
HAL Id: hal-02088044
https://hal.science/hal-02088044v1

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LiteX: an open-source SoC builder and library based on
Migen Python DSL

Florent Kermarrec, Sébastien Bourdeauducq, Hannah Badier,
Jean-Christophe Le Lann

To cite this version:
Florent Kermarrec, Sébastien Bourdeauducq, Hannah Badier, Jean-Christophe Le Lann. LiteX: an
open-source SoC builder and library based on Migen Python DSL. OSDA 2019, colocated with DATE
2019 Design Automation and Test in Europe, Mar 2019, Florence, Italy. �hal-02088044�

https://hal.science/hal-02088044v1
https://hal.archives-ouvertes.fr

LiteX: an open-source SoC builder and library
based on Migen Python DSL

Florent Kermarrec
Enjoy-Digital, Landivisiau, France

florent@enjoy-digital.fr

Sébastien Bourdeauducq
M-Labs, Hong-Kong

sb@m-labs.hk

Jean-Christophe Le Lann and Hannah Badier
ENSTA Bretagne, Brest and Lab-STICC UMR

lelannje@ensta-bretagne.fr

Abstract—LiteX [1] is a GitHub-hosted SoC builder / IP
library and utilities that can be used to create SoCs and full
FPGA designs. Besides being open-source and BSD licensed, its
originality lies in the fact that its IP components are entirely
described using Migen Python internal DSL, which simplifies its
design in depth. LiteX already supports various softcores CPUs
and essential peripherals, with no dependencies on proprietary
IP blocks or generators. This paper provides an overview of
LiteX: two real SoC designs on FPGA are presented. They both
leverage the LiteX approach in terms of design entry, libraries
and integration capabilities. The first one is based on RISC-V
core, while the second is based on a LM32 core. In the second
use case, we further demonstrate the use of a fully open-source
toolchain coupled with LiteX.

Index Terms—open-source, SoC, Python, DSL, FPGA, IP
library

I. INTRODUCTION

Electronic Design Automation (EDA) plays a central role in
the advent of all the electronic devices we use daily, ranging
from small embedded systems to internet-scale infrastructures.
The success of EDA may mainly be attributed to its capability
to describe semi-conductor devices with tools and languages
based on robust abstraction layers: transistors, layout, logic,
register-transfer level (RTL), behavioral descriptions, etc.
Thanks to these levels of abstraction, engineers do not have to
face the entire complexity of the underlying device they are
designing, which makes the design process more constructive
and efficient. In this process, Hardware Description Languages
(HDLs), such as Verilog and VHDL, still play a pivotal role.
New features that aim at facilitating the designer’s job have
been added at a slow pace. This conservative slowness has
left only very little room for newcomers. Among them, Sys-
temVerilog has succeeded to emerge as the most natural way to
describe and execute complex test benches, while SystemC is
now mainly associated to transaction-level platform modeling.
On the contrary, synchronous languages [2], whose formal
aspects could have been beneficial to EDA, have not been
adopted widely in EDA, despite decades of extensive research.
In the same vein, High-level Synthesis, which calls for C-
based design entry, has not gained the popularity of HDLs
yet. Nowadays, classical HDLs, acting as RTL description
languages, still stand as the cornerstone of EDA.

A. EDA renewal through DSLs and platform-based design
A recent trend, however, shows that several new HDLs are

starting to emerge. Their common characteristic is that they are

essentially internal Domain Specific Languages (DSLs). These
languages –sometimes called “embedded DSLs”– are hosted
by a mainstream programming language. No matter which
host language is used, embedding a DSL in a mainstream
programming language provides several benefits: comfort,
smooth learning curve, access to host language libraries and
ecosystem. Complex compiler technologies or specific parsers
are not necessary, which significantly reduces the amount of
work required compared to the effort needed to create a brand-
new language. The design of such internal DSLs is based
on efficiently mapping domain-specific concepts to the host
language syntax.

