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A refinement of Singer's bound for Liouvillian integration. The low-dimensional cases

Introduction

This article complements partially my previous one [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], using the technique developed in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF]. There, I introduced the problem of Liouvillian integration of linear differential equations whose coefficients are rational functions over an algebraically closed field of characteristic 0. There are different algorithms for deciding if a symbolically-given differential equation of that kind has a non-null Liouvillian solution, computing one of these solutions in the positive case. Most of these algorithms are purely symbolic, as reviewed in [Llo19b, §2.3], and I proposed a hybrid numeric-symbolic in my thesis [START_REF] Llorente | Métodos numérico-simbólicos para calcular soluciones liouvillianas de ecuaciones diferenciales lineales[END_REF], which combines numerical and symbolic computations for a symbolically correct output. Anyway, both kinds of algorithms are based on the following theorems of Singer.

Theorem 1 (Singer). If a linear differential equation with coefficients rational functions over an algebraically closed field of characteristic 0 has non-null Liouvillian solutions, then it admits such a solution y with y /y an algebraic over the said field of rational functions of degree I(r) at most, for the function I of Theorem 2. [Sin81, thm. 2.4]

Theorem 2 (Singer). There exists an arithmetic function I such that, for each n and any field K algebraically closed, every subgroup G of GL(n, K) with a 1-reducible subgroup of finite index admits a 1-reducible subgroup of index I(n) at most. [Sin81, prop. 2.2] Remark 3. A subgroup of GL(n, K) is called 1-reducible if it leaves a line invariant.

Although the optimal values of the function I(k) are known up to k = 5, for higher order it was necessary to resort to a group-theoretical bound J of Jordan.

Theorem 4 (Jordan). There exists an arithmetic function J such that, for each n, every finite subgroup G of GL(n, C) admits an abelian normal subgroup of index J(n) at most. Remark 5. Although Jordan's original statement [Jor1877] is in the complex field, by [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF]Remark 18], these results can be extended to any algebraically closed field of characteristic 0. So, in the sequel, I shall restrict to the complex field without loss of generality.

The original article of Singer [START_REF] Michael | Liouvillian solutions of n-th order homogeneous linear differential equations[END_REF] took a rough bound J, giving a growth of log I(k) = O(k 2 log k). The optimal Jordan bound was given by Collins in [START_REF] Michael | On Jordan's theorem for complex linear groups[END_REF], giving a growth of log J(k) = O(k log k). With this sharp Jordan bound, I needed to refine Singer's arguments, as done in [Llo19b, §3.2], in order to achieve log I(k) = O(k log k). As an auxiliary result, Collins [START_REF]Bounds for finite primitive complex linear groups[END_REF] computes the optimal values J prim (k) restricting the group-theoretical considerations to primitive linear groups, which reaches the general value J prim (k) = (k + 1)! for k > 12 and takes the values of a table for smaller k.

Jordan's group-theoretical consideration is the minimal index of an abelian normal subgroup of a linear group of degree k, while for the Singer bound we can drop the normality condition. This allows us to define the bound K prim (k) taking into account all the abelian subgroups, getting a better value for I(k). I also define the restriction I prim (k) of Singer's bound I to the primitive groups of degree k. In [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] I computed the best reduction factor we can get in the general case, and also the corresponding I(k) for k 19. In this article I shall deal with the exceptions for k 16, computing K prim (k) for k 16, I prim (k) for k 11, and the resulting I(k). For this task, there are lists of primitive or quasiprimitive linear groups of degree k for k 9 and some partial information for k = 11. However, for degree k = 10, it is necessary to resort to Collins's framework [START_REF]Bounds for finite primitive complex linear groups[END_REF] and Hiss-Malle tables [START_REF] Hiss | Low-dimensional representations of quasi-simple groups[END_REF][START_REF]Corrigenda: Low-dimensional representations of quasi-simple groups[END_REF], and for other degrees it is still convenient. So, Cormier's work is continued to sharpen I(k) for 6 k 11.

The structure of the article is the following. In §2, I give the required framework on primitive linear groups, reviewing results in [START_REF]Bounds for finite primitive complex linear groups[END_REF] and in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF]. This framework and some remarks of §3 lay the foundations for a detailed study of the different degrees in §4. The case of quasicomponents in degree 8 and 9 require a special treatment in §5. Finally, I give the conclusions in §6, comparing the sharp values of I prim , J prim and K prim in the considered range.

2 Framework on primitive linear groups I shall first review the framework of [START_REF]Bounds for finite primitive complex linear groups[END_REF] that is necessary for the present article. A component of a finite group G is a quasisimple subnormal subgroup, and a quasicomponent is a non-cyclic p-core of G. According to [START_REF]Bounds for finite primitive complex linear groups[END_REF]lem. 2], any quasicomponent is central product of its center and an extraspecial group. The generalized Fitting subgroup is the central product F * (G) of the center, the components and the quasicomponents of G. Consequently, in a suitable basis, F * (G) is Kronecker product of a group of scalars, taking account of the center and of the number of equal constituents of F * (G), and irreducible faithful representations of the components and quasicomponents.

The components and quasicomponents control the structure of a finite primitive linear group, according to [START_REF]Bounds for finite primitive complex linear groups[END_REF]thm. 5], which says that the normalizer N of all the components of G satisfies the following claims.

1. The quotient N/F * (G) is embedded in the direct product of the following factors.

For each component E, the factor is the subgroup of the outer group Out(E) acting trivially on Z(E). For each quasicomponent P with [P : Z(P )] = p 2k , the factor is the symplectic group Sp(2k, p).

2. The quotient G/N is embedded in the direct product of the following symmetric groups. For each isomorphism class of components with length l, the factor is S l .

However, this result does not split N in central product of contributions of each component or quasicomponent. There may be some entanglement that prevents us from splitting this way. In order to avoid these obstacles by enlarging G, I developed some completions in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF] that are applicable to the search of large 1-reducible subgroups. Now I shall review my results from [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF] that are necessary for the present article. First of all, I restrict to finite subgroups of SL(k, C) whose center contains the k-th roots of unity. This is not a relevant restriction since the transformation G → (C * G) ∩ SL(k, C) gives a group with the desired condition without modifying the rest of the interesting properties that G held.

The 1-reducibility of subgroups is not only controlled in a primitive linear group by the components and quasicomponents, but I identify other components and quasicomponents "in the shadow" that one should take into account. These hidden components and quasicomponents are the actual components and quasicomponents of some shadow groups constructed upon the original linear group. All these components and quasicomponents, actual or in the shadow, are enough to describe large 1-reducible subgroups of primitive groups in terms of each contributor separately. The product of the degrees of the Kronecker-factor representations of the components and quasicomponents is a divisor of the degree of the total group, but we get the equality considering both actual and in the shadow ones.

I define the absolute completion of the representation of a component or quasicomponent in degree n as its normalizer in SL(n, C). This is a finite extension of the corresponding component or quasicomponent. In the case of components, we can look for the candidates in the Atlas [CCN85], discarding those not representable in the corresponding degree. In the case of quasicomponents, I prove in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF] that it is enough to consider the Weil representation of [START_REF] Gérardin | Three Weil representations associate to finite fields[END_REF] for the odd case and the almost-extraspecial-by-symplectic representation of [START_REF] Stephen | On the faithful representations, of degree 2 n , of certain extensions of 2-groups by orthogonal and symplectic groups[END_REF] for the even case.

Finally, multiplying the index of a large 1-reducible subgroup of each absolute completion, we get an upper bound of the index of a large 1-reducible subgroup of the original group. This way, we can reduce the bound of the index of a 1-reducible subgroup to the case of a single component or quasicomponent, provided that the compound case yields a smaller bound on the index. Following the notation of [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF], I will compute a bound I abs restricting Singer's bound to absolute completions, useful for the compound case.

Preliminary remarks

3.1 Remarks for K prim I call a champion of a degree n to any linear group of this degree affording the optimal value J prim (n). According to Collins [Col08, thm. A], the champions are unique up to isoclinism for n 9 and n = 12, satisfying the isomorphism of inner group and of derived subgroups for any degree. My guess is that the champions are also affording the optimal value of K prim , which will be proved with only one exception. Given a candidate linear group, I say it is safe (in the context of K prim (n)) if the minimal index of an abelian subgroup is bounded by the minimal index of an abelian subgroup of the champion of degree n. Notice that a subgroup H of a safe group G is again safe because, if we take an abelian subgroup A of minimal index r in G, its restriction A ∩ H has index r in H at most.

