional equations:

Q(x) = M(x)(1 + xtQ(tx)),

Qo(x) = xtM(x)M(tx)(1 + xt2Qo(xt2)).

Proof. From Proposition 1.8, and Proposition 1.10, FC involutions in An−1 are in
one-to-one correspondence with walks in M∗n. This shows (12) by using (1).

From Proposition 1.8, FC involutions in Bn correspond to self-dual heaps which
are either alternating or right-peaks.

As before, in the alternating case, one can use Proposition 1.10 to show that they
are in one-to-one correspondence with walks in Q∗n. Moreover, such a walk can be
seen as a collection of pairs (Dyck path, horizontal step), followed by a prefix of a
Dyck path. This is illustrated in Figure 10 and shows that

Q∗(x) =
Q(x)

1− xM(x)
,

yielding the first term on the right-hand side of (13).
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Q(x)

. . .

1
1−xM(x)

Figure 10. Decomposition of walks for self-dual alternating heaps
of type B.

By definition right-peaks can be split into two parts H{s1,...,ṡj} and H{sj ,...,sn},
and this decomposition is unique by Remark 1.7. The generating function of the
second part is

x2t3

1− xt2 ,
while by Proposition 1.10 the first part is in bijection with walks in Q∗n ending at
height 1. The latter can be seen as collections of pairs (Dyck path, horizontal step),
followed by a couple of Dyck walks, the first starting and ending at height 0, and
the second at height 1, as illustrated below.

M(x)

. . .

1
1−xM(x) M(qx)

x 1

Figure 11. Decomposition of walks for self-dual right-peaks of
type B.

This yields the generating function

xtM(x)M(tx)

1− xM(x)
.

The second term on the right-hand side of (13) arises as the product of these two
generating functions, after dividing by xt, which corresponds to the occurrence of
one sj belonging to both parts of our split.

Finally, for the proof of (14), we use the type Dn+1 case of Proposition 1.8.
Starting from a self-dual alternating heap H of type Bn, we have three cases:

• if there is no occurrence of sn in H, then Proposition 1.10 and formula (1)
give the generating function M(x)/(1− xM(x)).
• if there is at least one occurrence of sn inH (self-duality implies this number

is odd), we replace Hsn by (sn, sn+1, . . . , sn) or (sn+1, sn, . . . , sn+1), giving
rise to two heaps corresponding to elements of D̄FC

n+1, which are in bijection
with walks in Q∗n ending at odd height. This gives the generating function
2Qo(x)/(1−xM(x)), with the same decomposition as in Figure 10, in which
Q(x) is replaced by Qo(x).
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• if there is exactly one occurrence of sn in H, we must add the generat-
ing function for the self-dual FC heaps corresponding to type Dn+1 in-
volutions, by replacing sn by snsn+1 (= sn+1sn). These elements are in
bijection with walks in Q∗n ending at height 1, whose generating function
has already been computed (see Figure 11). Taking into account an ex-
tra t due to the occurrence of snsn+1, we obtain the generating function
xt2M(x)M(tx)/(1− xM(x)).

The generating function of right-peaks of type Dn+1 is the one for type Bn
multiplied by t, and it is equal to

x2t4

1− xt2
M(x)M(tx)

1− xM(x)
.

By summing up these four expressions we obtain formula (14) after a few simpli-
fications. Finally the functional equations for Q(x) and Qo(x) can be computed
thanks to classical decompositions of (prefixes of) Dyck walks. �

3.2. Affine type Ãn−1. In this section, we will give the description of the heaps for

FC involutions in Ãn−1, and their generating function with respect to the length.

Recall from [4, Proposition 2.1] that an element w in Ãn−1 is FC if and only if,
in any reduced decomposition of w, the occurrences of si and si+1 alternate for all
i ∈ {0, . . . , n− 1}, where we set sn = s0. This shows that FC heaps for the graph

of type Ãn−1 coincide exactly with alternating heaps (extended to the non-linear

Coxeter diagram of Ãn−1).
Moreover, from Lemma 1.4, we immediately derive the following description.

Proposition 3.2. A FC element w ∈ Ãn−1 is an involution if and only if Heap(w)

is a self-dual alternating heap of type Ãn−1 .