The renewal of HDLs, based on embedded DSLs like
Chisel/SpinalHDL, is also encouraged by the advent of RISC-
V platform-based design (PBD). This initiative is intended
to counterbalance the supremacy of ARM in the field of
embedded systems, by providing a set of royalty-free soft-
cores. Such softcores play a central role in platform-based
design, which has been defined [3] as “an integration oriented
design approach emphasizing systematic reuse, for develop-
ing complex products based upon platforms and compatible
hardware and software virtual components, intended to reduce
development risks, costs and time to market”. This reuse calls
for new methodologies: to build complex embedded systems
organized around a processor, two ingredients are mandatory.
The first is abstraction: modern languages are likely to provide
such characteristics though either object-oriented or functional
modeling. As clearly stated in the previous definition, the
second ingredient is the availability of component libraries.

B. Objectives of the paper

In this paper, we present LiteX [1], SoC builder and library
of IP components described at the RTL level, together with
various utilities that facilitate the building of complete SoC
designs. LiteX resorts to a DSL, written in Python and named
Migen. LiteX has been used successfully and on a daily basis
for several years by Enjoy-Digital [4], a company dedicated
to open-source FPGA-based design, in various application
domains (multimedia, software defined radio, automotive, etc.)
and is progressively being adopted by users around the world.
The obvious key of this adoption lies both in the very
permissive open-source license adopted by LiteX (BSD), and
the choice of Python for the RTL descriptions and deployment.

LiteX participates in a larger trend that will be discussed in
this paper.

The rest of the paper is organized as follows. Next Section
makes a short survey of the trend of eDSLs for EDA, and es-
pecially for RTL design. Section 3 presents Migen FHDL and
MiSoC. Section 4 introduces LiteX SoC builder and library.
In Section 5, a full SoC design on FPGA is exposed and a
fully open-source design flow based on LiteX is presented.

II. RELATED WORK : BENEFITS OF INTERNAL DSLS FOR
RTL DESIGN

Many hardware-oriented embedded DSLs have been pro-
posed. Among them, SystemC itself can be cited at first.
It was proposed by Liao in [5] (at that time, SystemC was
named Scenic). SystemC relies on C++ objects and allows to
describe hardware systems at various level of abstractions. The
simulation engine remains event-driven, similar to VHDL and
Verilog. It has received a large audience, and has improved
since the early paper of Liao to include sophisticated features
for transaction-level modeling [6], which allows to build mod-
els usable by software programmers for early SoC validation.
However, SystemC has not been used fully as RTL entry.

A DSL that has recently been receiving growing attention is
Chisel [7] and its fork named SpinalHDL. They both strongly
contribute to the recent renew of RTL design practices. They
also take an active part in the advent of RISC-V softcores.
Chisel initially targets synchronous designs, where the clock
is implicit. The host language is Scala, a multi-paradigm
language (object-oriented and functional), with a static typing.
Here again, Scala [8] is known for its syntactic flexibility:
semicolons are optional, any method can be used as an infix
operator, etc. These features provide a strong differentiator
with respect to VHDL for instance, which is known to be ex-
tremely verbose. However, the benefits of Scala go far beyond
the syntax: the type inference mechanism, parameterized types
and generators are particularly appealing for hardware design.
HardCaml, an OCaml library for designing hardware, shares
several aspects with Chisel, as OCaml offers many of the same
modern multi-paradigm features provided by Scala. Haskell (a
pure functional language) has also been used extensively for
describing hardware: Lava [9], CλaSH [10], [11]. An older
approach based on Java for FPGA programming was proposed
in [12]. Furthermore, an interesting approach named MyHDL
[13] and based on Python was introduced by Decaluwe in [14].
It leverages the interpreted nature of Python and shares several
characteristics with Migen.

III. MIGEN

Migen, a fully open-source Python-based toolbox, contains
a HDL, a library of cores, a simulator and a build system.
Migen originated from Milkymist project and stands for
“Milkymist generator”.

A. Migen FHDL

Similar to previous cited technologies, Migen FHDL (Frag-
mented Hardware Description Language) allows to describe

and simulate RTL circuits. It is based on a custom Python
abstract syntax tree (AST) and can produce synthesizable Ver-
ilog. FHDL does not follow the event-driven paradigm of most
HDLs, and instead replaces it with notions of synchronous and
combinatorial statements.