Also, a group isoclinic to a safe group is safe. I shall prove that the minimal index of an abelian subgroup is the same for isoclinic groups. First, I shall prove this result for the case when the isoclinic group is gotten by enlarging the center. Following [BM90, p. 425], consider a group H where G is embedded in such a way that we have the central product

H = Z(H) • G with amalgamated subgroup Z(G) = Z(H) ∩ G.
By the same argument as in the previous paragraph, if G has an abelian subgroup G 0 , then Z(H) • G 0 is an abelian subgroup of H. Moreover, the index of the abelian subgroup is the same. Conversely, any minimal-index abelian subgroup H 0 of H must contain Z(H) and be of the form H 0 = Z(H) • (H 0 ∩ G), so the minimal index is the same. The general result follows by the fact that two isoclinic groups G 1 and G 2 can afford isomorphic groups H 1 and H 2 where each H i is constructed in the previous way by enlarging the center of G i .

If the index of certain abelian subgroup of a candidate group is smaller than minimal index of an abelian subgroup of the champion, then the candidate group is safe. In particular, taking the center, we can discard many candidate groups as safe, and I will say that such a group is small. When the index of the center is not small enough, it is useful to take an abelian subgroup in the following way. Checking the character table of the inner group, we can take the maximal order of an element. The counterimage of such a maximal-order element in the original group generates, together with the center, an abelian subgroup whose index is the index of the center divided by the maximal order of an element in the inner group. In this case, I say that the group is safe after a weak computation. When we need to compute the actual minimal index of a subgroup in order to grant that a candidate group is safe, I say that the group is safe after a strong computation.

A weak computation may discard a group as safe, but, if a weak computation fails to prove that a group is safe, it does not mean that the groups is not safe. Only a strong computation can disprove a group is safe, but this requires computing with the whole group, not only with its inner group. Moreover, a weak computation proves safe not only all the groups having this inner group, but also all the groups having an inner group embedded in the original inner group.

The strong computation is carried out, when possible, using the GAP [START_REF] Gross | GAP -Groups, Algorithms, and Programming[END_REF] truncated implementation of the cyclic extension method, since being abelian is a property inherited by subgroups. As abelian implies solvable, there is no need to start with the perfect subgroups, so this method starts with the trivial subgroup and keeps augmenting it by cyclic extensions until reaching a non-abelian group. The output is the trimmed lattice of abelian subgroups grouped by conjugacy classes.

Remarks for I prim

In [START_REF] Cormier | Résolution des équations différentielles linéaires d'ordre 4 et 5: applications à la théorie de Galois classique[END_REF], Cormier gives the optimal values of the Singer bound I(4) and I(5). The result was achieved by checking the primitive subgroups of SL(4, C) and SL(5, C) for 1reducibility, using some MAGMA functions he gives in his Annex B. I will focus on two of them, IsOneReducGroup and OneReductGrp. The former checks if a subgroup H of G is 1-reducible for a representation given by a character X. This function computes only with characters, but requires restricting X to H. I will use the following GAP translation thereof for checking 1-reducibility. The other MAGMA function of Cormier computes a minimal-index 1-reducible subgroup of G for a representation given by a character X. This function also gets a list of test subgroups of G, which is initialized to G and, in each unsuccessful subgroup H, it is recursively invoked with the maximal subgroups of H. This is a top-down approach, but it is inefficient because it works with the complete list of maximal subgroups, rather than with representatives of the conjugacy classes. Maybe because of this inefficiency he could only bound I(6) 3780 instead of granting that it was the optimal value. Contrary, I propose a bottom-up approach, using the GAP truncated implementation of the cyclic extension method, since 1-reducibility is a property inherited by subgroups. This method starts with the perfect subgroups of G and keeps augmenting them by cyclic extensions until 1-reducibility is lost. The output is the trimmed lattice of 1-reducible subgroups grouped by conjugacy classes.

IsOneReducGroup:=function(G,
For using Cormier's method, we need a faithful irreducible character of the corresponding degree, but such a character may be not unique; however they are usually related by complex conjugation or product by linear characters. I shall prove that the same result is gotten if we multiply our faithful irreducible representation ρ by a linear representation τ or if we apply a Galoisian conjugation σ. Indeed, in the case of τ , the 1-reducible subgroups are the same for ρ and ρ ⊗ τ , with the same invariant line for both representations. In the case of σ, the 1-reducible subgroups are the same for ρ and ρ σ , but the invariant lines are σ-conjugate. Hence, the same result is gotten if we multiply our faithful irreducible character by a linear character or if we apply a Galoisian conjugation to it.

I shall prove that, if all the irreducible characters of the given degree n yield the same result for certain group G, then all the groups isoclinic to G yield the same result for any irreducible character of degree n. First, I shall prove this result for the case when the isoclinic group is gotten by enlarging the center. Following [BM90, p. 425], consider a group H where G is embedded in such a way that we have the central product

H = Z(H) • G with amalgamated subgroup Z(G) = Z(H) ∩ G.
According to [START_REF] Gorenstein | Finite Groups[END_REF], the irreducible representations of H of degree n are (equivalent to) certain tensor products of the irreducible representations of degree n of G and the linear representations of Z(H), precisely the tensor product of those representations that coincide on the amalgamated subgroup. By the same argument as in the previous paragraph, if G has a 1-reducible subgroup G 0 for certain representation ρ, then Z(H) • G 0 is a 1-reducible subgroup for the representation τ ⊗ ρ for any suitable linear representation of Z(H). Moreover, the index of the 1-reducible subgroup is the same. Conversely, any minimal-index 1-reducible subgroup H 0 of H for a representation τ ⊗ ρ must contain Z(H) and be of the form H 0 = Z(H) • (H 0 ∩ G), so the minimal index is the same.

We have assumed that all the irreducible characters of degree n of G yield the same result, proving that the same holds for H, but what happens if the assumption is on H rather than on G? Let us consider the case when we wonder if ρ 1 and ρ 2 on G yield the same result. As Z(H) is abelian, there exist linear representations τ i of Z(H) compatible with ρ i , so τ i ⊗ρ i yields the same result in H, and thus the ρ in G. By the characterization of isoclinism in [BM90, p. 425], these two variants of the result prove that isoclinic groups are safe provided that all the irreducible characters of degree n yield the same result for G.

I will also speak of safeness in the context of I prim (n). A candidate subgroup is safe if the minimal index of a 1-reducible subgroup is bounded by the minimal index of a 1-reducible subgroup of the current record in degree n. As pointed out for K prim , a subgroups of a safe group is safe in the context of I prim . I will also speak of being N -safe making explicit a bound N for which it is safe.

Safeness of the irreducible representations of type A n+1 and

L 2 (q) in degree n

As the Hiss-Malle main table [START_REF] Hiss | Low-dimensional representations of quasi-simple groups[END_REF]tbl. 3] excludes systematically the examples collected in their generic tables [HM01, tbl. 2], I shall consider them apart and study their safeness in degree n.

For the alternating groups, the only entry included in the generic tables is A n+1 for degree n. We know that Aut(A r ) = S r for r 7, so the only extensions of A n+1 to consider for n 6 are A n+1 and S n+1 . For these degrees, we know two distinct irreducible representations of S n+1 in degree n, the so-called standard representation and its product with the sign, which restrict to the same irreducible representation of A n+1 . According to [JK81, thm. 2.4.10.ii, thm. 2.5.15.ii], these known representations are the only possible in this degree. In these representations of S n+1 , the stabilizer of the line of e 1 + • • • + e n is a subgroup of monomial matrices isomorphic to S n and 1-reducible. In the restriction to the alternating subgroup, we have a subgroup isomorphic to A n and 1-reducible. Hence, in the three considered linear representations of degree n 6, we have a 1-reducible subgroup of index n + 1. Therefore, the groups of type A n+1 are (n + 1)-safe in degree n 6.