We shall represent heaps of type Ãn−1 by depicting all (alternating) chains
H{si,si+1} for i = 0, . . . , n − 1. To be able to represent these chains in a planar
fashion, we duplicate the set of s0-elements and use one copy for the depiction of
the chain H{s0,s1} and one copy for H{sn−1,s0}. This can be seen in Figure 8, where
we also illustrate the restriction of the bijection with walks from [4] to self-dual
alternating heaps corresponding to involutions.

s0 s10s0

s0 s0s7

H ∈ Ã10

H ∈ Ã7

11

8

Figure 12. Two illustrations of the bijection between self-dual

alternating heaps and walks in type Ã.
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Note that Proposition 3.2 immediately implies finiteness of the set of FC involu-

tions in Ãn−1 if n is odd, as the corresponding heaps H can not have full support,
i.e. there exists necessarily an integer i such that |Hsi | = 0. Indeed, thanks to
self-duality and the alternating condition, one can see that there exists even in
this case an integer i such that |H{si,si+1}| = 0. Moreover, we are able to deduce
the following result, where as usual [xn]F (x) stands for the coefficient of xn in the
power series F (x).

Proposition 3.3. The generating function, with respect to the length, of fully com-

mutative involutions of type Ãn−1, is equal to

tnǑn(t)

1− tn + [xn]
M(x)(1 + tx2 ∂(xM)

∂x (tx))

1− xM(x)
, (15)

where On(t) is the generating function for walks in Gn starting and ending at the
same height. Moreover, if n is odd, (15) is a polynomial, while the corresponding
growth sequence is ultimately periodic with period dividing n, if n is even. Finally,
in the latter case, periodicity starts at length 1 + n2/4.

Proof. From Proposition 3.2, we know that FC involutions in Ãn−1 correspond to
self-dual alternating heaps. Next, by using the restriction to self-dual heaps of
the bijection ϕ′ of [4, Theorem 2.2], we see that these involutions are in one-to-one
correspondence with walks in G∗n starting and ending at the same height. Moreover,
the length of the corresponding involution is equal to the area below the walk. Such
walks can be decomposed according to whether they hit the x-axis or not, as can
be seen below.

+
> 0

The first term in formula (15) corresponds to the walks on the left. For the walks on
the right, the central part is inM∗j (for a j between 0 and n− 2) whose generating
function is given by (1), while the other two parts can be joined to form a path in
Mn−j−2. The second term in formula (15) is therefore obtained through classical
considerations (see for example the proof of [4, Corollary 2.4]).

Next, it is clear that if n is odd, then On(t) = 0, while ultimate periodicity is
obvious from formula (15) if n is even. Finally, in the latter case, the second term
in (15) is a polynomial with degree n2/4, which corresponds to the area of the walk
starting and ending at the origin (having therefore n/2 up steps followed by n/2
down steps), and this finishes the proof. �

3.3. Other classical affine types. By using the classification results of [4], it is
possible to compute all the generating functions for FC involutions W̄FC(t) when

W is affine. Nevertheless, we will only give the results for types C̃, B̃ and D̃, and we
leave the exceptional types to the interested reader. In the following result, we give
the general forms of these generating functions, which shows ultimate periodicity
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of the growth sequence in all cases. Note that the exact beginning of periodicity
could also be computed by our methods.

Denote by Fen, (resp. Fon) the subfamily of Gn of paths ending at an even (resp.
odd) height. Denote also by Feen , (resp. Foon ) the subfamily of Gn of paths starting
and ending at an even (resp. odd) height. Recall that to each one of these families
we associate a generating function as explained in Section 1.5.

Proposition 3.4. The generating functions for fully commutative involutions in

types C̃n, B̃n+1 and D̃n+2 are respectively given by:

tn+1F̌n(t)

1− tn+1
+

2t2n+3

1− t2 +Rn(t), (16)

2t2n+2F̌ on(t) + 2tn+1F̌ en(t)

1− t2n+2
+
t2n+4

1− t +
t4n+2

1− t2n+1
+ Tn(t), (17)

4t2n+2F̌ oon (t) + 4tn+1F̌ een (t)

1− t2n+2
+

2t2n+6

1− t2 +
2t4n+4

1− t2n+2
+ Un(t), (18)

where Rn(t), Tn(t), and Un(t) are polynomials. The corresponding growth sequences
are ultimately periodic, with period dividing 2n + 2, (2n + 1)(2n + 2), and 2n + 2,
respectively.

Proof. From [4, Theorem 3.4] and Lemma 1.4, FC involutions in C̃n correspond
to self-dual heaps belonging to five families, among which only two are infinite. It
is therefore enough to focus on these two sets, the first of which being made of
alternating heaps. From Proposition 1.10, such elements correspond to walks in
G∗n; their generating function is given by

tn+1F̌n(t)

1− tn+1
+ [xn]

(1 + txQ(tx))2

1− xM(x)
,

by considering as before the decomposition illustrated below.

1
1−xM(x)

+

1 + txQ(tx) 1 + txQ(tx)

> 0

Figure 13. Decomposition of walks in G∗n.