Thanks to Migen FHDL, highly and easily configurable
cores can be designed. Creating a design by writing a Python
program raises the level of abstraction, by for example
enabling the use of object-oriented programming or meta-
programming. The choice of Python in particular, as opposed
to other programming languages such as Scala, also gives a
clear advantage for Migen adoption: Python is an easy to
learn and well-known language, already used for many other
tasks by application engineers, for instance for algorithmic
prototyping.

The following code example shows how a functional design
can be implemented in a short, efficient and readable manner:

from migen i m p o r t *
from migen . f h d l i m p o r t v e r i l o g

c l a s s B l i n k e r (Module) :
d e f i n i t (s e l f , s y s c l k f r e q , p e r i o d) :

s e l f . l e d = l e d = S i g n a l ()

#

t o g g l e = S i g n a l ()
c o u n t e r p r e l o a d = i n t (s y s c l k f r e q * p e r i o d / 2)
c o u n t e r = S i g n a l (max= c o u n t e r p r e l o a d + 1)

s e l f . comb += t o g g l e . eq (c o u n t e r == 0)
s e l f . sync += \
I f (t o g g l e ,

l e d . eq (˜ l e d) ,
c o u n t e r . eq (c o u n t e r p r e l o a d)

) . E l s e (
c o u n t e r . eq (c o u n t e r − 1)

)

C re a t e a 10Hz b l i n k e r from a 100MHz s y s t e m c l o c k .
b l i n k e r = B l i n k e r (s y s c l k f r e q =100 e6 , p e r i o d =1e−1)
p r i n t (v e r i l o g . c o n v e r t (b l i n k e r , { b l i n k e r . l e d }))

Listing 1. Blinking LED design example

This design consists of a decrementing counter that toggles
a one-bit signal whenever it reaches 0. The one-bit signal
triggers a LED which will blink. The blinking period is
controlled by another signal. Following syntax elements can
be noted:

• The component is created by inheriting from the Module
class. This is equivalent to a VHDL entity or a Verilog
module.

• The basic element of any design is Signal, which is
similar to a VHDL signal or a Verilog wire/reg.
Basic Python operations are redefined on signals, which
means that expressions can be formed with a light syntax.

• The max parameter of the Signal constructor can
be used to automatically determine width of multi-bit
signals.

• The eq method returns an assignment to a signal.

Fig. 1. An overview of LiteX framework

• As mentioned before, the design is split into combinato-
rial statements using the comb attribute, and synchronous
statements using the sync attribute.

• The If object is used to represent conditional statements.
• In more complex designs, several modules can be inte-

grated in one module using a submodules property.
All signals in Migen are created using the same Signal
object, and when they need to be accessed from outside,
Migen converts them into Verilog I/O ports and automatically
determines their direction.

B. MiSoC

LiteX originated from MiSoC [15] and reuses the key
concepts and elements.

While Migen offers the generation of digital logic with
Python, MiSoC provides the SoC interconnect infrastructure
and cores:

• Multiple CPU support: LatticeMico32, mor1kx,
VexRiscv.

• Memory controller supports SDR, DDR, LPDDR, DDR2
and DDR3.

• HDMI video in/out cores (Spartan6).
• Provided peripherals: UART, GPIO, timer, GPIO, NOR

flash/SPI flash controller, Ethernet MAC, and more.
• High performance and low resource usage.
• Portable and easy to customize thanks to Python- and

Migen-based architecture.
• Design new peripherals using Migen and benefit from

automatic CSR maps and logic, simplified DMAs, etc.
• Possibility to encapsulate legacy Verilog/VHDL code.

MiSoC is used successfully by M-Labs to build all the
gateware for ARTIQ [16] in a portable, flexible and easily
maintainable way.

IV. LITEX SOC BUILDER, LIBRARY AND UTILITIES

Since 2015, LiteX has been evolving as a fork of MiSoC
to provide more coherence for Enjoy-Digital’s commercial
projects and to ease collaboration with other open-source
communities:

• More experimental features.

