open science

Advances of Implicit Description Techniques in Modelling and Control of Switched Systems

Moisés E. Bonilla, Michel Malabre, Vadim Azhmyakov

To cite this version:

Moisés E. Bonilla, Michel Malabre, Vadim Azhmyakov. Advances of Implicit Description Techniques in Modelling and Control of Switched Systems. Elena Zattoni; Anna Maria Perdon; Guiseppe Conte. Structural Methods in the Study of Complex Systems, 482, Springer, pp.203-239, 2019, Lecture Notes in Control and Information Sciences, 978-3-030-18571-8. 10.1007/978-3-030-18572-5_7 . hal02088014

HAL Id: hal-02088014

https://hal.science/hal-02088014

Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Metadata of the chapter that will be visualized in SpringerLink

Book Title	Structural Methods in the Study of Complex Systems
Series Title	
Chapter Title	Advances of Implicit Description Techniques in Modelling and Control of Switched Systems
Copyright Year	2020
Copyright HolderName	Springer Nature Switzerland AG
Author	Family Name Bonilla
	Particle
	Given Name E. Moisés
	Prefix
	Suffix
	Role
	Division
	Organization CINVESTAV-IPN, Control Automático, UMI 3175 CINVESTAV -CNRS, A.P. $14-740$
	Address 07000, México City, México
	Email mbonilla@cinvestav.mx
Corresponding Author	Family Name Malabre
	Particle
	Given Name Michel
	Prefix
	Suffix
	Role
	Division
	Organization CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes) UMR 6004, B.P. 92101
	Address 44321 Nantes, Cedex 03, France
	Email Michel.Malabre@1s2n.fr
Author	Family Name Azhmyakov
	Particle
	Given Name Vadim
	Prefix
	Suffix
	Role
	Division Department of Mathematical Science
	Organization Universidad EAFIT
	Address Medellin, Colombia
	Email vazhmyako@eafit.edu.co
Abstract	Our contribution is devoted to a constructive overview of the implicit system approach in modern control of switched dynamic models. We study a class of non-stationary autonomous switched systems and formally establish the existence of solution. We next incorporate the implicit systems approach into our consideration. At the beginning of the contribution, we also develop a specific system example that is used

for illustrations of various system aspects that we consider. Our research involves among others a deep examination of the reachability property in the framework of the implicit system framework that we propose. Based on this methodology, we finally propose a resulting robust control design for the switched systems under consideration and the proposed control strategy is implemented in the context of the illustrative example.

Chapter 7
 Advances of Implicit Description Techniques in Modelling and Control of Switched Systems

E. Moisés Bonilla, Michel Malabre and Vadim Azhmyakov

Abstract

Our contribution is devoted to a constructive overview of the implicit system approach in modern control of switched dynamic models. We study a class of non-stationary autonomous switched systems and formally establish the existence of solution. We next incorporate the implicit systems approach into our consideration. At the beginning of the contribution, we also develop a specific system example that is used for illustrations of various system aspects that we consider. Our research involves among others a deep examination of the reachability property in the framework of the implicit system framework that we propose. Based on this methodology, we finally propose a resulting robust control design for the switched systems under consideration and the proposed control strategy is implemented in the context of the illustrative example.

Notation

Let us first introduce the necessary notation used in this manuscript.

- Script capitals $\mathscr{V}, \mathscr{W}, \ldots$ denote finite-dimensional linear spaces with elements v, w, \ldots The dimension of a space \mathscr{V} is denoted by $\operatorname{dim}(\mathscr{V}), \mathscr{V} \approx \mathscr{W}$ stands for $\operatorname{dim}(\mathscr{V})=\operatorname{dim}(\mathscr{W})$. Moreover, in the case $\mathscr{V} \subset \mathscr{W}, \frac{\mathscr{W}}{\mathscr{V}}$ or $\mathscr{W} / \mathscr{V}$ stands for the quotient space \mathscr{W} modulo \mathscr{V}. The direct sum of independent spaces is written as \oplus. $X^{-1} \mathscr{V}$ stands for the inverse image of the subspace \mathscr{V} by the linear transformation X. Given a linear transformation $X: \mathscr{V} \rightarrow \mathscr{W}$, the expression $\operatorname{Im} X=X \mathscr{V}$ denotes

[^0]its image and $\operatorname{Ker} X$ denotes the corresponding kernel. In the case $\mathscr{V} \approx \mathscr{W}$, we write $X: \mathscr{V} \leftrightarrow \mathscr{W}$. Given a space $\mathscr{X}=\mathscr{S} \oplus \mathscr{T}$, the natural projection on \mathscr{S} along \mathscr{T} is denoted as $P: \mathscr{X} \rightarrow \mathscr{S} / / \mathscr{T}$. A zero-dimensional subspace is denoted by $\{0\}$, and the identity operator is I. $e_{i} \in \mathbb{R}^{n}$ stands for the vector whose i-th entry is equal to 1 and the other ones are equal to $0 .\left\{e_{k}, \ldots e_{\ell}\right\}$ stands for the subspace generated by the vectors $e_{k}, \ldots e_{\ell}$.

- Additionally $\mathbb{R}^{+}, \mathbb{R}^{+*}, \mathbb{Z}^{+}$and \mathbb{N} stand for sets of non-negative real numbers, positive real numbers, non-negative integers and correspondingly for positive integers (the natural numbers), respectively. The notations $\mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{V}\right)$ and $\mathcal{L}^{\infty}\left(\mathbb{R}^{+}, \mathscr{V}\right)$ are used for the space of infinitely differentiable functions and space of bounded functions from \mathbb{R}^{+}to \mathscr{V}.

7.1 Introduction

We review recent contributions related to the implicit linear systems and to the corresponding modelling approaches. We mainly analyse here the effective control design schemes for some specific classes of complex systems, namely, for dynamic systems with switches. First, let us mention the celebrated implicit systems representation proposed by Rosenbrock [39]. It was developed in the context of a specific generalization of proper linear systems (see also [28]).

Recall that an implicit representation $\Sigma^{i m p}(E, A, B, C)$ is a set of differential and algebraic equations of the generic form ${ }^{1}$:

$$
\begin{equation*}
E \mathrm{~d} x / \mathrm{d} t=A x+B u \text { and } y=C x, \quad \forall t \geq 0, \tag{7.1}
\end{equation*}
$$

where $E: \mathscr{X}_{d} \rightarrow \underline{\mathscr{X}}_{e q}, A: \mathscr{X}_{d} \rightarrow \underline{\mathscr{X}}_{e q}, B: \mathscr{U} \rightarrow \underline{X}_{e q}$ and $C: \mathscr{X}_{d} \rightarrow \mathscr{Y}$ are linear maps. The spaces $\mathscr{X}_{d} \approx \mathbb{R}^{n}, \mathscr{X}_{e q} \approx \mathbb{R}^{n_{e q}}, \mathscr{U} \approx \mathbb{R}^{m}$ and $\mathscr{Y} \approx \mathbb{R}^{p}$ are usually called the "descriptor"," equation" and the "input" and the "output" spaces, respectively. In [5], it was shown that under the condition $n_{e q} \leq n$ one can constructively describe a linear system with an internal Variable Structure. However, in case $n_{e q}$ $<n$, when the system under consideration is solvable, solutions are generally nonunique. In some sense, there is an additional degree of freedom in (7.1) that can finally incorporate (by an implicit way) a structure variation. In [8], a non-square implicit description was effectively used for modelling and control of various classes of linear systems. This effective control approach also includes systems with internal switches. Moreover, the necessary and sufficient conditions for a unique dynamic system behaviour (expressed in terms of the overall implicit model) are developed. These conditions imply existence of the system parts which are associated with the common internal dynamic equation and also with the algebraic constraints. The last one are "controlled" (in an hidden way) by the degree of freedom. It was also shown how to include the variable internal structure representation into the common square

[^1]implicit descriptions for an (A, E, B) invariant subspace generated by the kernel of the generic output map. The above-mentioned embedding makes it possible to get an unobservable variable internal structure. As a consequence of this effect, a proper closed-loop system with a controllable pre-specified structure was obtained.

In [13], we have taken advantage of the results obtained in [8] for a particular model (a class) of the so-called "time-dependent, autonomous switched systems" [29]. In [10], the authors propose a specific variable structure decoupling control strategy based on the celebrated ideal proportional and derivative (PD) feedback. Moreover, our contribution [14] is dedicated to a proper practical approximation of the ideal PD feedback mentioned above. This control strategy "rejects" in some sense the given variable structure and makes it possible to establish the stability property (stabilization) of both implicit control strategies. In [15], the authors have tackled the descriptor variable observation problem for implicit descriptions having column minimal indices blocks. In this paper, two concrete design procedures are considered, namely, the (i) Linear descriptor observers approach (based on the fault detection techniques) and the (ii) Indirect variable descriptor observers technique. The last one is based on the finite time structure detection methodology. In the first design scheme, the observer is composed of the celebrated Beard-Jones filter which makes it possible to observe the existing degree of freedom in rectangular implicit representations. Since this observation is accomplished by a pole-zero cancellation, this technique is reserved to minimum phase systems. The second idea from the contribution mentioned above is based on an adaptive structure detection. This technique is implemented in finite time and guarantees avoiding of possible stability problems (due to the temporarily unstable closed-loop systems into the detection procedure [11]).

Our contribution is organized as follows. In Sect.7.2, we review a class of timedependent autonomous switched systems which can be studied in combination with the newly developed approach of the linear time-invariant implicit systems [8, 13]. In Sect. 7.3, we review some properties of the rectangular implicit representations [8, 12]. Section 7.4 is devoted to the important structural property associated with the system reachability $[6,8,9,12,16]$. Section 7.5 includes the control strategy development for the rectangular implicit representations when the descriptor variable is available [8, 14]. In Sect. 7.6, we present some numerical simulations. Section 7.7 summarizes our contribution.

7.2 Time-Dependent Autonomous Switched Systems

In [13], taking into consideration the analytic results obtained in [8], an important class of the so-called time-dependent autonomous switched systems [29, 40] has been considered. It can be formally represented by the following state-space representation $\Sigma^{\text {state }}\left(A_{q_{i}}, B, C_{q_{i}}\right)$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \bar{x}=A_{q_{i}} \bar{x}+B u \text { and } y=C_{q_{i}} \bar{x} \tag{7.2}
\end{equation*}
$$

where u and y are the input and output variables. Here, q_{i} are elements of a finite set of indexes (locations) \mathscr{Q}. The system remains in location

$$
q_{i} \in \mathscr{Q}=\left\{q_{1}, \ldots, q_{\eta} \mid q_{i} \in \mathbb{R}^{\mu}, i \in\{1, \ldots, \eta\}\right\}
$$

for all time instants $t \in\left[T_{i-1}, T_{i}\right)$, and some $i \in \mathbb{N}$,

$$
T_{i-1} \in \mathfrak{T}\left\{T_{i} \in \mathbb{R}^{+} \mid T_{0}=0, T_{i-1}<T_{i} \forall i \in \mathbb{N} \text {, with } \lim _{i \rightarrow \infty} T_{i}=\infty\right\} .
$$

The matrices $A_{q_{i}}$ and $C_{q_{i}}$ have here a particular structure (cf. [33, 42]):

$$
\begin{equation*}
A_{q_{i}}=\bar{A}_{0}+\bar{A}_{1} \bar{D}\left(q_{i}\right) \text { and } C_{q_{i}}=\bar{C}_{0}+\bar{C}_{1} \bar{D}\left(q_{i}\right) \tag{7.3}
\end{equation*}
$$

where $B \in \mathbb{R}^{\bar{n} \times m}, \bar{A}_{0} \in \mathbb{R}^{\bar{n} \times \bar{n}}, \bar{C}_{0} \in \mathbb{R}^{p \times \bar{n}}, \bar{A}_{1} \in \mathbb{R}^{\bar{n} \times \hat{n}}, \bar{C}_{1} \in \mathbb{R}^{p \times \hat{n}}$ and $\bar{D}\left(q_{i}\right) \in$ $\mathbb{R}^{\hat{n} \times \bar{n}}, i \in\{1, \ldots, \eta\}$. Moreover, \bar{A}_{1} and B are monic, C_{1} and $\bar{D}\left(q_{i}\right)$ are epic, and $\bar{D}(0)=0$.

Let us first introduce an illustrative example which will be used along with this chapter.