For the groups of type L 2 (q), they consider three cases for q: 4Z+1, 4Z+3 or 2Z. The degrees of a faithful irreducible representation of L 2 (q), or an eventual covering 2.L 2 (q), are n ∈ {(q -1)/2, (q + 1)/2, q -1, q, q + 1} ∩ Z, so q ∈ {n -1, n, n + 1, 2n -1, 2n + 1} and thus q 2n + 1. Moreover, for q even, we have q ∈ {n -1, n, n + 1}, so q n + 1. The corresponding bound # Aut(L 2 (q)) mq(q 2 -1) of [Col08, p. 769], for q = p m and p prime, can be reduced by the index of a 1-reducible subgroup by the following abelian subgroup of L 2 (q). In SL(2, q) we can take the diagonal subgroup, which is cyclic of order q -1, and pass it to PSL(2, q) = L 2 (q). This cyclic subgroup has order (q -1)/2 for q odd and q -1 for q even. So, for q odd, we have m = log p (q) log 3 (2n + 1) , for the floor function, and the bound to consider is # Aut(L 2 (q)) (q -1)/2 2mq(q + 1) 4(n + 1)(2n + 1) log 3 (2n + 1) .

(1)

For q even, we have m = log 2 (q) log 2 (n + 1) and the bound to consider is

# Aut(L 2 (q)) q -1 mq(q + 1) (n + 1)(n + 2) log 2 (n + 1) . ( 2 
)
As log 2 (x) 4 log 3 (x) for x 1, both (1) and ( 2) are bounded by

y n = 4(n + 1)(2n + 1) log 3 (2n + 1) (3) 
and thus the groups of type L 2 (q) are y n -safe in degree n. Therefore, it suffices to check that n + 1 is below I(n -1) or any lower bound for I(n) in order to discard the groups of type A n+1 in the computation of I(n) for n 6, and the same with y n for the groups of type L 2 (q). This result of I prim -safeness for type L 2 (q) is also valid for K prim -safeness, since we took an abelian subgroup. The corresponding result of K prim -safeness for type A n+1 is that of [START_REF] Burns | Maximal order abelian subgroups of symmetric groups[END_REF].

Remarks on quasicomponents for even degree

Among the primitive linear groups of degree 2 k , we must consider the case of a quasicomponent. By previous reductions found in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF]§5], we can restrict the consideration to the case with an absolute completion of the type almost-extraspecial-by-symplectic inside GL(2 k , C) studied by Griess in [START_REF] Griess | Automorphisms of extra special groups and nonvanishing degree 2 cohomology[END_REF]. This kind of groups in unique for k 3 according to [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], and the previous reduction allows us to take any instance in the cases of non-uniqueness. Apart of Glasby's construction for these groups, described in [START_REF] Stephen | On the faithful representations, of degree 2 n , of certain extensions of 2-groups by orthogonal and symplectic groups[END_REF], we find another construction by Runge in [START_REF] Runge | Codes and Siegel modular forms[END_REF]. This construction has the advantage of having a large abelian subgroup, of order 2 k(k+3)/2 . Let me describe Runge's construction in order to prove the claim on the large abelian group. For this construction, g = k following Runge's notation. In principle V should be F g 2 , but in practice V will be the system of representatives {0, 1} g , with a fixed ordering, since they index the 2 g dimensions of the matrices with V . Different orderings in V yield conjugate matrices; hence it is important to fix the ordering of V . The matrix T g is defined as

1 + i 2 g (-1) a•b a,b∈V
, where • means the dot product of vectors. For a symmetric g × g matrix of integers S and a row vector a ∈ V , we define S[a] = aSa . In principle H g is generated by T g and all the diagonal matrices D S = diag (i S[a] ) a∈V with S ∈ Z g×g symmetric, but in practice representatives modulo 4 are enough, so that H g = T g , D S : S ∈ {0, 1, 2, 3} g×g , S = S . Moreover, these 2 g(g+1) generators D S yield only 2 g(g+3)/2 unique elements, which form an abelian subgroup of H g , as proved below.

Proposition 6. The matrices D S form an abelian group of order 2 g(g+3)/2 . Proof. Two matrices S 1 and S 2 yield D S 1 = D S 2 if and only if S 1 [a] ≡ S 2 [a] mod 4 for every a ∈ V , which is equivalent to (S 1 -S 2 )[a] ≡ 0 mod 4 for every a ∈ V . Such a difference matrix M must be symmetric with even entries and a null diagonal modulo 4, as proved below. The symmetry of M is clear, so we can consider

D M = D S 1 D -1 S 2 = I.
If its i-th diagonal entry were non-null modulo 4, the vector e i of the standard basis would yield M [e i ] ≡ 0 mod 4 and hence the diagonal entry of D M corresponding to e i would not be 1. If the off-diagonal entry (i, j) of M were m ≡ 1 mod 2, then M [e i + e j ] = 2m ≡ 2 mod 4, whence the diagonal entry of D M corresponding to e i +e j would be -1. Conversely, any symmetric matrix M with entries in 2Z and a diagonal in 4Z yields

D M = I, since M [a] ∈ 4Z for every a ∈ V .
The previous paragraph proves that the matrices S yield the same D S if and only if they differ by a symmetric matrix with entries in 2Z and a diagonal in 4Z. There are 2 g(g-1)/2 such matrices modulo 4, so the 2 g(g+1) inequivalent matrices S yield 2 g(g+3)/2 distinct matrices D S . Finally, as the group of the matrices D S is diagonal, it is abelian.

Remarks on quasicomponents for odd degree

Among the primitive linear groups of degree p k , for p an odd prime, we must consider the case of a quasicomponent. By previous reductions found in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF]§5] and [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], the absolute completion is the Weil representation up to conjugacy in GL(p k , C). For the Weil representation, I refer to [START_REF] Gérardin | Three Weil representations associate to finite fields[END_REF]. This group G is semidirect product of its normal subgroup N p 1+2k + and Sp(2k, p). In order to find low-index 1-reducible subgroups of G, my first approach will be to take an abelian subgroup A of N , its centralizer C in Sp(2k, p), and an abelian subgroup B of C. This way, the product of A and B is an abelian subgroup of G. If the index is smaller than the record established by a primitive group of degree up to p k , we are done.

An abelian subgroup of N can be enlarged to contain Z(G), so we restrict to abelian subgroups of N that contain Z(G), which are in bijection with the isotropic subspaces of N/Z(G). An isotropic subspace of dimension r, between 0 and k, corresponds to an abelian subgroup A of N with #A = p r+1 and a centralizer C in Sp(2k, p) with an elementary abelian subgroup B of order p r(r+1)/2+2r(k-r) , according to [START_REF] Rauhi | The maximal subgroups of the symplectic group PSp(8, 2)[END_REF]§3]. For k = 1 and r = 1, we have #B = p, so the product of A and B has order p 3 . This subgroup is enough for p ∈ {3, 5, 7, 11}. For k = 2 and r = 2, we have #B = p 3 , so the product of A and B has order p 6 . This subgroup is enough for our purpose.

4 Detailed study degree by degree

Common considerations

As described in §2, we can reduce the study for each degree to the case of a single component or quasicomponent, provided that the compound case yields a smaller bound on the index. For the components, I use Hiss-Malle's tables, found in [START_REF] Hiss | Low-dimensional representations of quasi-simple groups[END_REF] and corrected in [START_REF]Corrigenda: Low-dimensional representations of quasi-simple groups[END_REF], which give the components of each degree after discarding those groups with no representation in characteristic 0. For the quasicomponents, I follow §3.4 and §3.5. For the compound case, with contributors actual or in the shadow, I call elementary bound to the product

I abs (n 1 ) • • • I abs (n k ) for each proper decomposition n = n 1 • • • n k of the degree.
We say that a linear group is quasiprimitive if it is irreducible and every normal subgroup has equivalent constituents. This is the definition Lindsey uses, and also Huffman and Wales. Other authors may drop irreducibility form the definition, but Feit, who does not give an explicit definition of quasiprimitivity, always speaks of irreducible quasiprimitive groups.

Study for degree 2

The candidate components of degree 2 are A 3 , L 2 (2), L 2 (3), 2.L 2 (3) and 2.L 2 (5) according to Hiss-Malle's tables, but only 2.L 2 (5) is quasisimple. The champion is 2.A 5 , the icosahedral group, isomorphic to the component 2.L 2 (5). As no extension 2.A 5 .2 is faithfully representable in degree 2, the icosahedral group is its own absolute completion. A strong computation yields a reduction factor of 5, so the index gotten for the icosahedral component is 12. For a quasicomponent, by the argument in §3.4, we can take any of the two exceptions described in [Llo18, §10.1] for degree 2, for instance GAP's SmallGroup(96,67), which is the octahedral group. A strong computation yields a minimal index of 6 for this case. Therefore, K prim (2) = 12 afforded by the champion.