TABLE I
IP COMPONENTS AVAILABLE IN LITEX

IP name note
LiteDRAM DRAM core, fully pipelined, SDRAM to DDR3
LiteEth Ethernet core, PHYs, MAC, UDP/IP, up to 1Gbps
LitePCIe DMA and MMAP PCIe core up to Gen2 X4
LiteSATA SATA 1/2/3 core, DMA, RAID, Mirroring, up to 6Gbps
LiteUSB USB2.0/3.0 Slave FIFO core + DMA
LiteSDCard SD card core, DMA, up to UHS-1 (55MB/s R/W)
LiteICLink Comm core, IOserdes, Transceivers, up to 10gbps
LiteJESD204B JESD204B core, TX, Subclass1, up to 10Gbps
LiteVideo Video core, HDMI RX/TX, Framebuffer, up to 1080p60
LiteScope Logic Analyzer core, access via various bus protocols

TABLE II
SOFTCORES INSTANTIABLE VIA MISOC AND LITEX.

Softcore note
LM32* Lattice Mico 32 bits
Mor1kx* OpenRISC 1000 compliant core
PicoRV32 RISC-V core [17]
VexRiscv* RISC-V core [18]

*: inherited from MiSoC.

• High speed LiteXSim SoC simulator (based on Verilator).
• Wider collection of cores (PCIe, SATA, Ethernet, DRAM,

HDMI, SDCard, USB, etc...).
• AXI4 support (MMAP/Stream/Lite).
• Debugging tools to control/analyze a SoC from Seri-

al/Ethernet/PCIe.
An overview of LiteX is depicted on Figure 1.
LiteX library is made of a dozen of peripheral components,

as well as softcores, summarized in Table I. To the best of
our knowledge, this gathering of SoC elements makes LiteX
unique. LiteX components have been used in several open-
source projects like HDMI2USB [19], Fupy [20], NeTV2
[21], Axiom SDI module [22], PCIe Screamer [23] but also
in various commercial applications. Softcores instantiable via
LiteX are detailed in Table II. Among them, we find Lattice
Mico 32 softcore (lm32), a 32-bits RISC architecture softcore,
available for free with an open IP core licensing agreement.

Beyond peripherals and softcores, LiteX also provides
platform descriptions, which extend the build library dis-
tributed with Migen. The import of a generic Xilinx is done

using a single line of code. The specifics of this platform
are then given following an object-oriented process. Next, the
user can choose the naming of specific input-output pins (i/o)
in an array and can finally instantiate a Python object. This
platform object keeps track of the i/o mapping, the name of the
FPGA target, as well as the actual toolchain used for bitstream
generation. The following example describes the FPGA target
present on a Digilent Nexys4DDR board.

from migen . b u i l d . x i l i n x i m p o r t X i l i n x P l a t f o r m

i o = [
(” u s e r l e d ” , 0 , P i n s (”H17”) , # e t c) ,
(” u s e r l e d ” , 1 , P i n s (”K15”) , # e t c ,
. . . s k i p p e d f o r b r e v i t y
(” s e r i a l ” , 0 ,

S u b s i g n a l (” t x ” , P i n s (”D4”)) ,
S u b s i g n a l (” rx ” , P i n s (”C4”)) ,
I O S t a n d a r d (”LVCMOS33”) ,

) ,
. . . . s k i p p e d

]

c l a s s Nexys4DDR (X i l i n x P l a t f o r m) :
d e f a u l t c l k n a m e = ” c lk 10 0 ”
d e f a u l t c l k p e r i o d = 1 0 . 0

d e f i n i t (s e l f) :
X i l i n x P l a t f o r m . i n i t (s e l f ,

” xc7a100t−CSG324−1” , io ,
t o o l c h a i n =” v i vad o ”)

p l a t f o r m = Nexys4DDR ()

Listing 2. Nexys4DDR platform description in Litex/Migen

Concerning the application description itself, the underlying
methodology remains similar.

Once instantiated in Python, the user can request board pins
easily :

u s e r l e d s = Cat (*
[p l a t f o r m . r e q u e s t (” u s e r l e d ” , i)
f o r i i n r a n g e (1 6)])

V. EXPERIMENTS WITH LITEX

A. SoC synthesis using LiteX + Migen + Vivado

In this section, we describe a SoC built with LiteX and
Vivado (for synthesis, place and route).