7.2.1 Example (Part 1)

Consider (7.2) and (7.3) with the following state-space matrices $(q=(\alpha, \beta))$:

$$
\begin{align*}
\bar{A}_{0}= & {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \bar{A}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \bar{C}_{0}=\left[\begin{array}{ll}
0 & 2
\end{array}\right], \bar{C}_{1}=[1], \bar{D}(q)=[\alpha \beta], } \\
& q \in\left\{q_{1}, q_{2}, q_{3}\right\}, q_{1}=(-1,-1), q_{2}=(-1,0), q_{3}=(-1,-2) . \tag{7.4}
\end{align*}
$$

Here

$$
A_{q_{i}}=\left[\begin{array}{cc}
\alpha & (1+\beta) \tag{7.5}\\
(1+\alpha) & \beta
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C_{q_{i}}=[\alpha(\beta+2)] .
$$

For a pair (α, β) we have an expression of the transfer function $(i \in\{1,2,3\})$

$$
\begin{equation*}
F_{q_{i}}(\mathrm{~s})=C_{q_{i}}\left(\mathrm{sI}-A_{q_{i}}\right)^{-1} B=\frac{(\beta+2) \mathrm{s}-\alpha}{(\mathrm{s}+1)(\mathrm{s}-(1+\alpha+\beta))} \tag{7.6}
\end{equation*}
$$

For the possible three index values $q \in \mathscr{Q}$, we obtain the corresponding three dynamic behaviours [37, 44, 45]:

$$
\begin{align*}
& \mathfrak{B}_{q_{1}}^{\infty}=\left\{(u(\cdot), y(\cdot)) \in \mathcal{C}^{\infty}\left(\mathcal{I}_{i}, \mathbb{R}^{2}\right) \left\lvert\,[-1 \mid(\mathrm{d} / \mathrm{dt}+1)]\left[\frac{u}{y}\right]=0\right.\right\} \\
& \mathfrak{B}_{q_{2}}^{\infty}=\left\{(u(\cdot), y(\cdot)) \in \mathcal{C}^{\infty}\left(\mathcal{I}_{j}, \mathbb{R}^{2}\right) \left\lvert\,[-(2 \mathrm{~d} / \mathrm{dt}+1) \mid(\mathrm{d} / \mathrm{dt}+1)(\mathrm{d} / \mathrm{dt})]\left[\frac{u}{y}\right]=0\right.\right\} \\
& \mathfrak{B}_{q_{3}}^{\infty}=\left\{(u(\cdot), y(\cdot)) \in \mathcal{C}^{\infty}\left(\mathcal{I}_{k}, \mathbb{R}^{2}\right) \left\lvert\,[-1 \mid(\mathrm{d} / \mathrm{dt}+1)(\mathrm{d} / \mathrm{dt}+2)]\left[\frac{u}{y}\right]=0\right.\right\} \tag{7.7}
\end{align*}
$$

associated with the disjoints $\mathcal{I}_{i}, \mathcal{I}_{j}, \mathcal{I}_{k} \in\left\{\mathcal{I}_{\tau}=\left[T_{\tau-1}, T_{\tau}\right) \subset \mathbb{R}^{+} \mid \tau \in \mathbb{N}, T_{\tau-1} \in \mathfrak{T}\right\}$, $i, j, k \in \mathbb{N}$.

Taking into consideration the dynamic "behaviour" determined by Eq.(7.7), one can interpret it as a result of formally different state-space representations. However, one can show that it is a consequence of the same system represented by (7.2), (7.3) and by (7.4). The evident change of its internal structure is caused by the pole-zero cancellation. The last one generates uncontrollable and/or unobservable modes, see Fig. 7.1.

Comparing Fig. 7.1 with the dynamic behaviours (7.7), one can conclude that the lack of order of $\mathfrak{B}_{q_{1}}^{\infty}$ is due to an unobservable mode $\overline{\mathcal{O}}$. In fact, one could carefully handle the unobservable subspace for getting a desired internal structure. Indeed, in [13] we have taken an advantage of the particular structure (7.3) in the sense of handling the unobservable subspace. This approach also includes the consequent changes of structure inside a known set of models. Let us refer in that connection to the so-called ladder systems which consider irreducible factors of order 1 over \mathbb{R}, irreducible factors of order 2 over \mathbb{R} and lead/lag compensation networks [7, 13].

Fig. 7.1 Structural properties of the state-space representation $\Sigma^{\text {state }}\left(A_{q_{i}}, B, C_{q_{i}}\right)$ with matrices (7.5). The characteristic polynomial is $\operatorname{det}\left(\mathrm{sI}-A_{q_{i}}\right)=(\mathrm{s}+1)(\mathrm{s}-(1+\alpha+\beta))$, the
 $\operatorname{det}\left[\frac{\alpha}{\left(\alpha^{2}+(\alpha+1)(\beta+2)\right)(\alpha(\beta+1)+\beta(\alpha+2))}\right]=-(2+\alpha+\beta)^{2}$, respectively

As it is shown in the next sections, the particular matrices' structure (7.3) of the time-dependent autonomous switched systems (7.2) enables its representation by time-independent linear rectangular implicit descriptions (7.1). The corresponding control here is given in the form of static or dynamic descriptor variable feedbacks.

7.3 Implicit Systems

Let us come back to the time-dependent autonomous switched systems described by (7.2) and (7.3). We next define the descriptor variable $x=\left[\begin{array}{ll}\bar{x}^{T} & \hat{x}^{T}\end{array}\right]^{T}$, where $\hat{x}=$ $-\bar{D}\left(q_{i}\right) \bar{x}$, and get the following expression:

$$
\begin{align*}
{\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}} x } & =\left[\begin{array}{cc}
\bar{A}_{0} & -\bar{A}_{1} \\
\bar{D}\left(q_{i}\right) & \mathrm{I}
\end{array}\right] x+\left[\begin{array}{c}
B \\
0
\end{array}\right] u \\
y & =\left[\bar{C}_{0}-\bar{C}_{1}\right] x . \tag{7.8}
\end{align*}
$$

From (7.8), we easily deduce that all the possible structure variations of (7.2) and (7.3) share the same dynamics represented by the rectangular implicit representation:

$$
\left[\begin{array}{ll}
\mathrm{I} & 0 \tag{7.9}
\end{array}\right] \mathrm{d} x / \mathrm{d} t=\left[\bar{A}_{0}-\bar{A}_{1}\right] x+B u \text { and } y=\left[\bar{C}_{0}-\bar{C}_{1}\right] x .
$$

So, if there is a static or dynamic descriptor variable feedback controlling the rectangular implicit representation (7.9), it also controls (7.2) and (7.3).

We next review some properties of the rectangular implicit representations. These useful properties make it easy to study the time-dependent autonomous switched systems in the theoretic framework of linear time-invariant implicit systems theory.

7.3.1 Existence of Solution

Let us begin with some formal definitions of the implicit representation $\Sigma^{i m p}(E$, A, B, C) of the generic form (cf. (7.1)).

Definition 7.1 (Implicit representation) An implicit representation, $\Sigma^{i m p}(E, A, B$, C), is a set of differential and algebraic equations of the form (7.1), where

Hypothesis $\boldsymbol{H} 1 . \operatorname{Ker} B=\{0\}$ and $\operatorname{Im} C=\mathscr{Y}$.
Hypothesis $\boldsymbol{H} 2 . \operatorname{Im}\left[\begin{array}{lll}E & A & B\end{array}\right]=\underline{\mathscr{X}}_{e q}$.
Definition 7.2 (Input/descriptor system [12, 24, 37]) An implicit representation $\Sigma^{i m p}(E, A, B)$,

$$
\begin{equation*}
E \mathrm{~d} x / \mathrm{d} t=A x+B u \forall t \geq 0, \tag{7.10}
\end{equation*}
$$

is called an input/descriptor system, when for all initial condition $x_{0} \in \mathscr{X}_{d}$, there exists at least one solution $(u, x) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right)$, such that $x(0)=x_{0}$. The input/descriptor system is completely defined by a triple: $\Sigma_{i / d}=\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right.$, $\mathfrak{B}_{[E, A, B]}$), with behaviour:

$$
\mathfrak{B}_{[E, A, B]}=\left\{(u, x) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right) \left\lvert\,[(E \mathrm{~d} / \mathrm{dt}-A)-B]\left[\begin{array}{l}
x \tag{7.11}\\
u
\end{array}\right]=0\right.\right\}
$$

At this point, it is important to clarify what exactly means the qualitative expression "there exists at least one solution".

Let us first review the existence of solution for two conceptually crucial points:

1. given any initial condition and
2. for all admissible inputs.

7.3.1.1 Existence of Solution Given Any Initial Condition

A. Behavioural approach

Following Hautus [20] and Hautus and Silverman [21], Geerts [18] generalized the solvability results of [19]. An important advantage of this generalization is the natural way of definition. It is based on the distributional framework [41] and, moreover, considers the usual time domain associated with the ordinary differential equations. This fact constitutes the real starting point of the so-called behavioural approach [37]. Geerts introduced the following definition for the distributional version ${ }^{2}$ of the implicit representation (7.10) $)^{3}: p E x=A x+B u+E x_{0}$.

Definition 7.3 (C-solvability in the function sense [18]) Given the solution set, $S_{C}\left(x_{0}, u\right) \stackrel{\text { def }}{=}\left\{x \in \mathscr{C}_{\text {imp }}^{n_{d}} \mid[p E-A] x=B u+E x_{0}\right\}$, the implicit representation (7.10) is C-solvable in the function sense if $\forall x_{0} \in \mathscr{X}_{d} \exists u \in \mathscr{C}_{\mathrm{sm}}^{m}: S_{C}\left(x_{0}, u\right) \cap$ $\mathscr{C}_{\mathrm{sm}}^{n} \neq \emptyset$. Given the "consistent initial conditions set", $\mathcal{I}_{C} \stackrel{\text { def }}{=}\left\{z_{0} \in \mathscr{X}_{d} \mid \exists u \in \mathscr{C}_{\mathrm{sm}}^{m}\right.$ $\left.\exists x \in S_{C}\left(z_{0}, u\right) \cap \mathscr{C}_{\mathrm{sm}}^{n_{d}}: x\left(0^{+}\right)=z_{0}\right\}$, and the "weakly consistent initial conditions set", $\mathcal{I}^{w} \stackrel{\text { def }}{=}\left\{z_{0} \in \mathscr{X}_{d} \mid \exists u \in \mathscr{C}_{\mathrm{sm}}^{m} \exists x \in S_{C}\left(z_{0}, u\right) \cap \mathscr{C}_{\mathrm{sm}}^{n_{d}}\right\}$, a point $x_{0} \in \mathscr{X}_{d}$ is called C-consistent if $x_{0} \in \mathcal{I}_{C}$ and weakly C-consistent if $x_{0} \in \mathcal{I}^{w}$.

The C-solvability in the function sense is concerned with solutions only composed of some arbitrarily often differentiable ordinary functions. The two notions of consistency, C-consistent and weakly C-consistent, lead to smooth solutions, namely,

[^2]with no impulsions, but the C-consistency avoids jumps at the origin, namely, the smooth solutions are continuous on the left. Note that the weakly C-consistent case enables jumps at the origin.

Geerts in [18] characterized the existence of solutions for every initial condition in his main result (see Corollary 3.6, Proposition 4.2 and Theorem 4.5). Hereafter, we summarize some results concerning smooth solutions, together with their geometric equivalences (see [12] for details).