The elements of the second infinite set are the self-dual zigzags; they are self-
dual heaps of the form H = Heap(w) where w is a finite factor of the infinite
periodic word (uns1s2 · · · sn−1snsn−1 · · · s2s1)

∞
such that |Hsi | ≥ 4 for at least one

i ∈ {1, . . . , n−1}. The minimal length is equal to 2n+3, as can be seen in Figure 14,
left. Moreover, there are 2 self-dual heaps for each length 2n+ 3 + 2k (with k ≥ 0)
by left-right symmetry, and 0 for other lengths, yielding the generating function

2t2n+3

1− t2 .
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Summing these expressions and adding the polynomial generating functions corre-
sponding to self-dual heaps in the three remaining finite families from [4] gives (16).

For FC involutions of type B̃n+1, and from [4] and Lemma 1.4, it suffices to

examine among type B̃n+1 alternating and zigzag heaps which ones are self-dual.
Concerning alternating ones, we perform the following substitution in each self-

dual alternating heap H of type C̃n: replace the occurrence of (sn, sn, sn, . . .)
by (sn, sn+1, sn, . . .) or (sn+1, sn, sn+1, . . .), together with the replacement sn 7→
snsn+1 = sn+1sn in the case of exactly one occurrence of sn. The self-duality
condition forces |Hsn | to be either odd, or equal to 0. Therefore the generating

function for self-dual alternating heaps of type B̃n+1 takes the form

2Q∗on (t)− [xn]
Q(x)

1− xM(x)
+ [xn]

(
t2Q(tx) +

xt2Q(x)M(tx)

1− xM(x)

)
,

where Q∗on (t) is the generating function for walks in G∗n ending at odd height. More-
over, the only non-polynomial term in this expression is Q∗on (t). The corresponding
walks can be decomposed as in Figure 13 in which the parity of h has to be taken
into account, and the last term 1 + txQ(tx) has to be replaced by Qo(x). This
yields

Q∗on (t) =
t2n+2F̌ on(t)

1− t2n+2
+
tn+1F̌ en(t)

1− t2n+2
+ [xn]

(1 + txQ(tx))Qo(x)

1− xM(x)
.

sn

sn

un

unun+1

snsn+1

unun+1

un

un

snsn+1

snsn+1
sn+1

un

sn+1

snsn+1

un

C̃n B̃n+1 D̃n+2

Figure 14. Some self-dual zigzag heaps.

The minimal length for self-dual zigzags of type B̃n+1 is equal to 2n+ 4. More-
over, for any k ≥ 0 there are 2 self-dual heaps for each length 4n + 2 + k(2n + 1):
these are the heaps starting and ending at sn or sn+1 (see Figure 14, middle). For
other lengths there is only 1 such heap, yielding the generating function

t2n+4

1− t +
t4n+2

1− t2n+1
.

It is then easy to derive formula (17) by adding the previous generating functions
to the polynomials corresponding to self-dual heaps in the three remaining (finite)
families of [4].
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Finally, for FC involutions of type D̃n+2, we again consider the self-dual heaps
among alternating and zigzag ones. The alternating self-dual heaps correspond to
walks in G∗n starting and ending at odd height. Moreover, each such walk gives
rise to 4 FC involutions, according to the choices of un or un+1, and sn or sn+1.
Among these walks, only the ones staying above the x-axis correspond to an infinite
number of elements, their generating function is given by:

4t2n+2F̌ oon (t) + 4tn+1F̌ een (t)

1− t2n+2
,

as can be seen as before through classical walk decomposition. The minimal length
for self-dual zigzags is 2n + 6. For any k ≥ 0, by left-right symmetry there are 4
such elements for each length 4n+ 4 + k(2n+ 2) (see Figure 14, right), 2 for other
even lengths, and 0 for odd lengths, yielding the generating function

2t2n+6

1− t2 +
2t4n+4

1− t2n+2
.

�

4. Cells for FC elements in type Ã

This section is not about enumeration, but aims at illustrating how the repre-
sentation of FC elements as heaps can be useful in other ways.

In [8], Fan and Green study the affine Temperley–Lieb algebra TL(Ãn−1). It is

a quotient of the type Ãn−1 Hecke algebra, and can be defined by generators Esi
for i ∈ {0, 1, . . . , n− 1} and relations:





E2
si = Esi ,

EsiEsjEsi = Esi if i = j ± 1 modulo n,

EsiEsj = EsjEsi if i 6= j ± 1 modulo n.