TABLE III
LITEX LIBRARY REUSE ON NETV2 LIBRE SOC

IP name note
LiteVideo Used to capture/play HDMI videos up to 1080p60

LiteDRAM Used to store/read video data to/from a 32-bits
DDR3 (more than 20Gbps bandwidth)

LitePCIe Used to read/write data from/to the host at up
to PCIe gen2 X4 (more than 12Gbps)

LiteEth Used to provide a 100Mbps control interface

LiteSDCard Used to store CPU code and/or configuration data

The NeTV2 Libre SoC is a variant of the official NeTV2
SoC (also using LiteX) and makes use of the NeTV2 hardware
to create a PCIe capture/playback HDMI SoC with high debug
capabilities. As can be seen on Figure 2, the SoC reuses
LiteX capability to create complex SoCs and interconnect
cores together, and also heavily reuses the LiteX library of
open-source IPs (listed in Table III). The description of the
top module in LiteX is too long to be given in this paper (but
still under 1000 lines of code with the reuse of open-source
IPs), but the following example (Listing 3) describes how the
DDR3 controller and HDMI out core are instantiated in the
design. The synthesis of such a system using Xilinx Vivado
took 10 minutes.

from l i t e d r a m . modules i m p o r t MT41J128M16
from l i t e d r a m . phy i m p o r t a7ddrphy
from l i t e v i d e o . o u t p u t i m p o r t VideoOut

[. . .]

sdram
s e l f . submodules . ddrphy = a7ddrphy .A7DDRPHY(

p l a t f o r m . r e q u e s t (” ddram ”) , s y s c l k f r e q)
sdram module = MT41J128M16 (s y s c l k f r e q , ” 1 : 4 ”)
s e l f . r e g i s t e r s d r a m (s e l f . ddrphy ,

sdram module . g e o m s e t t i n g s ,
sdram module . t i m i n g s e t t i n g s)

hdmi o u t
hdmi ou t d ram por t = s e l f . sdram . c r o s s b a r . g e t p o r t (

mode=” r e a d ” ,
dw=16 ,
cd=” hdmi ou t0 p ix ” ,
r e v e r s e =True)

s e l f . submodules . hdmi out0 = VideoOut (
p l a t f o r m . dev i ce ,
p l a t f o r m . r e q u e s t (” hdmi out ” , 0) ,
hdmi ou t0 dram por t ,
” ycbc r422 ” ,
f i f o d e p t h =4096)

Listing 3. DDR3 and HDMI core instanciation using Litex/Migen

• The Artix7 DDRPHY is instantiated with ddram pads
and sys_clk frequency passed to it.

• The DDRAM controller is created by registering the
DDRAM PHY and DDRAM Module to the SoC.

• A DDRAM port is created on the controller for the
HDMI output in read mode, with a dw of 16-bits (the
logic to convert to native DDRAM width is automatically
inserted) and with a specific clock domain (the CDC
logic is automatically inserted).

• The video out core is created by passing the HDMI
pads, DDRAM port and configuration parameters to the
VideoOut core.

This demonstrates that instantiating complex cores can be
done in an efficient way and that many of the traditional
RTL design tasks are handled automatically. For instance, the
DDRPHY controller adapts itself to the provided DDRAM
pads and module. Bus width conversion and CDC (clock
domain crossing) can also be handled automatically. LiteX
generates the RTL design and placement/timing constraints

Fig. 2. NeTV2 Libre SoC architecture

files for this SoC. Vivado then handles the synthesis, place
and route.

B. SoC synthesis using LiteX + Migen + Trellis + Yosys +
Nextpnr

In this section, we show how LiteX can be used as an
entry to create a SoC for a Lattice ECP5 FPGA board with a
fully open-source toolchain. Three main projects are used here:
Trellis project [24], which aims at documenting ECP5 FPGAs
bitstream, Yosys [25] for Verilog synthesis, and Nextpnr, a
vendor neutral, timing driven, FPGA place and route tool.
The following code (Listing 4) creates a SoC with a LM32
CPU, ROM, UART, Timer, SDRAM controller that executes
its BIOS on startup and can then run code from SDRAM when
loaded over serial link. The code makes an explicit call to the
toolchain (named “trellis”), just the same way as for “vivado”.
The full synthesis (bitstream included), starting from LiteX,
took 14 minutes, which is the same order of magnitude as for
the commercial toolchain experiment.