Theorem 7.1 (C-solvability in the function sense [18]) If $\boldsymbol{H} 2$ is fulfilled, then the implicit representation (7.10) is C -solvable in the function sense if and only if $\mathcal{I}^{w}=$ \mathscr{X}_{d}, namely, if and only if $\operatorname{Im} E+\mathbf{A} \operatorname{Ker} E+\operatorname{Im} B=\underline{\mathscr{X}}_{\text {eq }}$, i.e. if and only if

$$
\begin{equation*}
E \mathscr{V}_{\mathscr{X}_{d}}^{*}=\operatorname{Im} E . \tag{7.12}
\end{equation*}
$$

Moreover, the initial conditions will be C -consistent, $\mathcal{I}_{C}=\mathscr{X}_{d}$, if and only if $\operatorname{Im} E+$ $\operatorname{Im} B=\underline{\mathscr{X}}_{\text {eq }}$, i.e. if and only if

$$
\begin{equation*}
E \mathscr{V}_{\mathscr{X}_{d}}^{*}+\operatorname{Im} B=\underline{\mathscr{X}}_{e q} . \tag{7.13}
\end{equation*}
$$

$\mathscr{V}_{\mathscr{X}_{d}}^{*}$ is the supremal (A, E, B)-invariant subspace contained in $\mathscr{X}_{d}[30,43]$,

$$
\begin{equation*}
\mathscr{V}_{\mathscr{\mathscr { C }}}^{*} \stackrel{\text { def }}{=} \sup \left\{\mathscr{V} \subset \mathscr{X}_{d} \mid A \mathscr{V} \subset E \mathscr{V}+\operatorname{Im} B\right\}, \tag{7.14}
\end{equation*}
$$

which is the limit of the following algorithm:

$$
\begin{equation*}
\mathscr{V}_{\mathscr{X}_{d}}^{0}=\mathscr{X}_{d}, \quad \mathscr{V}_{\mathscr{X}_{d}}^{\mu+1}=A^{-1}\left(E \mathscr{V}_{\mathscr{X}_{d}}^{\mu}+\operatorname{Im} B\right) . \tag{7.15}
\end{equation*}
$$

B. Viability approach

In order to study the reachability problem for implicit systems, Frankowska in [16] introduced the specific set-valued map (the set of all admissible velocities) $\mathbf{F}: \mathscr{X}_{d} \rightsquigarrow$ $\mathscr{X}_{d}, \mathbf{F}(x)=E^{-1}(A x+\operatorname{Im} B)=\{v \in \mathscr{X} \mid E v \in A x+\operatorname{Im} B\}$, and considered the generic differential inclusion:

$$
\begin{equation*}
\mathrm{d} x / \mathrm{d} t \in \mathbf{F}(x), \quad \text { where } x(0)=x_{0} . \tag{7.16}
\end{equation*}
$$

Frankowska [16] showed that the solutions of (7.10) and (7.16) are the same. Additionally, the meaning of a viable solution was constructively clarified. The largest subspace of such viable solutions is given as follows.

Definition 7.4 (Viability kernel $[2,16])$ An absolutely continuous function, $x: \mathbb{R}^{+}$ $\rightarrow \mathscr{X}_{d}$, is called a trajectory of (7.16), if $x(0)=x_{0}$ and $\mathrm{d} x / \mathrm{d} t \in \mathbf{F}(x)$ for almost every $t \in \mathbb{R}^{+}$, that is to say, if there exists a measurable function, $u: \mathbb{R}^{+} \rightarrow \mathscr{U}$, such that $x(0)=x_{0}$ and $E \mathrm{~d} x / \mathrm{d} t=A x+B u$ for almost every $t \in \mathbb{R}^{+}$.

Let \mathscr{K} be a subspace ${ }^{4}$ of \mathscr{X}_{d}. A trajectory x of (7.16) is called viable in \mathscr{K}, if $x(t) \in \mathscr{K}$ for all $t \geq 0$. The set of such trajectories is called the set of viable solutions in \mathscr{K}. The subspace \mathscr{K} is called a viability domain of \mathbf{F}, if for all $x \in \mathscr{K}: \mathbf{F}(x) \cap \mathscr{K}$ $\neq \emptyset$. The subspace \mathscr{K} is called the viability kernel of (7.16) when it is the largest viability domain of \mathbf{F}.

Theorem 7.2 (Viability kernel [2]) The supremal (A, E, B)-invariant subspace contained in $\mathscr{X}_{d}, \mathscr{V}_{\mathscr{X}_{d}}^{*}$, is the viability kernel of \mathscr{X}_{d} for the set-valued map, \mathbf{F} : $\mathscr{X}_{d} \rightsquigarrow \mathscr{X}_{d}, \mathbf{F}(x)=E^{-1}(A x+\operatorname{Im} B)$. Moreover, for all $x_{0} \in \mathscr{V}_{\mathscr{X}_{d}}^{*}$, there exists a trajectory, $x \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{V}_{\mathscr{X}_{d}}^{*}\right)$, solution of (7.10), satisfying $x(0)=x_{0}$.

A singular system is "strict" when the viability kernel coincides with the whole descriptor space, \mathscr{X}_{d}, namely,

$$
\begin{equation*}
\mathscr{V}_{\mathscr{X}_{d}}^{*}=\mathscr{X}_{d} \tag{7.17}
\end{equation*}
$$

As we have shown in Theorem 7.1, the specific condition (7.13) implies that for any initial condition $\lim _{t \rightarrow 0^{+}} x(t)=x_{0} \in \mathscr{X}_{d}$, there exists at least one solution pair $(u, x) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right)$ of (7.10).

7.3.1.2 Existence of Solution for All Admissible Inputs

When an implicit representation $\Sigma^{i m p}(E, A, B)$ has a solution for all admissible inputs, it is simply called solvable.

Definition 7.5 (Solvable representation [4]) The implicit representation (7.10) is called solvable, if for any $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$, there exists at least one trajectory $x(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{X}_{d}\right)$ solution of $[E \mathrm{~d} / \mathrm{d} t-A] x(t)=B u(t), \forall t \geq 0$.

Lemma 7.1 (Existence of solution [25, 27, 28]) The implicit representation (7.10) admits at least one solution for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$ if and only if

$$
\begin{equation*}
\operatorname{rang}[\lambda E-A B]=\operatorname{rang}[\lambda E-A], \text { for almost all } \lambda \in \mathbb{C} \tag{7.18}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{Im} B \subset \operatorname{Im}(\lambda E-A), \text { for almost any } \lambda \in \mathbb{C} \tag{7.19}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\operatorname{Im} B \subset \mathcal{B}_{1}^{*}+\mathcal{B}_{2}^{*} \tag{7.20}
\end{equation*}
$$

[^3]where \mathcal{B}_{1}^{*} and \mathcal{B}_{2}^{*} are the limits of the following geometric algorithms:
\[

$$
\begin{align*}
& \mathcal{B}_{1}^{0}=\mathscr{X}_{e q}, \quad \mathcal{B}_{1}^{\mu+1}=E A^{-1} \mathcal{B}_{1}^{\mu} \tag{7.21}\\
& \mathcal{B}_{2}^{0}=\{0\}, \quad \mathcal{B}_{2}^{\mu+1}=A E^{-1} \mathcal{B}_{2}^{\mu} \tag{7.22}
\end{align*}
$$
\]

Corollary 7.1 (Existence of solution [8]) The following statements hold true:

1. If the geometric condition

$$
\begin{equation*}
\operatorname{Im} A+\operatorname{Im} B \subset \operatorname{Im} E \tag{7.23}
\end{equation*}
$$

holds, then the implicit representation (7.10) admits at least one solution for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$, and for any initial condition $\lim _{t \rightarrow 0^{+}} x(t)=x_{0} \in \mathscr{X}_{d}$, there exists at least one trajectory $(u, x) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right)$ solution of (7.10).
2. If the geometric condition

$$
\begin{equation*}
\operatorname{Im} E+\operatorname{Im} A=\mathscr{X}_{e q} \tag{7.24}
\end{equation*}
$$

holds, then the implicit representation (7.10) admits at least one solution for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$.

Indeed, (7.23) implies $\mathcal{B}_{1}^{*}=\operatorname{Im} E$ and $\mathscr{V}_{\mathscr{X}_{d}^{*}}=\mathscr{X}_{d}$, and (7.24) implies (7.19).
(a) (b)

(c) \downarrow
(d)
(e)

Fig. 7.2 Connexions between the notions of existence of solution. \mathbf{a}, \mathbf{b} Conditions of existence of at least one solution for all admissible inputs of Lebret [25]. c Condition of viable solution of Aubin and Frankowska [2] or smooth solution (without any jump) of Özçaldiran and Haliločlu [36]. d Condition of Geerts [18] guaranteeing that the set of consistent initial conditions equals the whole space. e Condition of C-solvability in the function sense of Geerts [18] or the condition of Przyluski and Sosnowski [38] guaranteeing that the set of initial conditions of smooth solutions (with possible jumps) equals the whole space, or the impulse controllability condition of Ishihara and Terra [23], or the impulse-mode controllability with arbitrary initial conditions of Hou [22]

In Fig. 7.2, we compare the solvability conditions of Geerts (7.12) and (7.13), based on a distributional framework, with the solvability condition of Frankowska (7.17), based on a viability approach; as well as the solvability conditions of Lebret [25], (7.19) and (7.20).

7.3.2 Proper Implicit Representations

We now are interested in the proper linear systems in the presence of internal switches, which can be represented and controlled by means of implicit representations. Let us first introduce some basic definitions and present the necessary analytic results which naturally lead to implicit representations given by a proper linear system with internal structure variations.

Definition 7.6 (Regularity [17]) A pencil $[\lambda E-A]$, with $\lambda \in \mathbb{C}$, is called regular if it is square and its determinant is not the zero polynomial. An implicit representation $\Sigma^{i m p}(E, A, B, C)$ is called regular if its pencil $[\lambda E-A]$ is regular.

Definition 7.7 (Internal properness $[1,3])$ An implicit representation $\Sigma^{i m p}(E, A$, $B, C)$ is called internally proper if its pencil $[\lambda E-A]$ is proper, namely, if its pencil is regular and has no infinite elementary divisor greater than 1 . In other words, there is no derivative action in the system dynamics.

It is common knowledge that an implicit representation is completely characterized by the canonical Kronecker form of its pencil $[\lambda E-A]$, with $\lambda \in \mathbb{C}$. Usually, there are four possible types of suitable blocks [17]:

1. Finite elementary divisors (fed), as for example, $\left[\lambda E_{f e d}-A_{f e d}\right]$ $=\left[\begin{array}{cc}(\lambda-\alpha) & 1 \\ 0 & (\lambda-\alpha)\end{array}\right]$. The fed corresponds to the proper part of the system (integral actions), and it was geometrically characterized by Wong [46] and Bernhard [3].
2. Infinite elementary divisors (ied), as for example, $\left[\lambda E_{\text {ied }}-A_{i e d}\right]=\left[\begin{array}{cc}1 & \lambda \\ 0 & 1\end{array}\right]$. The ied corresponds to the non-proper part of the system (time-derivative actions), and it was geometrically characterized by Armentano [1].
3. Minimal column indices (mci), as for example, $\left[\lambda E_{m c i}-A_{m c i}\right]=\left[\begin{array}{ccc}\lambda & 1 & 0 \\ 0 & \lambda & 1\end{array}\right]$. The $m c i$ corresponds to the existence of a certain degree of freedom (more variables than equations), and it was geometrically characterized by Armentano [1].
4. Minimal rowindices (mri), as for example, $\left[\lambda E_{m r i}-A_{m r i}\right]=\left[\begin{array}{cc}\lambda & 0 \\ 1 & \lambda \\ 0 & 1\end{array}\right]$. The $m r i$ is related with the existence of algebraic and differential constraints on the external signals. For example, an admissible input has to satisfy some given algebraic and differential equations. Clearly, [1] geometrically characterized the mri.

Example 7.1 Let us consider the following implicit representation:

$$
\begin{array}{r}
{[E \mathrm{~d} / \mathrm{dt}-A] x-B u=\left[\begin{array}{c|cc}
1_{i e d} & 0 & 0 \\
\hline 0 & \left\lvert\, \begin{array}{c}
{[\mathrm{d} / \mathrm{dt} 1]} \\
m c i
\end{array}\right.
\end{array}\right]\left[\begin{array}{c}
x_{i e d} \\
\frac{\bar{x}_{m c i}}{\hat{x}_{m c i}}
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1
\end{array}\right] u=0,} \\
y-C x=y-\left[\begin{array}{ll}
1 \mid 2 & -1
\end{array}\right]\left[\begin{array}{c}
x_{i e d} \\
\bar{x}_{m c i} \\
\hat{x}_{m c i}
\end{array}\right]=0, \tag{7.25}
\end{array}
$$

and let us suppose that the degree of freedom satisfies the algebraic equation:

$$
D x=\left[\begin{array}{lll}
a \mid b c
\end{array}\right]\left[\begin{array}{l}
\frac{x_{i e d}}{\bar{x}_{m c i}} \tag{7.26}\\
\hat{x}_{m c i}
\end{array}\right]=0
$$

1. if $[a \mid b c]=\left[\begin{array}{lll}1 \mid & 1 & 0\end{array}\right]$, we then get the non-proper external behaviour:

$$
\begin{equation*}
y(t)=\mathrm{d} u(t) / \mathrm{d} t \tag{7.27}
\end{equation*}
$$

2. if $[a \mid b c]=[0 \mid 1-1]$, we then get the proper external behaviour:

$$
\begin{equation*}
y(t)=\mathrm{e}^{-t} \bar{x}_{c}(0)+\int_{0}^{t} \mathrm{e}^{-(t-\tau)} u(\tau) \mathrm{d} \tau-u(t) \tag{7.28}
\end{equation*}
$$

As we can see from the analysis realized above the existence of the degree of freedom can lead to a non-proper solution. This fact implies the necessity to add some specific geometric conditions on the degree of freedom in order that proper solutions are guaranteed.