The icosahedral group has 2 irreducible characters of degree 2, which are Galois conjugates, so we can take any for Cormier's test, which yields a minimal index of 12. The octahedral group has 6 irreducible characters of degree 2, among which 4 are faithful. Those 4 characters are related by product of linear characters, so we can take any for Cormier's test, which yields a minimal index of 6. As a consequence, we have computed I prim (2) = I abs (2) = 12 afforded by the champion.

Study for degree 3

The candidate components of degree 3 are A 4 , L 2 (2), L 2 (3), L 2 (4), L 2 (5), L 2 (7) and 3.A 6 according to Hiss-Malle's tables, but only L 2 (4), L 2 (5), L 2 (7) and 3.A 6 are quasisimple. The champion is 3.A 6 , the Valentiner group. A strong computation on it yields a reduction factor of 15, so the index is 72. The first two possibilities in the list are isomorphic to A 5 , so their index is 12. A weak computation on L 2 (7) yields a reduction factor of 7, so the index for this component is 24. A quasicomponent yields an order of 216 and, according to §3.5, we can take an abelian subgroup of order 3 3 , what yields an index of 24. According to the list of [vdPS03, §4.3.5], no extension of these groups appears. Notice that the quasicomponent case corresponds to the subgroups of the Hessian group in this list. Therefore, K prim (3) = 72 afforded by the champion.

For the bound I(3), we perform Cormier's test on the Valentiner group. This group has 4 irreducible characters of degree 3, but all Galoisian conjugates, so testing one is enough. This test finds a minimal index of 36 for a 1-reducible subgroup. Hence, the rest of the contributors are safe for the bound I, getting I prim (3) = I abs (3) = 36.

Study for degree 4

This study was done by Cormier in his thesis [START_REF] Cormier | Résolution des équations différentielles linéaires d'ordre 4 et 5: applications à la théorie de Galois classique[END_REF], but here I redo it in a shorter form by using the Hiss-Malle tables. The candidate components of degree 4 are A 5 , L 2 (3), 2.L 2 (3), L 2 (4), L 2 (5), 2.L 2 (5), 2.L 2 (7), 2.L 2 (9), 2.A 6 , 2.A 7 and 2.U 4 (2) according to Hiss-Malle's tables, but L 2 (3) and 2.L 2 (3) are not quasisimple. The champion is 2.S 4 (3) 2.U 4 (2), which yields an index of 960 after a strong computation. The group A 5 L 2 (4) L 2 (5) and its extension S 5 are safe, with index 12 and 20 respectively after a weak computation. The group 2.A 5 and its extensions 1 2.S 5 are also safe, with the same index as their projectivizations. The group 2.L 2 (7) is safe too, with index 24 after a weak computation. We can discard the extensions 2.L 2 (7).2 as non-representable in degree 4. The group 2.L 2 (9) 2.A 6 and its extensions 2.S 6 are safe, with index 72 and 120 respectively after a weak computation. We can discard the remining extensions 2.A 6 .2 as non-representable in degree 4. The group 2.A 7 yields an index of 360 after a weak computation, so it is safe. We can discard the extensions 2.S 7 as non-representable in degree 4.

By the argument in §3.4, in the case of a quasicomponent in degree 4, we can take the Runge group with g = 2, which admits an abelian subgroup of order 2 5 . This yields an index of 720, so it is safe. Let me consider now the case of two contributors of degree 2. The elementary bound for the index is 12 2 = 144, so this case is safe. So, we have computed K prim (4) = 960 afforded by the champion.

For the bound I(4), we perform Cormier's test on the champion. This group has 2 irreducible characters of degree 4, but they are complex conjugates, so testing one is enough. This test finds a minimal index of 40 for a 1-reducible subgroup. With this lower bound, we can discard the components A 5 , 2.A 5 and 2.L 2 (7) as safe. Applying Cormier's test to 2.A 6 , we get a minimal index of 40 with both characters, so it is safe and its extensions 2.S 6 inherit an admissible index of 80. Applying it now to 2.A 7 , we get a minimal index of 120. Finally, Runge's group has a subgroup M of monomial matrices of index 15, as detailed in [START_REF] Runge | Codes and Siegel modular forms[END_REF]. The stabilizer of the first Cartesian axis in M has index 4 at most in M , so its index in the total group is 15 • 4 = 60 at most, and thus it is safe too.

For two contributors of degree 2, if at least one is a quasicomponent, the elementary bound is 12 • 6 = 72 and thus safe. The case of two icosahedral components can be constructed in GAP for applying Cormier's test. The twofold completion of the icosahedral group can be constructed as an efficient group of permutations, as the semidirect product of the central square of AtlasGroup("2.A5") and the cycle (1, 2). As Cormier's test yields index 60 for any character, this group is also safe. Therefore I prim (4) = I abs (4) = 120, afforded by the component 2.A 7 , which is primitive as one can check with GAP or in Cormier's lists.

Study for degree 5

This study was done in Cormier's thesis [START_REF] Cormier | Résolution des équations différentielles linéaires d'ordre 4 et 5: applications à la théorie de Galois classique[END_REF], but here I redo it in a shorter form by using the Hiss-Malle tables. The candidate components of degree 5 are A 6 , L 2 (4), L 2 (5), L 2 (9), L 2 (11) and U 4 (2) according to Hiss-Malle's tables. The champion is S 4 (3) U 4 (2), which yields an index of 960 after a strong computation. The group A 6 L 2 (9) and its extension S 6 are small. We can discard the extensions A 6 .2 2 and A 6 .2 3 as non-representable in degree 5. The group L 2 (11) is also small. We can discard the extension L 2 (11).2 as non-representable in degree 5. The group L 2 (4) L 2 (5) A 5 and its extension S 5 are safe, with index 12 and 20 respectively after a weak computation. A quasicomponent yields an order of 5 3 # Sp(2, 5) = 15000 and, according to §3.5, it admits an abelian subgroup of order 5 3 , which has an index of 120 and is thus safe. So, we have computed K prim (5) = 960 afforded by the champion.

For the bound I(5), we perform Cormier's test on the champion. This group has 2 irreducible characters of degree 5, but they are complex conjugates, so testing one is enough. This test finds a minimal index of 40 for a 1-reducible subgroup. With this lower bound, we can discard the groups A 5 and S 5 as safe. The group S 6 in degree 5 is known to have a 1-reducible subgroup of index 6, as explained in §3.3, thus it is safe and so is A 6 . Applying Cormier's test to L 2 (11), we get a minimal index of 55. Finally, applying Cormier's test to the Weil representation for the quasicomponent, we get 1 non-faithful character and 4 faithful ones Galoisian conjugates, so we take one of the Galoisian orbit.

The result is a minimal index of 30, thus safe. Therefore I prim (5) = I abs (5) = 55, afforded by the component L 2 (11), which is primitive as one can check with GAP or in Cormier's lists.

Study for degree 6

The list of quasiprimitive subgroups of SL(6, C) is given in [Lin71b, §3], but it is too long and I shall resort to the Hiss-Malle tables. The champion is 6 1 .U 4 (3).2 2 , which is primitive and defined up to isoclinism. A linear group of degree 6 with these properties is given in [START_REF]On a six-dimensional projective representation of PSU 4 (3)[END_REF], so it must be one of the isoclinism variants of the champion. Such a linear group is very easy to implement in GAP and can be transformed into an isomorphic permutation group for efficiency. After a strong computation, we get the index 80640.

From the Hiss-Malle tables we get the candidate components 3.A 6 , 6.A 6 , 3.A 7 , 6.A 7 , 6.L 3 (4), U 3 (3), U 4 (2), 6 1 .U 4 (3) and 2.J 2 apart from A 7 and some of type m.L 2 (q). The component 6 1 .U 4 (3) yields subgroups of the champion, so they are safe. The components of type m.A r for m ∈ {1, 3, 6} and r ∈ {6, 7} yield only small groups. The components of type m.L 2 (q) are 728-safe. The component 6.L 3 (4) yields a contribution of # Aut(L 3 (4)) = 241920, but a weak computation gives a reduction factor of 7, getting an index of 34560, thus safe. The components U 3 (3) and U 4 (2), as well as their extensions U 3 (3).2 and U 4 (2).2, are small. Finally, the component 2.J 2 has extensions 2.J 2 .2, but they are not representable in degree 6, so we consider the group 2.J 2 alone. A weak computation yields an index of 40320, so safe.

Let me consider now the case of two contributors, of degrees 2 and 3. The elementary bound for the index is 12 • 72 = 864, so this case is safe. Hence, we have computed K prim (6) = 80640 afforded by the champion.