from migen i m p o r t *
from l i t e x . b o a r d s . p l a t f o r m s i m p o r t v e r s a e c p 5
from l i t e x . soc . c o r e s . c l o c k i m p o r t *
from l i t e x . soc . i n t e g r a t i o n . soc sdram i m p o r t *
from l i t e x . soc . i n t e g r a t i o n . b u i l d e r i m p o r t *
from l i t e d r a m . modules i m p o r t AS4C32M16
from l i t e d r a m . phy i m p o r t GENSDRPHY

c l a s s CRG(Module) :
d e f i n i t (s e l f , p l a t f o r m) :

s e l f . c l ock doma ins . cd sy s = ClockDomain ()
s e l f . c l ock doma ins . c d s y s p s = ClockDomain ()

c l k / r s t
c l k1 00 = p l a t f o r m . r e q u e s t (” c lk1 00 ”)

r s t n = p l a t f o r m . r e q u e s t (” r s t n ”)
p l a t f o r m . a d d p e r i o d c o n s t r a i n t (c lk100 , 1 0 . 0)

p l l
s e l f . submodules . p l l = p l l = ECP5PLL ()
s e l f . comb += p l l . r e s e t . eq (˜ r s t n)
p l l . r e g i s t e r c l k i n (c lk100 , 100 e6)
p l l . c r e a t e c l k o u t (s e l f . cd sys , 50 e6)
p l l . c r e a t e c l k o u t (s e l f . cd sys ps , 50 e6 ,
phase =90)
s e l f . comb += s e l f . c d sy s . r s t . eq (˜ r s t n)

sdram c l o c k
sd ram c lock = p l a t f o r m . r e q u e s t (” sd r am c lock ”)
s e l f . comb += sd ram c lock . eq (s d r a m p s c l k)

c l a s s BaseSoC (SoCSDRAM) :
d e f i n i t (s e l f , ** kwargs) :

p l a t f o r m = v e r s a e c p 5 . P l a t f o r m (
t o o l c h a i n =” t r e l l i s ”)

s y s c l k f r e q = i n t (50 e6)
SoCSDRAM. i n i t (s e l f , p l a t f o r m ,

c p u t y p e =” lm32 ” , l 2 s i z e =32 ,
c l k f r e q = s y s c l k f r e q ,
i n t e g r a t e d r o m s i z e =0 x8000)

s e l f . submodules . c r g = CRG(p l a t f o r m)

s e l f . submodules . s d r ph y = GENSDRPHY(
p l a t f o r m . r e q u e s t (” sdram ”))

sdram module = AS4C32M16 (s y s c l k f r e q , ” 1 : 1 ”)
s e l f . r e g i s t e r s d r a m (s e l f . sdrphy ,

sdram module . g e o m s e t t i n g s ,
sdram module . t i m i n g s e t t i n g s)

soc = BaseSoC ()
b u i l d e r = B u i l d e r (soc)
b u i l d e r . b u i l d ()

Listing 4. LM32-based SoC Using Litex/Migen coupled with a full open-
source EDA stack.

Fig. 3. Versa ECP5 + SDRAM SoC Hat with LiteX / LiteDRAM

This example proves that LiteX entry can be used with a
fully open-source toolchain. Lattice iCE40 and ECP5 FPGAs
are already supported. Furthermore, these tools have been
designed to be portable to others FPGA families. Communities
are actually documenting other FPGA families, so we could
expect having fully open-source toolchains for Xilinx and
Altera FPGAs in the next couple of years.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented LiteX library together with
its key DSL: Migen. As an open-source library, made of
several processors and peripherals, LiteX has proven efficient
and robust enough for the design of complex system-on-chip.
LiteX is especially well coupled with FPGAs: Python ease
of use seems to add a new argument to a wider adoption
of FPGAs. Open-source toolchains will probably bring many
new innovations in the future and coupled with Migen, MiS-
oC/LiteX or others DSLs, have already enabled new ways of
thinking and designing hardware.

REFERENCES

[1] “Litex.” https://github.com/enjoy-digital/litex. [Ac-
cessed: 2018-14-01].