Let us consider an implicit representation $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C)$, where $\mathbb{E}: \mathscr{X}_{d} \rightarrow \underline{\mathscr{X}}_{g}$, $\mathbb{A}: \mathscr{X}_{d} \rightarrow \mathscr{X}_{g}, \mathbb{B}: \mathscr{U} \rightarrow \underline{X}_{g}, C: \mathscr{X}_{d} \rightarrow \mathscr{Y}$, such that the following hypotheses are satisfied:

Hypothesis H3. $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C)$ satisfies the standard assumptions $\mathbf{H} 1$ and $\mathbf{H} 2$, namely,

$$
\begin{equation*}
\operatorname{Ker} \mathbb{B}=\{0\}, \quad \operatorname{Im} C=\mathscr{Y} \text { and } \operatorname{Im}[\mathbb{E} \mathbb{A} \mathbb{B}]=\underline{\mathscr{X}}_{g} . \tag{7.29}
\end{equation*}
$$

Hypothesis $\boldsymbol{H} 4$. $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C)$ admits at least one solution for all $u(\cdot)$ $\in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$, which is implied by (cf. Corollary 7.1 (7.24)):

$$
\begin{equation*}
\operatorname{Im} \mathbb{E}+\operatorname{Im} \mathbb{A}=\underline{\mathscr{X}}_{g} \tag{7.30}
\end{equation*}
$$

Hypothesis H5. The differential part of $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C)$, say $\Sigma^{i r}(E, A, B)$:
$E \mathrm{~d} x / \mathrm{d} t=A x+B u\left(E: \mathscr{X}_{d} \rightarrow \underline{\mathscr{X}}_{e q}, A: \mathscr{X}_{d} \rightarrow \underline{\mathscr{X}}_{e q}, B: \mathscr{U} \rightarrow \underline{\mathscr{X}}_{e q}, \underline{\mathscr{X}}_{e q} \subset\right.$
$\left.\mathscr{X}_{g}\right)$, admits at least one solution for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$, and for any initial condition $\lim _{t \rightarrow 0^{+}} x(t)=x_{0} \in \mathscr{X}_{d}$, there exists at least one trajectory $(u, x) \in$ $\mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right)$ solution of $\Sigma^{i r}(E, A, B)$, which is implied by (cf. Corollary 7.1: (7.23))

$$
\begin{equation*}
\operatorname{Im} A+\operatorname{Im} B \subset \operatorname{Im} E \tag{7.31}
\end{equation*}
$$

Keeping in mind assumptions (7.29), (7.30) and (7.31), the implicit representation $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C)$ can be expressed as follows:

$$
\underbrace{\left[\begin{array}{c}
E \tag{7.32}\\
0
\end{array}\right]}_{\mathbb{E}} \frac{\mathrm{d}}{\mathrm{dt}} x=\underbrace{\left[\begin{array}{l}
A \\
D
\end{array}\right]}_{\mathbb{A}} x+\underbrace{\left[\begin{array}{c}
B \\
0
\end{array}\right]}_{\mathbb{B}} u \text { and } y=C x .
$$

Lemma 7.2 ($\Sigma^{i g}$ internally proper [8]) Let us consider the implicit global representation $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C),(7.32)$, satisfying the standard assumptions (7.29), and the solvability assumptions (7.30) and (7.31). Then, (7.32) is internally proper if and only if

$$
\begin{equation*}
\operatorname{Ker} D \oplus \operatorname{Ker} E=\mathscr{X}_{d} . \tag{7.33}
\end{equation*}
$$

Let us note that assumptions (7.29.c) and (7.30) are equivalent to

$$
\begin{equation*}
\underline{\mathscr{X}}_{g}=\operatorname{Im} E \oplus \operatorname{Im} D . \tag{7.34}
\end{equation*}
$$

Let us introduce the following implicit representations definitions.
Definition 7.8 (Rectangular implicit representation) An implicit representation $\Sigma^{i r}(E, A, B, C)$,

$$
\begin{equation*}
E \frac{\mathrm{~d}}{\mathrm{dt}} x=A x+B u \quad \text { and } \quad y=C x \tag{7.35}
\end{equation*}
$$

where the matrices E and A have more columns than rows, and the solvability condition (7.31) is satisfied, is called implicit rectangular representation.

Definition 7.9 (Algebraic constraint) An algebraic constraint is a set of algebraic equations independent of the input variable, $\Sigma^{a l c}(0, D, 0)$:

$$
\begin{equation*}
0=D x, \tag{7.36}
\end{equation*}
$$

where $D: \mathscr{X}_{d} \rightarrow \mathscr{X}_{a l c}$ is a linear map and the finite-dimensional space, $\mathscr{X}_{a l c}$, is called the algebraic constraint space.

Definition 7.10 (Global implicit representation) If we gather the implicit rectangular representation (7.35) with the algebraic constraint (7.36), which describes the degree of freedom, we get the following global implicit representation, $\Sigma^{i g}(\mathbb{E}, \mathbb{A}$, $\mathbb{B}, C)$:

$$
\mathbb{E} \frac{\mathrm{d}}{\mathrm{dt}} x=\mathbb{A} x+\mathbb{B} u \text { and } y=C x
$$

$$
\mathbb{E}=\left[\begin{array}{l}
E \tag{7.37}\\
0
\end{array}\right], \mathbb{A}=\left[\begin{array}{l}
A \\
D
\end{array}\right], \mathbb{B}=\left[\begin{array}{l}
B \\
0
\end{array}\right]
$$

The Cartesian product, $\mathscr{\mathscr { X }}_{g} \stackrel{\text { def }}{=} \underline{\mathscr{X}}_{e q} \times \underline{\mathscr{X}}_{\text {cal }}$, is the space of global equations. We shall assume that (7.34) is satisfied.

7.3.3 Switched Systems

Let us note that the above-mentioned conditions (7.33) and (7.34) imply the following important statement: there exist bases in \mathscr{X}_{d} and also in $\underline{\mathscr{X}}_{g}$ such that (7.32) takes the specific form $\left(\bar{D}\left(q_{i}\right)\right.$ is a variable matrix with respect to the location $\left.q_{i} \in \mathscr{Q}\right)$:

$$
\left[\begin{array}{ll}
\mathrm{I} & 0 \tag{7.38}\\
0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]=\left[\begin{array}{cc}
\bar{A}_{0} & -\bar{A}_{1} \\
\bar{D}\left(q_{i}\right) & \mathrm{I}
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]+\left[\begin{array}{l}
B \\
0
\end{array}\right] u \text { and } y=\left[\bar{C}_{0}-\bar{C}_{1}\right]\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right],
$$

and defining: $\left[\begin{array}{c}\bar{x} \\ \tilde{x}\end{array}\right]=\left[\begin{array}{cc}\mathrm{I} & 0 \\ \bar{D}\left(q_{i}\right) & \mathrm{I}\end{array}\right]\left[\begin{array}{l}\bar{x} \\ \hat{x}\end{array}\right]$, we get

$$
\begin{align*}
{\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{x} \\
\tilde{x}
\end{array}\right] } & =\left[\begin{array}{cc}
\left(\bar{A}_{0}+\bar{A}_{1} \bar{D}\left(q_{i}\right)\right) & 0 \\
0 & \mathrm{I}
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\tilde{x}
\end{array}\right]+\left[\begin{array}{l}
B \\
0
\end{array}\right] u \tag{7.39}\\
y & =\left[\left(\bar{C}_{0}+\bar{C}_{1} \bar{D}\left(q_{i}\right)\right)-\bar{C}_{1}\right]\left[\begin{array}{l}
\bar{x} \\
\tilde{x}
\end{array}\right],
\end{align*}
$$

which coincides with time-dependent autonomous switched systems (7.2) with the particular structure (7.3).

Remark 7.1 (Implicit representation of switched systems) The time-dependent autonomous switched systems (7.2), with the particular structure (7.3), are described by the global implicit representation $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)(7.37)$, where the linear maps $E: \mathscr{X}_{d} \rightarrow \underline{X}_{e q}, A: \mathscr{X}_{d} \rightarrow \underline{X}_{e q}, B: \mathscr{U} \rightarrow \underline{\mathscr{X}}_{e q}, C: \mathscr{X}_{d} \rightarrow \mathscr{Y}$ and $D_{i}: \mathscr{X}_{d} \rightarrow$ $\mathscr{X}_{\text {alc }}$ are equal to

$$
E=\left[\begin{array}{ll}
\mathrm{I} & 0 \tag{7.40}
\end{array}\right], A=\left[\bar{A}_{0}-\bar{A}_{1}\right], C=\left[\bar{C}_{0}-\bar{C}_{1}\right], D_{i}=\left[\bar{D}\left(q_{i}\right) \mathrm{I}\right] .
$$

- The fixed structure of all $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$, which is active for a particular D_{i}, is described by the implicit rectangular representation $\Sigma^{i r}(E, A, B, C)(7.1)$.
- The degree of freedom is characterized by the algebraic constraints $\Sigma^{\text {alc }}\left(0, D_{i}, 0\right)$ (7.36).
- Since $\operatorname{dim} \underline{\mathscr{X}}_{e q}<\operatorname{dim} \mathscr{X}_{d}$, there then exists a degree of freedom.
- Since $\operatorname{Im} A+\operatorname{Im} B \subset \operatorname{Im} E=\mathscr{X}_{e q}, \Sigma^{i r}(E, A, B, C)$ admits at least one solution for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$, and for any initial condition $\lim _{t \rightarrow 0^{+}} x(t)=x_{0} \in$ \mathscr{X}_{d}, there exists at least one trajectory $(u, x) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U} \times \mathscr{X}_{d}\right)$ solution of $\Sigma^{i r}(E, A, B)$.
- Since $\operatorname{Im} D_{i}=\underline{\mathscr{X}}_{a l c}$ and $\underline{\mathscr{X}}_{e q} \times \underline{\mathscr{X}}_{a l c} \approx \mathscr{X}_{d}$ for all $i \in\{1, \ldots, \eta\}$ then the $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$ have unique solutions for any $i \in\{1, \ldots, \eta\}$.
- Since $\operatorname{Ker} D_{i} \oplus \operatorname{Ker} E=\mathscr{X}_{d}$ for all $i \in\{1, \ldots, \eta\}$ then the implicit global representations $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$ are proper.

7.3.4 Example (Part 2)

Let us continue Example 7.2.1

A. Global implicit representation

The state-space representation $\Sigma^{\text {state }}\left(A_{q_{i}}, B, C_{q_{i}}\right)$, (7.2) and (7.5), is also represented by the following global implicit representation (cf. (7.39)):

Let us note that

- $\operatorname{Im} A+\operatorname{Im} B \subset \operatorname{Im} E, \quad \underline{X}_{g}=E \operatorname{Ker} D \oplus D \operatorname{Ker} E=\operatorname{Im} E \oplus \operatorname{Im} D \quad$ and $\quad \mathscr{X}_{d}$ $=\operatorname{Ker} D \oplus \operatorname{Ker} E$ then the implicit global representation (7.41) is externally proper (cf. Lemma 7.2).
- The part limited to $\operatorname{Ker} E$ and $D \operatorname{Ker} E$ is algebraically redundant.
- The part of the implicit global representation (7.41) limited to $\operatorname{Ker} D$, in the domain, and to $E \operatorname{Ker} D$, in the co-domain, which matrices are depicted with continuous lines, coincides with the state representations (7.2) and (7.5).
- The upper part of the implicit global representation (7.41) is an implicit rectangular representation, in which matrices are depicted with dashed lines. This part explicitly contains the changes in the behaviour which are due to the switches in the α and β parameters.
- The lower part of the implicit global representation (7.41) is an algebraic constraint which includes the components of the descriptor variable which are always zero.