For the bound I(6), recall that Cormier mentions the group 2.J 2 as implying I(6) 3780. This group has two distinct irreducible characters of degree 6, which are Galosian conjugates. Applying Cormier's test to it, the index is 3780, as bounded by Cormier. The components of type m.L 2 (q) and are 428-safe, and the cases of two contributors are 864-safe. The groups of type m.A 6 .a for m ∈ {3, 6} and a C 2 2 are 1440-small all of them. The groups of type m.A 7 .a for m ∈ {1, 3, 6} and a C 2 are 2520-small for a = 1. For a = 2, a weak computation proves these groups 420-safe.

Among the extensions of the component 6.L 3 (4), only 6.L 3 (4).2 1 is representable in degree 6. The latter is defined up to isoclinism, so we pick the group returned by GAP AtlasGroup. It has 4 irreducible characters of degree 6, related by linear characters and complex conjugation, so equivalent for Cormier test. GAP returns a group of matrices in this case, which takes a lot to compute with, but converting it into an isomorphic group of permutations, we can apply a strong computation, obtaining an index of 2520, thus the possibility can be discarded. The other possibility 6.L 3 (4) has two distinct irreducible characters of degree 6, complex conjugate of each other, so yielding the same result. This representation of 6.L 3 (4) must be a subgroup of that of 6.L 3 (4).2 1 , thus safe.

Our version G of the champion 6 1 .U 4 (3).2 2 has 4 irreducible characters of degree 6, related by linear characters and complex conjugation, so equivalent for Cormier test. Unfortunately, G is too large for computing the minimal index of a 1-reducible subgroup, but we are done if such index is less than 3780. The cyclic extension method starts with representatives up to conjugacy of the perfect subgroups of G. There are 34 such conjugacy classes, among which only 13 are 1-reducible. The largest of these 13 perfect subgroups, say P , has order 25920. The group generated by P and Z(G) has order 155520 and, as Z(G) is scalar, is still 1-reducible. So the minimal index of a 1-reducible subgroup of G is at most 252, enough to prove G safe. Also, the component 6 1 .U 4 (3) has two distinct irreducible characters of degree 6, complex conjugate of each other, so yielding the same result. This representation must be a subgroup of G, thus safe.

The remaining cases to consider are the components G = U 3 (3) and G = U 4 (2), together with the extension G.2 of each G. Each extension G.2 has 2 irreducible characters of degree 6, related by multiplication with linear characters, so both will yield the same result. Applying Cormier's test to G.2, we get minimal index 126 for G = U 3 (3) and 27 for G = U 4 (2), so they are safe. As each G has an only irreducible character of degree 6, it must be the restriction of any of the characters of G.2, so G is safe as a subgroup of G.2 for either G. Therefore I prim (6) = I abs (6) = 3780, afforded by the component 2.J 2 , which is primitive as one can check with GAP or in Cormier's thesis. Moreover, according to this study, the rest of the possibilities yield index 2520 at most.

Study for degree 7

The list of primitive subgroups of SL(7, C) is given in [Wal70, thm. I] and [Wal69, thm. 4.1], but I shall resort to the Hiss-Malle tables. From the Hiss-Malle tables we get the candidate components A 8 , U 3 (3), and S 6 (2), apart from some of type m.L 2 (q). The champion is S 6 (2), which yields index 22680 after a strong computation and has trivial outer group. The components of type m.L 2 (q) are 960-safe. The component U 3 (3) and its extension U 3 (3).2 are small. The component A 8 is small, but its extension S 8 is not. However, we can prove S 8 safe after a weak computation. A quasicomponent yields an order of 7 3 # Sp(2, 7) = 115248 and, according to §3.5, it admits an abelian subgroup of order 7 3 , which has an index of 336 and is thus safe. So, we have computed K prim (7) = 22680 afforded by the champion.

Let me compute now I prim (7). The components of type m.L 2 (q) are L 2 (7), L 2 (8) and L 2 (13), which have outer groups 2, 3 and 2 respectively, but L 2 (13).2 is not faithfully representable in degree 7, so we only add the groups L 2 (7).2 and L 2 (8).3 to the list. Applying Cormier's test to L 2 (7), we get index 7, which yields in L 2 (7).2 index 14. For L 2 (8), we have an orbit of 3 Galoisian conjugates and an extra character. Applying Cormier's test to any of the conjugates and to the non-conjugate, we get index 28 in both cases. For L 2 (8).3, we have 3 characters related by product with linear characters, and we get index 28 from Cormier's test. For L 2 (13), we have an orbit of 2 Galoisian conjugates, and we get index 14 from Cormier's test.

The champion S 6 (2) yields minimal index 28 after Cormier's test. For U 3 (3), we have an orbit of 3 Galoisian conjugates and an extra character. Applying Cormier's test to any of the conjugates and to the non-conjugate, we get index 28 in both cases. For U 3 (3).2, we have 2 characters related by product with linear characters, and we get index 28 from Cormier's test. The groups A 8 and S 8 are 8-safe.

For the case of quasicomponents, the Weil representation has an orbit of 6 Galoisian conjugates and an extra non-faithful character. Applying Cormier's test to any of the conjugates, we get index of 56. After checking that this Weil representation is primitive, we establish I prim (7) = I abs (7) = 56.

Study for degree 8

The list of quasiprimitive subgroups of SL(8, C) is given in [Fei76, thm. A] and [START_REF] Huffman | Linear groups of degree eight with no elements of order seven[END_REF], but it is too complicated and misses groups, so I shall resort to the Hiss-Malle tables. For instance, 4 1 .L 3 (4) is omitted in Feit's list, As this group is quasisimple, all its irreducible characters are quasiprimitive. According to this character table, available in GAP, this group has 4 irreducible characters of degree 8, which are Galoisian conjugates. We can check, even on a single representative, that these characters are faithful. Also, their determinant is the trivial character, which is the only linear character of this group. Hence, 4 1 .L 3 (4) has a faithful irreducible quasiprimitive unimodular complex representation of degree 8, so it satisfies the hypotheses of [Fei76, thm. A]. As its order 80640 is divisible by 7, it should be listed in Feit's list for degree 8, but it is not in the list under any form, as an inspection of non-abelian composition factors shows except for Feit's items (ii) and (iii), which can be discarded by noticing that 4 1 .L 3 (4) has only 2 composition factors of type C 2 .

The champion is 2.O + 8 (2).2, which is primitive and defined up to isoclinism. A linear group of degree 8 with these properties is given in [START_REF]On a six-dimensional projective representation of PSU 4 (3)[END_REF], so it must be one of the isoclinism variants of the champion. Such a linear group is very easy to implement in GAP and can be transformed into an isomorphic permutation group for efficiency. After a strong computation, we get the index 2721600.

From the Hiss-Malle tables we get the candidate components A 6 , 2.A 6 , 2.A 8 , A 9 , 2.A 9 , 4 1 .L 3 (4), 2.S 6 (2) and 2.O + 8 (2), apart from some of type m.L 2 (q). The component 2.O + 8 (2) yields subgroups of the champion, so they are safe. The components of type m.A r for m ∈ {1, 2} and r ∈ {6, 8, 9} yield only small groups. The components of type m.L 2 (q) are 1224-safe. The component 4 1 .L 3 (4) is small, as well as its extensions 4 1 .L 3 (4).2 i . The component 2.S 6 (2) is not small, but a weak computation proves it safe.

By the argument in §3.4, in the case of a quasicomponent in degree 8, we can take the Runge group with g = 3, which admits an abelian subgroup of order 2 9 . This yields an index of 725760, so it is safe. Let me consider now the case of multiple contributors, which must be 2 ×3 or 2 × 4, daylight or shadow. The elementary bounds for the index are 12 3 = 1728 and 12 • 960 = 11520 respectively, so this case is safe. Hence, we have computed K prim (8) = 2721600 afforded by the champion.