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,
P. Le Guernic, and R. De Simone, “The synchronous
languages 12 years later,” Proceedings of the IEEE,
vol. 91, no. 1, pp. 64–83, 2003.

[3] B. Bailey, G. Martin, and T. Anderson, Taxonomies for
the Development and Verification of Digital Systems.
Springer Publishing Company, Incorporated, 1st ed.,
2010.

[4] “Enjoy-digital.” http://www.enjoy-digital.fr/. [Accessed:
2018-14-01].

[5] S. Liao, S. Tjiang, and R. Gupta, “An efficient implemen-
tation of reactivity for modeling hardware in the scenic
design environment,” in Proceedings of the 34th Design
Automation Conference, pp. 70–75, June 1997.

[6] N. Bombieri, F. Fummi, and G. Pravadelli, “On the
mutation analysis of systemc tlm-2.0 standard,” in 2009
10th International Workshop on Microprocessor Test and
Verification, pp. 32–37, Dec 2009.

[7] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Aviienis, J. Wawrzynek, and K. Asanovi, “Chisel:
Constructing hardware in a scala embedded language,”

in DAC Design Automation Conference 2012, pp. 1212–
1221, June 2012.

[8] M. Odersky and T. Rompf, “Unifying functional and
object-oriented programming with Scala,” Commun.
ACM, vol. 57, no. 4, pp. 76–86, 2014.

[9] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava:
hardware design in Haskell,” in ACM SIGPLAN Notices,
vol. 34, pp. 174–184, ACM, 1998.

[10] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and
M. Gerards, “cλash: Structural descriptions of syn-
chronous hardware using Haskell,” in 2010 13th Euromi-
cro Conference on Digital System Design: Architectures,
Methods and Tools, pp. 714–721, Sept 2010.

[11] K. Zhai, R. Townsend, L. Lairmore, M. A. Kim, and
S. A. Edwards, “Hardware synthesis from a recursive
functional language,” in 2015 International Conference
on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pp. 83–93, Oct 2015.

[12] S. Guccione, D. Levi, and P. Sundararajan, “Jbits:
A java-based interface for reconfigurable computing,”
in 2nd annual military and aerospace applications
of programmable devices and technologies conference
(MAPLD), vol. 261, pp. 1–9, 1999.

[13] K. Jaic and M. C. Smith, “Enhancing hardware de-
sign flows with MyHDL,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’15, (New York, NY,
USA), pp. 28–31, ACM, 2015.

[14] J. Decaluwe, “Myhdl: a python-based hardware descrip-
tion language,” Linux journal, p. 5, 2004.

[15] “Misoc open source project.” https://m-labs.hk/gateware.
html. [Accessed: 2018-12-01].

[16] “ARTIQ open source project.” https://m-labs.hk/artiq/
index.html. [Accessed: 2018-12-01].

[17] C. Wolf, “Picorv32 softcore.” https://github.com/
cliffordwolf/picorv32. [Accessed: 2018-12-01].

[18] “Spinal/vexriscv softcore..” https://github.com/
SpinalHDL/VexRiscv. [Accessed: 2018-12-01].

[19] “Hdmi2usb, open video capture hardware + firmware..”
http://hdmi2usb.tv/home. [Accessed: 2018-12-01].

[20] “Micropython, running python on fpga.” https://fupy.
github.io. [Accessed: 2018-12-01].

[21] “An open video development board in a pci express
form factor..” https://www.crowdsupply.com/alphamax/
netv2. [Accessed: 2018-12-01].

[22] “AXIOM beta, a professional digital cinema camera built
around foss and open hardware licenses..” https://www.
apertus.org/axiom. [Accessed: 2018-12-01].

[23] “Pcie screamer, a tlp sniffer/injector..” https://github.com/
enjoy-digital/pcie-screamer-soc. [Accessed: 2018-12-
01].

[24] “Trellis : documenting lattice ecp5 bit-stream for-
mat.” https://github.com/SymbiFlow/prjtrellis. Accessed:
[2018-12-01].

[25] C. Wolf, “Yosys open synthesis suite.” http://www.
clifford.at/yosys/.