B. Fixed structure

Premultiplying (7.41) by $\left[\begin{array}{rr|r}1 & 0 & -1 \\ 0 & 1 & -1 \\ \hline 0 & 0 & 1\end{array}\right]$, and defining: $x=\left[\begin{array}{l}\bar{x} \\ \hat{x}\end{array}\right]=\left[\begin{array}{rr|r}1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline-\alpha-\beta & 1\end{array}\right]\left[\begin{array}{l}\bar{x} \\ \frac{\tilde{x}}{}\end{array}\right]$, we get the implicit global representation $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$ (cf. (7.37)):

$$
\left[\begin{array}{lll}
1 & 0 & 0 \tag{7.42}\\
0 & 1 & 0 \\
\hline 0 & 0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}} x=\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & -1 \\
\hline \alpha & \beta & 1
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\frac{1}{0}
\end{array}\right] u \text { and } y=\left[\begin{array}{lll}
0 & 2 & -1
\end{array}\right] x .
$$

In the upper part of the implicit global representation (7.42), we get the rectangular implicit representation $\Sigma^{i r}(E, A, B, C)$ (cf. (7.35)):

$$
\left[\begin{array}{lll}
1 & 0 & 0 \tag{7.43}\\
0 & 1 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}} x=\left[\begin{array}{lll}
0 & 1 & -1 \\
1 & 0 & -1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \text { and } y=\left[\begin{array}{ll}
0 & 2
\end{array}-1\right] x .
$$

In the lower part of the implicit global representation (7.42), we get the algebraic constraint $\Sigma^{a l c}\left(0, D_{i}, 0\right)(c f . ~(7.36))$:

$$
0=\left[\begin{array}{lll}
\alpha & \beta & 1 \tag{7.44}
\end{array}\right] x .
$$

C. Kronecker normal form

In order to better understand how the internal structure variation is acting in the implicit representations $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$ and $\Sigma^{i r}(E, A, B, C)$, let us obtain their respective Kronecker normal forms.
C. 1 Kronecker normal forms of $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$:

- If $\beta=-1$:

$$
G_{i g 1}\left[\lambda \mathbb{E}-\mathbb{A}_{i}\right] D_{i g 1}=\left[\begin{array}{ccc}
1_{i e d} & 0 & 0 \tag{7.45}\\
0 & \begin{array}{|cc|}
(\lambda-\alpha) \\
\text { fed }
\end{array} & 0 \\
0 & 0 & \boxed{(\lambda+1)} \\
\text { fed }
\end{array}\right]
$$

- If $\beta \neq-1$ and $\alpha+\beta=-2$:

$$
G_{i g 2}\left[\lambda \mathbb{E}-\mathbb{A}_{i}\right] D_{i g 2}=\left[\begin{array}{ccc}
1_{i e d} & 0 & 0 \tag{7.46}\\
0 & \boxed{(\lambda+1)} & 1 \\
0 & 0 & \boxed{f e d} \\
& \boxed{(\lambda+1)} & f e d
\end{array}\right] .
$$

- If $\beta \neq-1$ and $\alpha+\beta \neq-2$:
where $G_{i g 1}=\left[\begin{array}{rrr}0 & 0 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right], \quad D_{i g 1} \quad=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & (1-\alpha) & 1\end{array}\right], \quad G_{i g 2}$

$$
=\left[\begin{array}{ccr}
0 & 0 & -1 \\
1 & 0 & 1 \\
(1+\beta) & -(1+\beta) & 0
\end{array}\right], \quad D_{i g 2} \quad=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 & -\frac{1}{1+\beta} \\
1 & 2 & \frac{\beta}{1+\beta}
\end{array}\right], \quad G_{i g 3} \quad=
$$

$$
\left[\begin{array}{ccr}
0 & 0 & -1 \\
\left(1-\frac{1+\beta}{2+\alpha+\beta}\right) & \frac{1+\beta}{2+\alpha+\beta} & 1 \\
(1+\beta) & -(1+\beta) & 0
\end{array}\right] \text { and } D_{i g 3}=\left[\begin{array}{ccc}
0 & 1 & \frac{1}{2+\alpha+\beta} \\
0 & 1 & \left(\frac{1}{2+\alpha+\beta}-\frac{1}{(1+\beta)}\right) \\
1 & -(\alpha+\beta) & \left(\frac{\beta}{1+\beta}-\frac{\alpha+\beta}{2+\alpha+\beta}\right)
\end{array}\right]
$$

C. 2 Kronecker normal form of $\Sigma^{i r}(E, A, B, C)$:

$$
G_{i r}[\lambda E-A] D_{i r}=\left[\begin{array}{cc}
\begin{array}{|c|}
\lambda 1 \\
m c i \\
00 \\
\hline(\lambda+1) \\
\text { fed }
\end{array} & 0 \tag{7.48}\\
\hline & { }^{(\lambda)}
\end{array}\right]
$$

where $G_{i r}=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ and $D_{i r}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$.
Remark 7.2 (Internal structure variation) When we split the global implicit representation $\Sigma^{i g}(\mathbb{E}, \mathbb{A}, \mathbb{B}, C),(7.41)$, via the global implicit representation $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right), \quad(7.42)$, into the rectangular implicit representation $\Sigma^{i r}(E, A, B, C),(7.43)$, and the algebraic constraint $\Sigma^{\text {alc }}\left(0, D_{k}, 0\right),(7.44)$, we get the common structure of the system which is described by $\Sigma^{i r}(E, A, B, C)(7.43)$.

When comparing the Kronecker normal forms, (7.45), (7.46) and (7.47), of the pencils associated with (7.42), with the Kronecker normal form, (7.48), of the pencil associated with (7.43), we realize that the variable internal structure of the global implicit representation (7.42) is taken into account by the fixed block minimal column index of the Kronecker normal form (7.48), $\lambda 1$, associated with the rectangular implicit representation (7.43).

471833_1_En_7_Chapter \square TYPESET \square DISK \square LE \square CP Disp.:15/4/2019 Pages: $\mathbf{3 8}$ Layout: T1-Standard

7.4 Reachability

Reachability is the most important concept studied in System Theory, since it characterizes the set of vectors which can be reached from the origin, in a finite time, following trajectories, solutions of the system. For state-space representations $\Sigma^{\text {state }}$ $(A, B), \mathrm{d} x / \mathrm{d} t=A x+B u$, this set of vectors is geometrically characterized by the reachability subspace (see, for example, [47]):

$$
\begin{equation*}
\mathscr{R}^{*}=\langle A \mid \operatorname{Im} B\rangle \stackrel{\text { def }}{=} \operatorname{Im} B+A \operatorname{Im} B+\cdots+A^{n-1} \operatorname{Im} B \tag{7.49}
\end{equation*}
$$

and the trajectories are generated by the external control input, u.
For the case of implicit representations-/ $\Sigma^{i m p}(E, A, B), E \mathrm{~d} x / \mathrm{d} t=A x+B u$, where E and A are square but $[\lambda E-A]$ is not necessarily invertible, Özçaldiran extended his geometric characterization of reachability by considering the supremal (A, E, B) reachability subspace contained in $\mathscr{X}_{d}[34,35]$:

$$
\begin{equation*}
\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{V}_{\mathscr{X}_{d}^{*}} \cap \mathscr{S}_{\mathscr{X}_{d}}^{*}, \tag{7.50}
\end{equation*}
$$

where $\mathscr{V}_{\mathscr{X}_{d}}^{*}$ is the supremal (A, E, B)-invariant subspace contained in \mathscr{X}_{d} (7.14), computed by (7.15), and $\mathscr{S}_{\mathscr{X}_{d}}^{*}$ is the infimal (E, A, B)-invariant subspace associated with $\operatorname{Im} B$,

$$
\begin{equation*}
\mathscr{S}_{\mathscr{X}_{d}}^{*}=\inf \left\{\mathscr{S} \subset \mathscr{X}_{d} \mid \mathscr{S}=E^{-1}(A \mathscr{S}+\operatorname{Im} B)\right\} \tag{7.51}
\end{equation*}
$$

which is the limit of the algorithm:

$$
\begin{equation*}
\mathscr{S}_{\mathscr{X}_{d}}^{0}=\operatorname{Ker} E, \quad \mathscr{S}_{\mathscr{X}_{d}}^{\mu+1}=E^{-1}\left(A \mathscr{S}_{\mathscr{X}_{d}}^{\mu}+\operatorname{Im} B\right) \tag{7.52}
\end{equation*}
$$

The geometric characterization of $\mathscr{R}_{\mathscr{X}_{d}}^{*}$, given by (7.50), (7.14) and (7.51), is a nice generalization of the classical state-space characterization (7.49). Indeed, for $\Sigma^{\text {state }}(A, B)=\Sigma^{\text {imp }}(\mathrm{I}, A, B): \mathscr{V}_{\mathscr{X}}^{*}=\mathscr{X}$ and $\mathscr{S}_{\mathscr{X}}^{*}=\langle A \mid \operatorname{Im} B\rangle$. Thus, it would appear quite natural that for the more general representations $\Sigma^{i m p}(E, A, B)$, with E and A not necessarily square, the reachability would be also characterized by $\mathscr{R}_{\mathscr{X}_{d}}^{*}$.

The trueness of this conjecture was established by Frankowska [16] using tools of differential inclusions. But, as enhanced later on, this reachability concept needed to be further determined in order to discriminate the action of an effective external control input from an internal degree of freedom.

Indeed, the trajectories generated by $\Sigma^{i m p}(E, A, B)$ depend on the initial conditions, $x(0)$, and not only on the external control input, but also possibly on internal degrees of freedom, which are completely free and unknown. Since the system $\Sigma^{i m p}(E, A, B)$ represented by (7.10) has more unknowns than equations, when a solution does exist, this is, in general, non-unique. The possible resulting trajectories can be studied within so-called viability domains, see Frankowska [16].

7.4.1 $\mathscr{R}_{\mathscr{X}_{d}}^{*}:$ Reachable Subspace

Frankowska formally defined reachability as follows:
Definition 7.11 (Reachability [16]) The implicit representation (7.10) is called reachable if for any possible $x_{0}, x_{1} \in \mathscr{X}_{d}$ and for any time $t_{1}>t_{0} \geq 0$, there exists a trajectory $x(\cdot)$, solution of (7.10), such that $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$.

And using tools of differential inclusions, she proved for the more general case.
Theorem 7.3 (Reachability $[2,16])$ For any $t_{1}>t_{0} \geq 0$, the reachable subspace of (7.10) at time t_{1}, starting from any initial value $x\left(t_{0}\right)$, is equal to $\mathscr{R}_{\mathscr{X}_{d}}^{*}$. Moreover, $\mathscr{R}_{\mathscr{X}_{d}}^{*}$ is the largest subspace such that for any $x_{0}, x_{1} \in \mathscr{R}_{\mathscr{X}_{d}}^{*}$ and any $t_{1}>t_{0} \geq 0$, there exists a trajectory $x(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{R}_{\mathscr{C}_{d}}^{*}\right)$, solution of (7.10), with $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$.

Note that the reachability Definition 7.11 requires no explicit control action!

In order to have a better understanding of Frankowska's reachability concept, let us decompose the descriptor and equation spaces in function of the supremal (A, E, B)-invariant subspace contained in $\mathscr{X}_{d}, \mathscr{V}_{\mathscr{X}_{d}}^{*}$, and of the supremal (A, E, B) reachability subspace contained in $\mathscr{X}_{d}, \mathscr{R}_{\mathscr{X}_{d}}^{*}$.

In the third Lemma of [12], it is proved that there exist some complementary subspaces, $\mathscr{X}_{1}, \mathscr{X}_{2}, \mathscr{B}_{\mathcal{C}}$ and $\mathscr{R}_{\mathcal{C}}$, such that

$$
\begin{gather*}
\mathscr{X}_{d}=\mathscr{V}_{\mathscr{X}_{d}}^{*} \oplus \mathscr{X}_{1}, \\
\mathscr{V}_{\mathscr{X}_{d}}^{*}=\mathscr{R}_{\mathscr{X}_{d}}^{*} \oplus \mathscr{X}_{2}, \\
\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{R}_{\mathcal{C}} \oplus\left(\mathscr{R}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E\right), \\
\mathscr{X}_{e q}=\left(E \mathscr{V}_{\mathscr{X}_{d}}^{*}+\operatorname{Im} B\right) \oplus A \mathscr{X}_{1}, \\
E \mathscr{V}_{\mathscr{X}_{d}}^{*}+\operatorname{Im} B=\left(A \mathscr{R}_{\mathscr{C}_{d}}^{*}+\operatorname{Im} B\right) \oplus E \mathscr{X}_{2}, \tag{7.54}\\
A \mathscr{R}_{\mathscr{X}_{d}}^{*}+\operatorname{Im} B=E \mathscr{R}_{\mathscr{X}_{d}}^{*} \oplus \mathscr{B}_{\mathcal{C}},
\end{gather*}
$$

$$
\begin{equation*}
\mathscr{U}=B^{-1} E \mathscr{R}_{\mathscr{X}_{d}}^{*} \oplus B^{-1} \mathscr{B}_{\mathcal{C}} \tag{7.55}
\end{equation*}
$$

satisfying

$$
\mathscr{R}_{\mathcal{C}} \approx E \mathscr{R}_{\mathscr{X}_{d}}^{*}, \quad \mathscr{X}_{2} \approx E \mathscr{X}_{2}, \quad \mathscr{X}_{1} \approx A \mathscr{X}_{1},
$$

$$
\begin{equation*}
\mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E=\mathscr{R}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E, \quad \operatorname{Im} B \cap E \mathscr{V}_{\mathscr{X}_{d}}^{*}=\operatorname{Im} B \cap E \mathscr{R}_{\mathscr{X}_{d}}^{*} . \tag{7.56}
\end{equation*}
$$

Given the geometric decompositions (7.53), (7.54) and (7.55), the implicit representation (7.10) takes the following form (recall (7.56)):

In the third Lemma of [12], it is also proved that

$$
\begin{equation*}
E \mathscr{R}_{\mathscr{X}_{d}}^{*}=\left\langle\bar{A}_{1,1} \mid \operatorname{Im}\left[\bar{A}_{1,2} \bar{B}_{1}\right]\right\rangle . \tag{7.58}
\end{equation*}
$$

- $E \mathscr{R}_{\mathscr{X}_{d}}^{*}$ has the form of the classical state reachable subspace (7.49).
- $E \mathscr{R}_{\mathscr{X}_{d}}^{*}$ is handled by two actions: (i) the input action, via $\operatorname{Im} \bar{B}_{1}$, and (ii) the internal degree of freedom action, via $\operatorname{Im} \bar{A}_{1,2}$.
- The pair $\left(\bar{A}_{1,1},\left[\bar{A}_{1,2} \bar{B}_{1}\right]\right)$ is reachable in the classical state sense.