Note that the first relation involves usually an extra parameter α, but this has

no incidence on the results we will describe. The algebra TL(Ãn−1) has a linear

basis (Ew) indexed by FC elements in Ãn−1: one can define unambiguously Ew =
Esi1 · · ·Esik where si1 · · · sik is any reduced expression of the FC element w.

Using this algebra, there are natural relations on the set of FC elements.

Definition 4.1. Let w,w′ be FC elements of type Ãn−1. One writes w
R
6 w′ if

there exists a FC element x such that Ew′ = EwEx, and w
R∼ w′ if w

R
6 w′ and

w′
R
6 w.

Since
R
6 is a preorder,

R∼ is an equivalence relation whose classes are called right
cells. These are analogues of the famous Kazhdan–Lusztig cells which give represen-
tations of the Hecke algebras, in the arguably simpler context of the Temperley–Lieb

algebra TL(Ãn−1).

Theorem 4.2. [8, Theorem 3.5.1] Each right cell contains at most one involution.
Right cells with no involution occur only when n is even.

In the sequel we wish to show how the use of heaps can illustrate this result and
make it more precise. To this aim we first describe in terms of heaps the so-called
reduction of FC elements used in [8].



FULLY COMMUTATIVE INVOLUTIONS 23

Definition 4.3 (Reduction). Let w be a FC element of type Ãn−1, and si ∈
DesR(w). Then w can be reduced to wsi if at least one of si−1, si+1 belongs to

DesR(wsi). We will write w
R→ wsi.

Reduction is easy to illustrate on heaps: w
R→ wsi if si labels a maximal element

in Heap(w) and if either si−1 or si+1 labels a maximal element in Heap(wsi) :=

Heap(w) \ {stopi }, where stopi is the maximal element of the chain Hsi . We refer the
reader to Figure 15 for a chain of successive reductions.

Figure 15. Successive reductions.

Reduction is useful to investigate right cells, thanks to the following simple result.

Lemma 4.4. If w
R→ wsi, then w

R∼ wsi. In other words, if w reduces to wsi, then
both belong to the same right cell.

A FC element w is called irreducible if it can not be reduced to wsi for any i. It
is relatively easy to give a characterization of the heaps of such elements. Recall
that the support of the FC element w is the set of si, i ∈ {0, . . . , n − 1}, which
occur in a reduced decomposition of w.

Proposition 4.5. A FC element w is irreducible if and only if its heap satisfies
stopi > stopi+1 < stopi+2 > stopi+3 < . . . stopi+2m−1 < stopi+2m for all i,m satisfying:

• if w has full support, then n is even, m = n/2 and i = 0 or 1,
• otherwise {i, i+1, . . . , i+2m} is any maximal (cyclic) interval of the support

of w.

Proof. First it is clear that such elements are indeed irreducible. Suppose w is not
of this form. Then (up to a cyclic shift of the indices and a relabeling i 7→ n−i), the

following situation occurs: one has stop0 > stop1 and either |Hs2 | = 0 or stop1 > stop2 .

Therefore w
R→ s0w and we are done. �

For w irreducible, we now define a particular subset of elements in Heap(w): this
will allow us to connect irreducible heaps with FC involutions.

If the support of w is not full, then we select all maximal elements in the heap.
This is illustrated in Figure 16, left.
Otherwise, n is even by the proposition. Define R0 := s0s2 · · · sn−2 and R1 :=
s1s3 · · · sn−1. Then select in Heap(w) the upper ideal isomorphic to the heap of
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Figure 16. Heaps of irreducible elements.

RεR1−εRεR1−ε · · ·RδR1−δ with the maximal number of factors, where ε, δ ∈ {0, 1}.
Two such examples are illustrated in Figure 16, middle and right, the one in the
middle (resp. right) having an odd (resp. even) number of such factors.

In each case, denote by Htop the subset of selected elements and Hbottom the
complement in Heap(w).

Proposition 4.6. [8] Distinct irreducible elements belong to different right cells.

We will not prove this proposition which is arguably the crucial part of the
argument in [8]. An immediate consequence is that each right cell contains precisely
one irreducible element.

To obtain Theorem 4.2, we need to relate irreducible elements to involutions.
One easily constructs an irreducible element from a FC involution by reducing it
repeatedly. It can be seen in this case that the process is reversible: given such an
irreducible element with heap H, take the dual of Hbottom and add it as an upper
ideal to H, as illustrated in Figure 17.

Figure 17. Heaps of FC involutions corresponding to irreducible elements.

Right cells with no involution are now easy to characterize: those are the ones
whose unique irreducible element has full support and a top part Htop with an even
number of factors R0, R1: see for example the right heap in Figure 16. Indeed the
inverse process does not produce a FC heap in this case.
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