Let me bound now I prim (8). In §5 I shall prove that the Runge group affords the minimal index 1080 in the case of quasicomponents. The components of type m.L 2 (q) are 1224-safe. After a weak computation, the components A 6 and 2.A 6 are proved 144-safe. Cormier's test on the component 2.A 8 yields index 120, so the 2.A 8 .2 are 240-safe. The component A 9 is proved 9-safe in §3.3. The component 2.A 9 has 3 irreducible characters of degree 8, but one can be excluded for not being faithful. The other two characters yield a minimal index of 120 in Cormier's test. The same subgroup is valid for the extensions 2.A 9 .2, where it has index 240. Cormier's test on the component 2.O + 8 (2) yields index 120, so any 2.O + 8 (2).2 is 240-safe. On the component 4 1 .L 3 (4), it yields index 960. The group 4 1 .L 3 (4).2 3 , the only possibility representable in degree 8, can be retrieved from [START_REF] Breuer | Atlas vefification: Atlas groups and the representations used[END_REF]. It has 8 characters of degree 8 related by product with linear characters and Galoisian conjugation. Cormier's test yields an index of 960, so the component 4 1 .L 3 (4) is 960-safe. Finally, on the component 2.S 6 (2), it yields index 120.

For the case of multiple contributors, 2 ×3 yields an elementary bound 12 3 = 1728, and 2 × 4 does 12 • 120 = 1440. Hence, we have bounded I prim (8) I abs (8) 1728. The threefold completion of the icosahedral group described in [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF], which is primitive for containing the Kronecker cube of a primitive group, might afford this bound, but the computations needed to check this guess are too long and a bound below I prim (6) = 3780 is enough for computing I(8).

Study for degree 9

The list of quasiprimitive subgroups of SL(9, C) is given in [Fei76, thm. B] and [START_REF]Linear groups of degree nine with no elements of order seven[END_REF], but I shall also resort to the Hiss-Malle tables. The champion is 3 1+4 . Sp(4, 3), which is primitive and unique up to isoclinism. A linear group of degree 9 with these properties is given in [START_REF]Bounds for finite primitive complex linear groups[END_REF]prop. 7], so it must be one of the isoclinism variants of the champion. This construction takes the extraspecial group of exponent 3 and the extension splits, so we can construct the group by means of the Weil representation, as explained in [START_REF] Gérardin | Three Weil representations associate to finite fields[END_REF]§1].

The Weil representation is easy to construct in GAP, but constructing our own version of the extraspecial group 3 1+4 of exponent 3 and of the symplectic group Sp(4, 3) in order to grant that they match. We take two generators of Sp(4, 3) for certain symplectic form H. Then we construct our extraspecial group E as a GAP pc-group with H as symplectic form. Our group G is the semidirect product E Sp(H) with an action given in [START_REF] Gérardin | Three Weil representations associate to finite fields[END_REF]§1]. As this group G has the desired index of the center, it is an isoclinism variant of the champion. After a strong computation, we get the index 17280.

From the Hiss-Malle tables we get the candidate components A 6 , 3.A 6 and A 10 , apart from some of type m.L 2 (q). The components of type m.A 6 for m ∈ {1, 3} yield only small groups. The components of type m.L 2 (q) are 1520-safe. However, the group S 10 yields an index 100800, according to [START_REF] Burns | Maximal order abelian subgroups of symmetric groups[END_REF], so this group surpasses the champion and is thus not safe. As S 10 is primitive according to [Col08, §5 ¶1], we have a new record.

A quasicomponent is a central product of an extraspecial group of order 3 5 and the center. Let me consider the isoclinic variant of the champion constructed as central product of the center of the quasicomponent and the basic champion. By the argument of §3.5, we are considering a conjugate to a subgroup of this linear group, so we can focus on the Weil representation because any other instance is gotten by isoclinism and restriction. According to §3.5, this group admits an abelian subgroup of order 3 6 , which yields an index of 17280, so it is safe. Let me consider now the case of multiple contributors, which must be 3 ×2 , daylight or shadow. The elementary bound for the index is 72 2 = 5184, so this case is safe. Hence, we have computed K prim (9) = 100800 afforded by S 10 .

Let me consider now I prim (9). The components of type m.L 2 (q) are L 2 (8), L 2 (9), L 2 (17) and L 2 (19), but L 2 (9) A 6 will be considered apart. The outer groups of L 2 (8), L 2 (17) and L 2 (19) are 3, 2 and 2 respectively, but none of extension L 2 (q).a is irreducibly representable in degree 9. After a weak computation, L 2 (8), L 2 (17) and L 2 (19) yield index 56, 144 and 180 respectively. The groups A 10 and S 10 are 10-safe. For m ∈ {1, 3}, the outer group of m.A 6 is 2 2 , so we are considering groups up to order 4m#A 6 = 1440m. A weak computation on A 6 yields order 5, which means order 5m in m.A 6 and index up to 288 in the total group. In §5 I shall prove that the case of quasicomponents yields a minimal index of 360.

The case of 2 contributors of degree 3 yields the elementary bound 36 2 = 1296 for the index. Hence, we have bounded I prim (9) 1296. The candidate to afford this bound is the twofold completion of the Valentiner group, which is primitive for containing the Kronecker square of a primitive group, but it can be constructed as in the case of degree 4 and applied Cormier's test, which yields an index of 360. If one of the two contributors is not Valentiner, then the elementary bound is 36 • 24 = 864. As a bound below I prim (6) = 3780 is enough for computing I(9), we conclude I prim (9) I abs (9) 864.

Study for degree 10

As there is no explicit list of quasiprimitive subgroups of SL(10, C), I must resort to the Hiss-Malle tables. The champion is S 11 , which yields an index 739200 according to [START_REF] Burns | Maximal order abelian subgroups of symmetric groups[END_REF]. This champion corresponds to the component A 11 . This component can only yield the champion and itself, which is a subgroup of the champion, thus safe.

From the Hiss-Malle tables we get the candidate components A 6 , 2.A 6 , A 7 , 2.L 3 (4), U 4 (2), U 5 (2), M 11 , 2.M 12 and 2.M 22 , apart from A 11 and some of type m.L 2 (q). The components of type m.A 6 for m ∈ {1, 2} yield only small groups. The components of type m.L 2 (q) are 1848-safe. After a weak computation with 2.M 22 , the groups containing this component are proved safe. For U 5 (2), we need a strong computation, which proves safe the groups containing this component. The rest of the components yield only small groups. As 10 is not a prime power, there cannot be quasicomponents of this degree.

Let me consider now the case of multiple contributors, which must be 2 × 5. The elementary bound for the index is 12 • 960 = 11520, so this case is safe. Hence, we have computed K prim (10) = 739200 afforded by the champion.

Let me consider now I prim (10). The component A 6 yields only a contribution of 720. The component 2.A 6 admits only the extensions 2.A 6 .2 1 and 2.A 6 .2 2 in degree 10, which yield also a contribution of 720 taking the center. The index found for the components A 7 and M 11 after a weak computation is also 720. The groups with component A 11 is 11-safe. The components 2.L 3 (4), U 4 (2), 2.M 12 and 2.M 22 require Cormier's test, which applied to any of the complex-conjugates irreducible characters of degree 10 of each group, it yields an index of 56, 40, 1320 and 770 respectively. Moreover, this 1-reducible subgroup for 2.L 3 (4) has index 112 in the extensions 2.L 3 (4).2 2 , the only representable in degree 10, the 1-reducible subgroup for U 4 (2) has index 80 in U 4 (2).2, the 1-reducible subgroup for 2.M 12 has index 2640 in 2.M 12 .2, and the 1-reducible subgroup for 2.M 22 has index 1540 in 2.M 22 .2, which may be enough. Applying Cormier's test to the component U 5 (2), we get an index of 660, which yields an index of 1320 in the extension U 5 (2).2, also enough. Finally, for the case of multiple contributors, the elementary bound for the index is 12 • 55 = 660.

Among the bounds computed in last paragraph, a clear outlier is 2640 for 2.M 12 .2, so I apply Cormier's test to one of the isoclinic variants of this extension. The characters are related by complex conjugation and product with linear characters, so testing for a single character yields a result valid for any character and any isoclinic variant. The result of the test is an index of 1980. This group is primitive, as we can check with GAP, so we have proved I prim (10) = I abs (10) = 1980.

Study for degree 11

Though there is no explicit list of quasiprimitive subgroups of SL(11, C), Robinson's PhD thesis [START_REF] Robinson | Some problems in the character theory of finite groups[END_REF] gives enough information for computing K prim (11), complemented with [START_REF] Sibley | Certain finite linear groups of prime degree[END_REF]. Anyway, I shall resort to Hiss-Malle tables. The champion is S 12 , which yields an index 5913600 according to [START_REF] Burns | Maximal order abelian subgroups of symmetric groups[END_REF]. This champion corresponds to the component A 12 . This component can only yield the champion and itself, which is a subgroup of the champion, thus safe.