Example 7.2 Let us consider the following implicit representation, which is constituted by a minimal column index and has no input actions:

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{x} \tag{7.59}\\
\hat{x}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]+[0] u .
$$

Let us compute its reachability subspace $\mathscr{R}_{\mathscr{X}_{d}}^{*}$: From algorithms (7.15) and (7.52), we get

$$
\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{V}_{\mathscr{X}_{d}}^{*}=\left\{e_{1}, e_{2}\right\}=\mathscr{X}_{d},
$$

and also (cf. (7.53), (7.54) and (7.55)):

$$
\begin{gathered}
\operatorname{Im} E=E \mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{R}_{\mathcal{C}}=\left\{e_{1}\right\}, \quad \mathscr{R}_{\mathscr{R}_{d}}^{*} \cap \operatorname{Ker} E=\left\{e_{2}\right\}, \\
\mathscr{B}_{\mathcal{C}}=\operatorname{Im} B=B^{-1} E \mathscr{R}_{\mathscr{X}_{d}}^{*}=B^{-1} \mathscr{B}_{\mathcal{C}}=\{0\} .
\end{gathered}
$$

The matrices involved in (7.57) are

$$
\bar{A}_{1,1}=0, \quad \bar{A}_{1,2}=1, \quad \bar{A}_{2,1}=\bar{A}_{2,2}=\emptyset, \quad \bar{B}_{1}=0, \quad \mathrm{I}_{\mathcal{C}}=1, \quad \mathrm{I}_{\mathscr{B}_{\mathcal{C}}}=\emptyset .
$$

- (7.59) is reachable: $\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{V}_{\mathscr{X}_{d}}^{*}$.
- (7.59) has no inputs actions: $\operatorname{Im} B=\{0\}$.
- (7.59) is handled by its internal degree of freedom: $E \mathscr{R}_{\mathscr{X}_{d}}^{*}=$ $\left\langle\bar{A}_{1,1} \mid \operatorname{Im}\left[\bar{A}_{1,2} \bar{B}_{1}\right]\right\rangle=\left\langle 0 \left\lvert\, \operatorname{Im}\left[\begin{array}{ll}1 & 0\end{array}\right]\right.\right\rangle$.

7.4.2 External Reachability

In order to avoid the pathologies illustrated in the previous example, in [6] we have introduced the concept of external reachability.

Definition 7.12 (External reachability [6]) The implicit representation (7.10) is called externally reachable (by P.D. feedback) if

- It is reachable.
- The spectrum of $\lambda\left(E-B F_{d}\right)-\left(A+B F_{p}\right)$ can be freely assigned by the selection of $u=F_{p} x+F_{d} \mathrm{~d} x / \mathrm{d} t$.

Theorem 7.4 (External reachability [6]) (7.10) is externally reachable (by P.D. feedback) if and only if

$$
\begin{gather*}
\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{X}_{d} \tag{7.60}\\
\operatorname{dim}\left(\frac{\operatorname{Im} B}{E \mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Im} B}\right) \geq \operatorname{dim}\left(\mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E\right) . \tag{7.61}
\end{gather*}
$$

- To prove this, Theorem, Bonilla, and Malabre [6] have used tools from Kronecker theory.
- Theorem 7.4 is the combination of the notion of reachability by Frankowska [16] and the notion of unicity of the descriptor variable solution by Lebret [25]
- Indeed, if there exists a proportional and derivative feedback of the descriptor variable which insures the unicity of the descriptor variable, no internal degree of freedom will be present. This implies that the trajectory of the descriptor variable is compulsorily due to an action of the external control input.

Example 7.3 Let us consider again the implicit representation (7.59) of Example 7.2. For that example, we have computed $\mathscr{R}_{\mathscr{C}_{d}}^{*}=\mathscr{X}_{d}, \mathscr{B}_{\mathcal{C}}=\{0\}$ and $\mathscr{R}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E=$ $\left\{e_{2}\right\} \approx \mathbb{R}^{1}$. Hence, Theorem 7.4 is not satisfied.

This means that there exists no external control input $u \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$, to control the whole descriptor variable, x of system (7.59).

Example 7.4 If we add an effective input action to (7.59), say

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{x} \tag{7.62}\\
\hat{x}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]+[1] u,
$$

we get from algorithms (7.15) and (7.52): $\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{V}_{\mathscr{X}_{d}}^{*}=\left\{e_{1}, e_{2}\right\}=\mathscr{X}_{d}$, which imply $\operatorname{Im} B=\operatorname{Im} E=E \mathscr{R}_{\mathscr{X}_{d}}^{*}=\operatorname{Im} B \cap E \mathscr{R}_{\mathscr{X}_{d}}^{*}=\left\{e_{1}\right\} \approx \mathbb{R}^{1}$ and $\mathscr{R}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E=$ $\left\{e_{2}\right\} \approx \mathbb{R}^{1}$. Hence, Theorem 7.4 is still not satisfied. This means that there exists no external control input $u \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$ able to control the whole descriptor variable, x, of system (7.62).

However, we would like to control, at least partly, systems with representations like (7.62).

7.4.3 Externally Assignable Output Dynamics

In order to partly control implicit representations with an internal degree of freedom, like (7.62), we have introduced in [9] the concept of external output dynamics assignment.

Definition 7.13 (External output dynamics assignment [9]) The implicit representation (7.10) has an assignable external output dynamics when there exists a P.D. feedback $u=F_{p} x+F_{d} \mathrm{~d} x / \mathrm{d} t+u_{r}$ such that the closed-loop system is externally reachable.

Theorem 7.5 (External output dynamics assignment [9]) The implicit representation $\Sigma^{i m p}(E, A, B, C),(7.1)$, has an assignable external output dynamics if and only if

$$
\begin{equation*}
\mathscr{R}_{\mathscr{X}_{d}}^{*}+\mathscr{V}^{*}=\mathscr{X}_{d} \tag{7.63}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dim}\left(\frac{\operatorname{Im} B}{E \mathscr{V}_{\mathscr{X _ { d }}}^{*} \cap \operatorname{Im} B}\right) \geq \operatorname{dim}\left(\mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E\right)-\operatorname{dim}\left(\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B\right), \tag{7.64}
\end{equation*}
$$

\mathscr{V}^{*} is the supremal (A, E, B) invariant subspace contained in $\operatorname{Ker} C[30,31]$,

$$
\begin{equation*}
\mathscr{V}^{*} \stackrel{\operatorname{def}}{=} \sup \{\mathscr{V} \subset \operatorname{Ker} C \mid A \mathscr{V} \subset E \mathscr{V}+\operatorname{Im} B\} \tag{7.65}
\end{equation*}
$$

which is the limit of the following algorithm:

$$
\begin{equation*}
\mathscr{V}^{0}=\mathscr{X}_{d}, \quad \mathscr{V}^{\mu+1}=\operatorname{Ker} C \cap A^{-1}\left(E \mathscr{V}^{\mu}+\operatorname{Im} B\right) . \tag{7.66}
\end{equation*}
$$

\mathscr{V}^{*} characterizes the supremal part of the implicit representation $\Sigma^{i m p}(E, A, B, C)$ which can be made unobservable when using a $P . D$. feedback $u=F_{p} x+F_{d} \mathrm{~d} x / \mathrm{d} t$ $+u_{r}$, namely, for all derivative feedback $F_{d}: \mathscr{X}_{d} \rightarrow \mathscr{U}$ there exists a proportional feedback $F_{p}: \mathscr{X}_{p} \rightarrow \mathscr{U}$, such that $\left(A+B F_{p}\right) \mathscr{V}^{*} \subset\left(E-B F_{d}\right) \mathscr{V}^{*}$. The set feedback pairs $\left(F_{p}, F_{d}\right)$ satisfying this geometric inclusion is noted as $\mathbf{F}\left(\mathscr{V}^{*}\right)$.

Condition (7.64) has been established by Lebret [25] to guarantee unicity of the output.

Example 7.5 For the implicit representation (7.62) of Example 7.4, let us add an output equation:

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{x} \tag{7.67}\\
\hat{x}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]+\left[\begin{array}{ll}
1
\end{array}\right] u \text { and } y=\left[\begin{array}{ll}
a & b
\end{array}\right] x,
$$

with $a^{2}+b^{2} \neq 0$.
From (7.67), (7.15) and (7.52), we get $\mathscr{R}_{\mathscr{X}_{d}}^{*}=\mathscr{X}_{d}, \operatorname{Im} B=\operatorname{Im} E=E \mathscr{V}_{\mathscr{X}_{d}}^{*} \cap$ $\operatorname{Im} B=\left\{e_{1}\right\} \approx \mathbb{R}^{1}$ and $\mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Ker} E=\left\{e_{2}\right\} \approx \mathbb{R}^{1}$, then $E^{-1} \operatorname{Im} B=\mathscr{X}_{d}$.

From (7.67) and (7.66), follows that $\mathscr{V}^{*}=\operatorname{Ker} C=\left\{b e_{1}-a e_{2}\right\} \approx \mathbb{R}^{1}$. Hence, Theorem 7.5 is satisfied and there exists a $P . D$. feedback, $u=F_{p} x+F_{d} \mathrm{~d} x / \mathrm{d} t+u_{r}$, such that the output dynamics of the closed-loop system is externally reachable, like, for example,

$$
u=[(1-a)-b] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]+[a(b-1)]\left[\begin{array}{l}
\bar{x} \\
\hat{x}
\end{array}\right]+u_{r}
$$

obtaining in this way:

$$
\left[\begin{array}{ll}
1 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}
\bar{\xi} \\
\hat{\xi}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\xi} \\
\hat{\xi}
\end{array}\right]+\left[\begin{array}{ll}
1
\end{array}\right] u_{r} \text { and } y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\xi} \\
\hat{\xi}
\end{array}\right],
$$

where $\left[\begin{array}{l}\bar{\xi} \\ \hat{\xi}\end{array}\right]=\left[\begin{array}{rr}a & b \\ b & -a\end{array}\right]\left[\begin{array}{l}\bar{x} \\ \hat{x}\end{array}\right]$.

7.4.4 Example (Part 3)

Let us come back to the rectangular implicit representation (7.43), which comes from the implicit global representation (7.42) of the switched system of Sects.7.2.1 and 7.3.4, described by (7.2) and (7.5), or by (7.41).

From (7.43), (7.15) and (7.52), we get $\operatorname{Im} A+\operatorname{Im} B \subset \operatorname{Im} E=\underline{\mathscr{X}}_{e q}, \mathscr{V}_{\mathscr{X}_{d}}^{*}=\mathscr{R}_{d}^{*}$ $=\mathscr{X}_{d}, E \mathscr{V}_{\mathscr{X}_{d}}^{*}=\operatorname{Im} E$ and $E \mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \operatorname{Im} B=\operatorname{Im} B$. Also, $\operatorname{Ker} E=\left\{e_{3}\right\} \approx \mathbb{R}^{1}$ and $E^{-1} \operatorname{Im} B=\left\{e_{2}, e_{3}\right\}$.

From (7.43) and (7.66), follows that $\mathscr{V}^{*}=\operatorname{Ker} C=\left\{e_{1}, e_{2}\right\}$, then $\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B$ $=\left\{e_{2}\right\} \approx \mathbb{R}^{1}$.

Hence, Theorem 7.5 is satisfied and there then exists a $P . D$. feedback $u=F_{p} x+$ $F_{d} \mathrm{~d} x / \mathrm{d} t+u_{r}$, such that the output dynamics of the closed-loop system is externally reachable.

7.5 Control

Lebret and Loiseau [26] have extended the famous Morse Canonical Form [32] to the general case of implicit descriptions. In that paper, Lebret and Loiseau have completely characterized the internal structure of the implicit descriptions. With respect to the minimal column indices, which are responsible for the variation of the internal structure, they have distinguished two kinds of blocks, namely,

Blocks $L_{q_{i}}$: These blocks characterize the degree of freedom which are observable at the output. For reachable representations, $\mathscr{R}_{\mathscr{C}_{d}}^{*}=\mathscr{X}_{d}$, their number is characterized as follows:

$$
\begin{equation*}
\operatorname{card}\left\{L_{q(i)} ; q_{i} \geq 1\right\}=\operatorname{dim}\left(\frac{\operatorname{Ker} E}{\mathscr{V}^{*} \cap \operatorname{Ker} E}\right) \tag{7.68}
\end{equation*}
$$

Blocks $L_{\sigma_{i}}$: These blocks characterize the degree of freedom which are unobservable at the output. For reachable representations, $\mathscr{R}_{\mathscr{C}_{d}}^{*}=\mathscr{X}_{d}$, their number is characterized as follows:

$$
\begin{equation*}
\operatorname{card}\left\{L_{\sigma(i)} ; \sigma_{i} \geq 1\right\}=\operatorname{dim}\left(\mathscr{V}^{*} \cap \operatorname{Ker} E\right) . \tag{7.69}
\end{equation*}
$$

The internal structure variation will then be unobservable at the output if there exists a pair $\left(F_{p}^{*}, F_{d}^{*}\right) \in \mathbf{F}\left(\mathscr{V}^{*}\right)$, such that

$$
\begin{equation*}
\mathscr{V}^{*} \supset \operatorname{Ker}\left(E-B F_{d}^{*}\right) . \tag{7.70}
\end{equation*}
$$

7.5.1 Decoupling of the Variable Structure

In [8], we have introduced the variable structure decoupling problem.
Problem 7.1 (Variable structure decoupling [8]) Let us consider the global implicit representation $\Sigma^{i g}(\mathbf{E}, \mathbf{A}, \mathbf{B}, C),(7.37)$, such that the solvability assumptions, (7.31) and (7.34), and the internal properness condition, (7.33), are satisfied.

Under which geometric conditions does there exist a $P . D$. feedback, $u=F_{p}^{*} x+$ $F_{d}^{*} \mathrm{~d} x / \mathrm{d} t$, for the implicit rectangular representation $\Sigma^{i r}(E, A, B, C),(7.35)$, such that the external behaviour of the closed-loop system is time-invariant with prespecified dynamics?

$$
\begin{aligned}
& \bar{A}_{*}=E_{*}^{(-1)} A_{*} \\
& \bar{B}_{*}=E_{*}^{(-1)} B_{*}
\end{aligned}
$$

Fig. 7.3 Maps induced by $A_{F_{p}^{*}}$ and $E_{F_{d}^{*}}$. Φ and Π are canonical projections. The map E_{*} is invertible and $E_{*}^{(-1)}$ is its inverse

Theorem 7.6 (Variable structure decoupling [8]) If the implicit rectangular representation $\Sigma^{i r}(E, A, B, C),(7.35)$, satisfies (7.31), (7.34), (7.33) and ${ }^{5}$

$$
\begin{equation*}
\operatorname{dim}(\operatorname{Ker} E) \leq \operatorname{dim}\left(\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B\right), \tag{7.71}
\end{equation*}
$$

there then exists a P.D.feedback, $u=F_{p}^{*} x+F_{d}^{*} \mathrm{~d} x / \mathrm{d} t$, such that the internal variable structure of the closed-loop system implicit rectangular representation $\Sigma^{i r}\left(E_{F_{d}^{*}}, A_{F_{p}^{*}}, B, C\right)$ is made unobservable, namely,

$$
\mathscr{V}^{*} \supset \operatorname{Ker}\left(E-B F_{d}^{*}\right),
$$

where $\left(F_{p}^{*}, F_{d}^{*}\right) \in \boldsymbol{F}\left(\mathscr{V}^{*}\right)$.
Moreover, $\Sigma^{i r}\left(E_{F_{d}^{*}}, A_{F_{p}^{*}}, B, C\right)$ is externally equivalent ${ }^{6}$ to the state-space representation $\Sigma^{\text {state }}\left(\bar{A}_{*}, \bar{B}_{*}, C_{*}\right)$, where $E_{F_{d}^{*}}=E-B F_{d}^{*}$ and $A_{F_{p}^{*}}=A+B F_{p}^{*}$, and \bar{A}_{*}, \bar{B}_{*} and C_{*}, are induced by $A_{F_{p}^{*}}$ and $E_{F_{d}^{*}}$ as it is shown in Fig. 7.3.

Furthermore, if $\Sigma^{i r}(E, A, B, C),(7.35)$, satisfies

$$
\mathscr{R}_{\mathscr{X}_{d}}^{*}+\mathscr{V}^{*}=\mathscr{X}_{d},
$$

then $\Sigma^{\text {state }}\left(\bar{A}_{*}, \bar{B}_{*}, C_{*}\right)$ is controllable (reachable), namely, $\left\langle\bar{A}_{*} \mid \operatorname{Im} \bar{B}_{*}\right\rangle$ $=\mathscr{X}_{d} / \mathscr{V}^{*}$.

For proving Theorem 7.6, in [8] we have done the following geometric decompositions:

$$
\begin{align*}
\mathscr{X}_{d} & =\left(\mathscr{V}^{*}+E^{-1} \operatorname{Im} B\right) \oplus \mathscr{X}_{0}, \\
\mathscr{V}^{*} & =\mathscr{X}_{\mathscr{V}^{*}} \oplus\left(\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B\right), \\
E^{-1} \operatorname{Im} B & =\left(\left(\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B\right)+\operatorname{Ker} E\right) \oplus \mathscr{X}_{3}, \tag{7.72}\\
\operatorname{Ker} E & =\left(\mathscr{V}^{*} \cap \operatorname{Ker} E\right) \oplus \mathscr{X}_{E},
\end{align*}
$$

[^4]and we have shown that (7.71) implies that there exist two complementary subspaces, \mathscr{X}_{1} and \mathscr{X}_{2}, such that
\[

$$
\begin{equation*}
\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B=\mathscr{X}_{1} \oplus \mathscr{X}_{2} \oplus\left(\mathscr{V}^{*} \cap \operatorname{Ker} E\right) \text { and } \mathscr{X}_{2} \approx \mathscr{X}_{E} . \tag{7.73}
\end{equation*}
$$

\]

Hence, under the bases (7.72) and (7.73), the map E restricted to $\operatorname{Im} B$ takes the following form:

Now, in view of the isomorphism $\mathscr{X}_{2} \approx \mathscr{X}_{E}$, for satisfying (7.70) we only have to move the zero block of \mathscr{X}_{E} to \mathscr{X}_{2} by means of the derivative action F_{d}^{*}, namely,

After having chosen F_{d}^{*}, we shall select F_{p}^{*}, such that $\left(F_{p}^{*}, F_{d}^{*}\right) \in \mathbf{F}\left(\mathscr{V}^{*}\right)$, namely,

$$
\begin{equation*}
\left(A+B F_{p}\right) \mathscr{V}^{*} \subset\left(E-B F_{d}\right) \mathscr{V}^{*} . \tag{7.76}
\end{equation*}
$$

Hence,

7.5.2 Example (Part 4)

Let us now verify if the rectangular implicit representation (7.43) satisfies the geometric conditions of Theorem 7.6: $\mathscr{R}_{d}^{*}=\mathscr{X}_{d}, \mathscr{V}^{*}=\left\{e_{1},-e_{2}-2 e_{3}\right\}$, $\operatorname{Ker} E=$ $\left\{e_{3}\right\} \approx \mathbb{R}^{1}$ and $E^{-1} \operatorname{Im} B=\left\{e_{2}, e_{3}\right\} ;$ hence, $\mathscr{V}^{*} \cap E^{-1} \operatorname{Im} B=\left\{-e_{2}-2 e_{3}\right\} \approx \mathbb{R}^{1}$, which implies (7.71). There then exists $u=F_{p}^{*} x+F_{d}^{*} \mathrm{~d} x / \mathrm{d} t$ making unobservable the structure variation.

In order to satisfy (7.70), the derivative part of the control law has to contain the term $\left[\begin{array}{lll}0-1 & 1\end{array}\right]$. Indeed, $\operatorname{Ker}\left(E-B F_{d}^{*}\right)=\left\{-e_{2}-2 e_{3}\right\} \subset \mathscr{V}^{*}$.

In order to satisfy (7.76), the proportional part of the control law has to contain the term ${ }^{7}[-1-2 / \tau(1+1 / \tau)]$, where τ is a positive real number. Indeed, $(A+$ $\left.B F_{p}^{*}\right) \mathscr{V}^{*}=\left\{e_{1}\right\}=\left(E-B F_{d}^{*}\right) \mathscr{V}^{*}$.

Thus, the proportional and derivative feedback is

$$
u^{*}=[-1-2 / \tau(1+1 / \tau)] x+\left[\begin{array}{lll}
0-1 & 1 \tag{7.78}
\end{array}\right] \mathrm{d} x / \mathrm{d} t+[1 / \tau] u_{r}
$$

Applying the control law (7.78) to system (7.42), we get the closed-loop system:

$$
\begin{align*}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & \square \\
\hline 0 & 0 & 0
\end{array}\right] \frac{\mathrm{d}}{\mathrm{~d} t} \xi=\left[\begin{array}{cc}
0 & 0-1 \\
\hdashline 0 & 0 \\
\hline \alpha-(\beta+2) & -1 / \tau \\
0 & -1
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1 / \tau}{0}
\end{array}\right] u_{r},} \\
& y^{*}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \xi \tag{7.79}
\end{align*}
$$

[^5]where $\xi=T^{-1} x, T=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -2 & -1\end{array}\right]$. In [14], we show that the necessary stability region is ${ }^{8}$

$$
\begin{equation*}
\mathcal{R}_{\mathcal{N S C}}^{*}(\alpha, \beta)=\{(\alpha, \beta) \mid \alpha \cdot(\beta+2)<0\} \cup\{(\alpha, \beta) \mid \beta=-2 \& \alpha \neq 0\} \tag{7.80}
\end{equation*}
$$

and that the sufficient stability region is ${ }^{9}$

$$
\begin{align*}
\mathcal{R}_{\mathcal{S S C}}^{*}(\alpha, \beta)= & \{(\alpha, \beta)|\alpha \cdot(\beta+2)<0, \underline{\beta} \leq|\beta+2| \leq \bar{\beta}, \underline{\alpha} \leq|\alpha| \leq \bar{\alpha}\} \\
& \cup\{(\alpha, \beta)|\beta=-2, \underline{\alpha} \leq|\bar{\alpha}| \leq \bar{\alpha}\}, \tag{7.81}
\end{align*}
$$

where $\underline{\alpha}, \bar{\alpha}, \underline{\beta}$ and $\bar{\beta}$ are some given real numbers $0<\underline{\alpha} \leq \bar{\alpha}$ and $0<\underline{\beta} \leq \bar{\beta}$.

7.5.3 Rejection of the Variable Structure

Since the implementation of the "pure" derivative-based actions is not practically feasible, we have to generate a proper filter with the aim to approximate the external behaviour of the ideal non-proper controller.

In [14], we have considered the following problem.
Problem 7.2 (Variable structure rejection [14]) Let us consider a global implicit representation $\Sigma^{i g}(\mathbf{E}, \mathbf{A}, \mathbf{B}, C),(7.37)$, such that the solvability assumptions, (7.31) and (7.34), and the internal properness condition, (7.33), are satisfied, and $E x(t)$ is continuous for all $t \geq 0$. Let us consider the $P . D$. feedback

$$
\begin{equation*}
u^{*}=F_{p}^{*} x+F_{d}^{*} \mathrm{~d} x / \mathrm{d} t+u_{r} \tag{7.82}
\end{equation*}
$$

which constitutes a solution of Problem 7.1, where the feedback pair $\left(F_{p}^{*}, F_{d}^{*}\right) \in$ $\mathbf{F}\left(\mathscr{V}^{*}\right)$ was chosen as it is indicated in Theorem 7.6.