From the Hiss-Malle tables we get the candidate components A 12 , U 5 (2), M 11 and M 12 , apart from some of type m.L 2 (q). The components of type m.L 2 (q) are 2208-safe. The groups M 11 , M 12 and 2.M 22 are small. For U 5 (2), we need a weak computation, which proves safe the groups containing this component. A quasicomponent yields an order of 11 3 # Sp(2, 11) = 1756920 and, according to §3.5, it admits an abelian subgroup of order 11 3 , which has an index of 1320 and is thus safe. So, we have computed K prim (11) = 5913600 afforded by the champion.

Let me consider now I prim (11). The groups with component A 12 are 13-safe for computing I. The groups with components of type m.L 2 (q) are L 2 (11), L 2 (11).2 and L 2 (23), since L 2 (23).2 is not irreducibly representable in degree 11. These groups yield index 60, 110 and 264 respectively after a weak computation. The component M 11 yields index 11 in Cormier's test. Applying it also to the component M 12 , we get an index of 12 for both characters, which yields in the extension M 12 .2 an index of 24. For the component U 5 (2), we apply Cormier's test for any of the complex-conjugate characters, getting an index of 297. Notice that U 5 (2).2 is not irreducibly representable in degree 11. Finally, for quasicomponents, Cormier's test on the Weil representation yields index 132. As we can check with GAP that U 5 (2) is primitive, we have thus computed I prim (11) = I abs (11) = 297.

Study for degree 12

As there is no explicit list of quasiprimitive subgroups of SL(12, C), I must resort to the Hiss-Malle tables. The champion of degree 12 is 6.Suz . In the GAP library, we can find permutation representations of this champion G and also of G/Z(G)

Suz . The former permutation group moves 196560 points, while the latter only moves 1782. Both groups seem impracticable for a strong computation by the standard implementation in GAP. However, an ad hoc implementation can perform a strong computation on Suz in 2 minutes, yielding 3 5 as the maximum order of an abelian subgroup, and thus 1845043200 as the minimum index. Such a strong computation on a quotient gives only a lower bound for the index of an abelian subgroup on the original group, but Lindsey gives a faithful representation of G in [START_REF] Lindsey | A correlation between PSU 4 (3), the Suzuki group, and the Conway group[END_REF] with a diagonal subgroup D of order 3 6 . Such a subgroup is abelian in any representation of G and affords the minimum index in G/Z(G), so this minimum index is valid for G and it is afforded by D, Z(G) .

This champion is a component itself. As it has degree 12, there is no room to more components or quasicomponents in a primitive group G containing it, so G is either 6.Suz or 6.Suz .2, according to [START_REF]Bounds for finite primitive complex linear groups[END_REF]thm. 5]. The latter possibility has no faithful representation of degree 12, so this component only yields the champion.

The rest of the components of degree 12 are 6.A 6 , A 13 , U 3 (4), 2.S 4 (5), 2.G 2 (4), 2.M 12 and L 3 (3), which are small, and some of type m.L 2 (q) that are 2600-safe. For the decompositions 6 × 2 = 3 × 4 = 3 × 2 ×2 , the elementary bounds are 967680-safe. So, we have computed K prim (12) = 1845043200 afforded by the champion.

The computation of I prim (12) is too complicated to be described in this article and is left for forthcoming work.

Study for completing the bound K prim

In order to complete the computation of the bound K for the low-dimensional cases, it is necessary not only to compute K prim (n) for n 12, but also to deal with some contributors that could not fit the general treatment in [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF]. These exceptions are the components with inner group S 6 (3) and also the quasicomponents in degree 16. As stated in the conclusion of [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], proving that these exceptions satisfy also the generic bound K prim (n), we would have proved that K prim (n) has the generic value for 13 n 16.

The exceptional group S 6 (3) has Schur multiplier 2, so it only yields itself and Schur cover as components to consider. The component S 6 (3) has a faithful representation of minimal degree 13, when the second minimal degree is 78. Its Schur cover has a faithful representation of minimal degree 14, with no more irreducible representations of degree less than 78. As stated in the conclusion of [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF], we do not have to worry in this case for degrees over 14. A weak computation proves these components safe for the generic value of K prim (13) and K prim (14).

The other exception to be considered is the case of a quasicomponent in degree 16. According to [START_REF]A refinement of Singer's bound for Liouvillian integration. Primitive linear groups[END_REF], the total group contributed by such a quasicomponent can be considered one of the extensions G = (4 • 2 1+8 + ) • Sp(8, 2) whose uniqueness is proved in [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], so we can take the Runge group for g = 4. As the Runge group has a diagonal subgroup of order 2 g(g+3)/2 , then G has an abelian subgroup of order 2 14 , which yields an index safe for the generic value of K prim (16).

5 The case of quasicomponents for degrees 8 and 9

In this section, I shall quantify the contribution of the case of quasicomponents to the optimal value of Singer's bound I(8) and I(9). For degree 8, this group is a complex matrix group of eighth degree H characterized by having a normal subgroup T such that H/T is isomorphic to Sp(6, 2) and T is central product of C 4 and an extraspecial group 2 1+6 . For degree 9, this group is a complex matrix group of ninth degree H characterized by having a normal subgroup T extraspecial group of order 3 5 and exponent 3 such that H/T is isomorphic to Sp(4, 3). As studied in my previous preprint [START_REF]On the uniqueness of the orthogonal or symplectic extension of a faithful irreducible representation of an (almost) extraspecial group[END_REF], such groups H are unique up to conjugacy in GL(8, C) and GL(9, C) respectively. Moreover, in both cases, we have the equality of centers Z = Z(H) = Z(T ).

One could try the techniques that were valid for the other groups, basically Cormier's top-down approach, the trimmed cyclic extension (TCE) method, and a combination of both. Unfortunately, H is too big for Cormier's method, and the order to reach by cyclic extensions is too high. As a first reduction, we can concentrate on the 1-reducible subgroups that contain the center Z, since the discarded subgroups can be augmented by Z and thus they do not maximize the order.

The TCE method takes so long to run because T is an extraspecial group with too many subgroups. My approach is to take advantage precisely of the tower Z < T < H in order to apply a top-down method, called the elementary abelian extension (EAE) method, described in [START_REF] Hulpke | Computing subgroups invariant under a set of automorphisms[END_REF]. The EAE method exploits a structure V.G where V is elementary abelian and the subgroups of G are known. We have precisely this situation for H/Z with V = T /Z, since computing the subgroups of the corresponding symplectic group is feasible. In this setting, the EAE method is grounded in the following fact. A subgroup U of H/T defines two subgroups: A = U, V and B = U ∩ V . The normalizer N B := N H/T (B) contains A and, passing to the quotient by B, U/B is a complement to V /B in A/B. So, in order to look for U , we start with the subgroups B of V , and then we compute N B and its subgroups A that contain V . Later, computing the complements C to V /B in A/B, we can recover U by pulling C back to H/Z. Finally, by pulling U back to H, we have constructed all the subgroups of H that contain Z, and we can apply Cormier's test of 1-reducibility to them.

In order to make this setting clearer, I define the following quotient maps: π 1 : H → H/Z by Z, π 2 : N B → N B /B by B, and π 3 : N B /B → Q B by V /B. The table (4) represents all the mentioned quotients, where each row corresponds to the same numerator and each column to the same denominator. Each column is also a tower of groups.

H H/Z N B N B /B Q B A A/B A/V T V V /B 1 K B 1 Z 1 1 (4)
For computing the possibilities of A, as it contains V , we compute the subgroups of Q B , which is a subgroup of the corresponding symplectic group, and pull them back through π 3 . The complements C are pulled back through π 2 in order to get U , and later by π 1 in order to get the final result in H. This is how the EAE method works in principle, for computing all the required subgroups, but if it is enough to know them up to conjugacy, we can apply this reduction to the choices of B as a subgroup of V , of A/V as a subgroup of Q B , and of C as a complement. Indeed, the standard routines in GAP for these computations return the conjugacy classes, which is more efficient and enough for us. The problem is that V has still too many subgroups to consider for B. The next paragraphs will study further reductions in the possibilities for B.

So, we concentrate on the intersection of the 1-reducible subgroup with T , which leads us to study first the 1-reducible subgroups of T . The following result proves that these 1-reducible subgroups are abelian.

Theorem 7. If T is a faithful irreducible representation of C p r • p 1+2n + for r 0 and any prime p, then every 1-reducible subgroup of T is abelian.

Proof. Let H be a 1-reducible subgroup of T . Recall that V = T /Z(T ) is a symplectic vector space with the commutator, so W = (Z(T )H)/Z(T ) is a vector subspace of V . According to the linear relative Darboux theorem, V admits a symplectic basis {F 1 . . . , F n ; G 1 , . . . , G n } such that {F 1 . . . , F m ; G 1 , . . . , G m } is a basis of W for certain 0 m m n. Hence, W contains the symplectic subspace W 0 spanned by {F 1 . . . , F m ; G 1 , . . . , G m }. Pulling it back to T , we get a subgroup H 0 of Z(T )H containing Z(T ). Moreover, each plane

W i spanned by {F i , G i } yields a subgroup H i of T containing Z(T ) and of type C p r • p 1+2 + . We have the central product T = H 1 • • • • • H n amalgamating each Z(H i ) = Z(T ).
According to [START_REF] Gorenstein | Finite Groups[END_REF], the representation of T is equivalent to a Kronecker product of faithful irreducible representations of each H i agreeing on Z(T ). We can choose these representations of H i such that the representatives of F i are diagonal. Recall that a faithful irreducible representation of p 1+2 + is generated by a diagonal matrix diag(1, ξ, . . . , ξ p-1 ), with ξ = exp(2πi/p), and a permutation matrix corresponding to the cycle (1, . . . , p).

Let us work in the basis of C p n (C p ) ⊗n where T is the aforesaid Kronecker product. As H is 1-reducible, we can take a vector v = 0 such that Cv in invariant by H and express

v = p i 1 =1 • • • p in=1 λ i 1 ...in e i 1 ⊗ • • • ⊗ e in
in the standard basis. Let me compute the image of v by the representative diag(1, ξ, . . . , ξ p-1 ) of F j . This image is

p i 1 =1 • • • p in=1 λ i 1 ...in ξ i j -1 e i 1 ⊗ • • • ⊗ e in ,
and it must be proportional to v, so all the non-null λ are supported by a single value i j of i j . As this applies to 1 j m, then

v = e i 1 ⊗ • • • ⊗ e i m ⊗ p i m+1 =1 • • • p in=1 λ i 1 ...i m ,i m+1 ...in e i m+1 ⊗ • • • ⊗ e in .
A representative of G j maps e i to e i+1 , understanding e p+1 = e 1 , so the image of v for j m is

e i 1 ⊗ • • • ⊗ e i j +1 ⊗ • • • ⊗ e i m ⊗ p i m+1 =1 • • • p in=1 λ i 1 ...i m ,i m+1 ...in e i m+1 ⊗ • • • ⊗ e in ,
which cannot be proportional to v unless v = 0. Therefore, Cv cannot be invariant under any representative of G j with j m, which implies that m = 0.

As we have proved that W is spanned by {F 1 . . . , F m }, then it is an isotropic subspace, thus the corresponding Z(T )H is abelian, and so is H.

An abelian subgroup of T containing Z, according to [Gla95, §2] for degree 8 and [Ger76, §1] for degree 9, corresponds to the form W × (Z/qZ), for q = 4 in degree 8 and q = 3 in degree 9, with W a vector subspace of V such that B vanishes on W × W , i.e., W is isotropic. By virtue of Witt's theorem, the symplectic group acts transitively on each family of the isotropic subspaces of V of the same dimension, so all the abelian subgroups of T of the same order and containing Z are conjugate by H. The maximal isotropic subspaces of a symplectic vector space are precisely the Lagrangian subspaces, which do exist and whose dimension is the half of the symplectic space. Such a Lagrangian subspace W L corresponds to a subgroup B L of V . With m = 3 in degree 8 and m = 2 in degree 9, we have a flag of subspaces 0 = W 0 ⊂ W 1 ⊂ • • • ⊂ W m , with dim W i = i, that corresponds to a tower of subgroups 1 = B 0 < B 1 < • • • < B n of V and its counterimage Z = K 0 < K 1 < • • • < K m of T . As W m is isotropic, so are all the W i , and thus the K i are abelian. Therefore, all the abelian subgroups of T containing Z are conjugate to a K i .

Thus, we have reduced to the cases B = B i , three possibilities of degree 8 and two for degree 9. For efficiency, we discard those candidate subgroups whose order is not greater than the order of a confirmed 1-reducible subgroup, where we can take 2048 for degree 8 and 729 for degree 9 from confirmed abelian subgroups. Also, as GAP gives Q B with too many generators, I reduce them with SmallGeneratingSet. Although I could compute the subgroups of Q B with bounded index with LowIndexSubgroups, in order to allow GAP to choose the fittest method instead of a top-down, I use ConjugacyClassesSubgroups and then I choose the subgroups with order high enough. Finally, the complements are computed with ComplementClassesRepresentativesEA because the subgroup V /B is elementary abelian.

These are the results for degree 8. For B 0 , we check 41 subgroups, discarding subgroups up to order 2048, among which 3 are 1-reducible, yielding 24192 as the maximum order. For B 1 , we check 7 subgroups, discarding subgroups up to order 24192, among which none is 1-reducible. For B 2 , we check 10 subgroups, discarding subgroups up to order 24192, among which 2 are 1-reducible, yielding 36864 as the maximum order. For B 3 , we check 22 subgroups, discarding subgroups up to order 36864, among which 6 are 1-reducible, yielding 344064 as the maximum order. So, the maximum order of a 1-reducible subgroup of the case of degree 8 is 344064, which yields a minimum index of 1080 as its contribution to I(8). These are the results for degree 9. For B 0 , we check 18 subgroups, discarding subgroups up to order 729, among which 13 are 1-reducible, yielding 3888 as the maximum order. For B 1 , we check 2 subgroups, discarding subgroups up to order 3888, which are 1-reducible, yielding 11664 as the maximum order. For B 2 , we check 2 subgroups, discarding subgroups up to order 11664, which are 1-reducible, yielding 34992 as the maximum order. So, the maximum order of a 1-reducible subgroup of the case of degree 9 is 34992, which yields a minimum index of 360 as its contribution to I(9).

Conclusions

In the present article, I have computed the optimal values of K prim (n) for 2 n 12, retrieved the optimal I prim (n) for 2 n 5, computed the optimal I prim (n) for n ∈ {6, 7, 10, 11} and some bounds for n ∈ {8, 9}. These values, together with the optimal values of J prim (n) for 2 n 12 from [Col08, thm. A], are plotted in Figure 1 for comparison.

The present article gives a result on the optimal values of K prim , completing partially the work of [START_REF]A refinement of Singer's bound for Liouvillian integration[END_REF] on this bound. These optimal values are found in Figure 2 corresponding value of the Singer bound I K computed from K prim are also given there. By a similar proof to [Llo19b, rem. 34], we can prove that I K (n) = K prim (n) for n 14, with the exception of I K (13) = K prim (12).

The bound I prim (n) 3780 proved here up to n = 11 allows us to compute the optimal values of I(n). This extends the known optimal values of I(n) from n 5 to n 11. So, there is a barrier at n = 6 due to the group 2.J 2 , where Cormier stopped, and it has been broken here. Indeed, after this barrier, the record established by this group is not beaten in the studied range. However, it seems to be another barrier at n = 12, where I stop the present study for I prim . The computations needed by the techniques used in this article become too long for n = 12. In this degree, we find the champion 6.Suz and also the reappearance of the component 2.J 2 , together with a contributor of degree 2. For breaking through the barrier at n = 12 we need new techniques, so the refinement of Singer's bound for higher degree will be approached in a subsequent article.
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 1 Figure 1: Plot of the optimal values of I prim (lower graph), J prim (upper graph) and K prim (middle graph) in logarithmic scale. The dotted line in the graph of I prim means an upper bound.

  . The n I prim (n) I 0 (n) Table of the optimal values of the bounds I prim and K prim , as well as the values I 0 and I K of the Singer bound computed from the previous ones.

				K prim (n)	I K (n)
	2	12	12	12	12
	3	36	36	72	72
	4	120	120	960	960
	5	55	120	960	960
	6	3780 3780	80640	80640
	7	56 3780	22680	80640
	8	1728 3780	2721600	2721600
	9	864 3780	100800	2721600
	10	1980 3780	739200	2721600
	11	297 3780	5913600	5913600
	12			1845043200	1845043200
	13			538137600	1845043200
	14			5381376000	5381376000
	15			64576512000 64576512000
	16			731867136000 731867136000
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Extensions in plural because there are two isoclinic variants
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