Find a proper approximation of the ideal control law (7.82) such that the closedloop system is BIBO-stable and moreover, for a given $\delta>0$

$$
\begin{equation*}
\left|y(t)-y^{*}(t)\right| \leq \delta \quad \forall t \geq t^{*}(\delta) \tag{7.83}
\end{equation*}
$$

where $t^{*}(\delta)$ is a fixed transient time, y^{*} is the output for the ideal control law (7.82) and y is the output associated with the proper approximation of (7.82).
${ }^{8}$ This region is obtained from det $\left[\begin{array}{ccc}\mathrm{s} & -1 & -1 \\ 0 & 0 & (\mathrm{~s}+1 / \tau) \\ \hline-\alpha(\beta+2) & 1\end{array}\right]=-((\beta+2) \mathrm{s}-\alpha)(\mathrm{s}+1 / \tau)$.
${ }^{9}$ This region is obtained following the methodology of [42], namely, we solve two Lyapunov equations for the two cases: (i) $\beta \neq-2$ and (ii) $\alpha \neq 0$ (with $\beta=-2$), with a common positive definite matrix P.

Theorem 7.7 (Variable structure rejection [14]) Under the same conditions like in Theorem 7.6 and the additional assumptions

Hypothesis H6. $u_{r} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathbb{R}^{m}\right)$ and $\mathrm{d}^{2} u_{r} / \mathrm{d} t^{2} \in \mathcal{L}^{\infty}\left(\mathbb{R}^{+}, \mathbb{R}^{m}\right)$,
Hypothesis H7. The matrix \bar{A}_{*}, defined in Theorem 7.6 is Hurwitz,
Hypothesis H8. Given $\bar{q}_{0}, \bar{q}_{1}, \ldots, \bar{q}_{\ell} \in \mathscr{Q}, g=\left[g_{1} \cdots g_{\ell}\right]^{T}, g_{1}, \ldots, g_{\ell} \in \mathbb{R}^{+}$, the locations $q \in \mathscr{Q}$ belong to the convex set

$$
\overline{\mathscr{Q}}_{\bar{q}_{0}}(g)=\left\{q \in \mathcal{Q} \mid q=\bar{q}_{0}+\sum_{j=1}^{\ell} \gamma_{(i, j)} g_{j} \bar{q}_{j}\right\},
$$

where for each $\left[T_{i-1}, T_{i}\right)$, the value of $\gamma_{(i, j)}$ takes constant values in the closed subset of $\mathbb{R}:[0,1]$,
we now consider the following proper approximation of the ideal control law (7.82):

$$
\begin{align*}
\mathrm{d} \bar{x} / \mathrm{d} t & =-(1 / \varepsilon) \bar{x}+(1 / \varepsilon) F_{d}^{*} x, \\
u & =-(1 / \varepsilon) \bar{x}+\left((1 / \varepsilon) F_{d}^{*}+F_{p}^{*}\right) x+u_{r}, \tag{7.84}
\end{align*}
$$

where $\varepsilon>0$. If for a given pair $\left(\varepsilon, \bar{A}_{*}\right)$, there exists a nonempty convex sufficient stability condition region $\mathcal{R}_{\mathcal{S S C}}^{\#}(q ; \varepsilon)$ contained in the stability region of the ideal solution, $\mathcal{R}_{\mathcal{S S C}}^{*}(q)$, for which the linear combination $\bar{X}+\Gamma \bar{\Delta}_{0}$, of the matrices coming from

$$
\left[\mathrm{s}\left[\begin{array}{cc}
E & 0 \tag{7.85}\\
-B F_{d}^{*} & \varepsilon \mathrm{I}
\end{array}\right]-\left[\begin{array}{cc}
A_{F_{F}^{*}} & \mathrm{I} \\
0 & 0
\end{array}\right]\right] \approx\left[\begin{array}{cc}
\mathrm{sI}-\bar{X} & \Gamma \\
\hline \bar{\Delta}_{i} & -\mathrm{I}
\end{array}\right],
$$

is a Hurwitz matrix and moreover, there exist constant positive definite matrices \bar{P}, \bar{Q}_{0} such that

$$
\begin{align*}
\left(\bar{X}+\Gamma \bar{\Delta}_{0}\right)^{T} \bar{P}+\bar{P}\left(\bar{X}+\Gamma \bar{\Delta}_{0}\right) & =-\bar{Q}_{0}, \\
\lambda_{\min }\left(\bar{Q}_{0}\right)+\sum_{j=1}^{\ell} g_{j} \lambda_{\min }\left(\bar{Q}_{j}\right) & >0, \tag{7.86}
\end{align*}
$$

then Problem 7.2 has a solution. Here we denote $\bar{Q}_{j}=\left(\Gamma \bar{\Delta}_{j}\right)^{T} \bar{P}+\bar{P}\left(\Gamma \bar{\Delta}_{j}\right)$, $j \in\{1, \ldots, \ell\}$.

7.5.4 Example (Part 5)

The proper approximation of the ideal control law (7.78) is (cf. (7.84))

$$
\begin{align*}
\mathrm{d} \bar{x} / \mathrm{d} t & =-(1 / \varepsilon) \bar{x}+[0-1 / \varepsilon 1 / \varepsilon] x \\
u & =-(1 / \varepsilon) \bar{x}+[-1-(2 / \tau+1 / \varepsilon)(1+1 / \tau+1 / \varepsilon)] x+[1 / \tau] u_{r} \tag{7.87}
\end{align*}
$$

ε is a positive number which tunes the precision of the approximation.

Equation(7.85) takes the form (cf. (7.42) and (7.78), with $x=T \xi$)

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & \varepsilon & 0 \\
0 & 1 & 1 & 0 & \varepsilon \\
\hline 0 & 0 & 0 & 0 & 0
\end{array}\right]-\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & -1 / \tau & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 \\
\hline \alpha-(\beta+2) & 1 & 0 & 0
\end{array}\right]}
\end{array}\right] \approx\left[\begin{array}{cc}
\mathrm{sI}-\bar{X} & \Gamma \\
-\bar{\Delta}_{i} & -\mathrm{I}
\end{array}\right] .
$$

If in our example we put $\tau=4$ and $\varepsilon=1 / 4$, we then get

$$
\bar{X}=\left[\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad \Gamma=\left[\begin{array}{c}
1 \\
17 / 4 \\
0 \\
1
\end{array}\right],
$$

and $\phi_{q}^{\#}=\operatorname{det}\left[\begin{array}{cc}\mathrm{sI}-\bar{X} & \Gamma \\ -\bar{\Delta}_{i} & -\mathrm{I}\end{array}\right]=-(\mathrm{s}+4)\left(\mathrm{s}^{3}+(17 \beta / 4-\alpha+17 / 2) \mathrm{s}^{2}+(\beta-17 \alpha /\right.$ $4+2) \mathrm{s}-\alpha$). Thus the necessary stability region is

$$
\begin{aligned}
& \mathcal{R}_{\mathcal{N S C}}^{\#}(\alpha, \beta ; \varepsilon=1 / 4)=\{(\alpha, \beta) \mid \alpha<0, \quad 17 \beta / 4-\alpha+17 / 2>0 \\
& \left.\quad \beta^{2}+(4-305 \alpha / 68) \beta+(4 \alpha / 17+4(17 \alpha / 4-2)(\alpha-17 / 2) / 17)>0\right\}
\end{aligned}
$$

thus $q_{1}, q_{2}, q_{3} \in \mathcal{R}_{\mathcal{N S C}}^{\#}(-1, \beta ; \varepsilon=1 / 4)=\{(\alpha, \beta) \mid-(\beta+2)<0.1775\}$ (see (7.4) and Fig. 7.1). Then $(\underline{\alpha}, \underline{\beta})=(1,0)$ and $(\bar{\alpha}, \bar{\beta})=(1,2)$. We assume that (c.f. H8)

$$
\begin{aligned}
(\alpha,-(\beta+2)) \in\{ & (-1, \beta) \in \mathscr{Q} \mid(-1,-(\beta+2))= \\
& \left.(-1,0)+0 \gamma_{1}(-1,0)+2 \gamma_{2}(0,-1), \quad \gamma_{1}, \gamma_{2} \in[0,1]\right\}
\end{aligned}
$$

Then,

$$
\left.\begin{array}{c}
\bar{\Delta}_{0}=\left[\begin{array}{llll}
-1 & 0 & 0 & 0
\end{array}\right], \bar{\Delta}_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right], \quad \bar{\Delta}_{2}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
\end{array}\right],\left[\begin{array}{ccc}
-1 & 1 & 1
\end{array}\right]
$$

$$
\Gamma \bar{\Delta}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
17 / 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad \Gamma \bar{\Delta}_{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 17 / 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

$$
\text { Choosing } \bar{Q}_{0}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, we get }
$$

$$
\bar{P}=\left[\begin{array}{rrrr}
3.7404 & -0.5000 & 0.7480 & -1.1154 \\
-0.5000 & 1.1154 & 0.0620 & -0.5000 \\
0.7480 & 0.0620 & 0.3120 & -0.2633 \\
-1.1154 & -0.5000 & -0.2633 & 2.7404
\end{array}\right], \sigma\{\bar{P}\}=\left\{\begin{array}{l}
0.1237 \\
0.7815 \\
2.3950 \\
4.6079
\end{array}\right.
$$

$$
\bar{Q}_{1}=\left[\begin{array}{rccc}
1.0000 & 3.7404 & 0.7482 & -0.5000 \\
3.7404 & 0 & 0 & 0 \\
0.7482 & 0 & 0 & 0 \\
-0.5000 & 0 & 0 & 0
\end{array}\right], \quad \sigma\left\{\bar{Q}_{1}\right\}=\left\{\begin{array}{r}
4.3795 \\
-3.3795 \\
0 \\
0
\end{array},\right.
$$

$$
\bar{Q}_{2}=\left[\begin{array}{cccc}
0 & 0.5000 & 0 & 0 \\
0.5000 & 7.4808 & 0.7482 & -0.5000 \\
0 & 0.7482 & 0 & 0 \\
0 & -0.5000 & 0 & 0
\end{array}\right], \quad \sigma\left\{\bar{Q}_{2}\right\}=\left\{\begin{array}{r}
7.6199 \\
0.0000 \\
-0.1391 \\
0
\end{array} .\right.
$$

Then

$$
\begin{aligned}
& \lambda_{\min }\left(\bar{Q}_{0}\right)+(\bar{\alpha}-\underline{\alpha}) \lambda_{\min }\left(\bar{Q}_{1}\right)+(\bar{\beta}-\underline{\beta}) \lambda_{\min }\left(\bar{Q}_{2}\right) \\
&=1+0(-3.3795)+2(-0.1391)=0.7218>0
\end{aligned}
$$

The last condition implies that the stability condition (7.86) is satisfied.

7.6 Numerical Simulation

We made a MATLAB ${ }^{\circledR}$ numerical simulation:
"Start time" = 0.0, "Stop time" = 150, "Type" = "Variable-Step", "Solver" = "ode45 Domand-Prince", "Max step size" = "auto", "Relative tolerance" $=1 e^{-4}$, "Min step size" = "auto", "Absolute tolerance" = "auto", "Initial step size" = "auto", "Consecutive min step size violations allowed" = 1, "States shape preservation" = "Disable all", et "Zero crossing control" = "Disable all".

The behaviours, $\mathfrak{B}_{q_{i}}^{\infty}$, take place as follows (recall (7.7)): In the time interval $[0,50)$ takes place $\mathfrak{B}_{q_{1}}^{\infty}$. In the time interval $[50,100)$ takes place $\mathfrak{B}_{q_{2}}^{\infty}$. In the time interval $[100,150]$ takes place $\mathfrak{B}_{q_{3}}^{\infty}$.

We apply the proper approximation (7.87) of the ideal control law (7.78), with the choice: $\tau=4$ and $\varepsilon=0.25$. We assume that we do not have access to the descriptor variable x, so we use the following descriptor variable observer synthesized in [15] (see equations (3.35) and (3.19) in [15]):

$$
\begin{align*}
\mathrm{d} \hat{x}_{c} / \mathrm{d} t & =\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right] \hat{x}_{c}+\left[\begin{array}{l}
1 \\
1
\end{array}\right] y+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \\
\hat{x}_{\ell} & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \hat{x}_{c}+[-1] y, \tag{7.88}
\end{align*}
$$

where

$$
\left[\begin{array}{l}
\bar{x}_{c} \tag{7.89}\\
\bar{x}_{\ell}
\end{array}\right]=\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]^{-1} x .
$$

The reference u_{r} has been chosen as follows (see Definition 2.4.5-[37]):

$$
\begin{aligned}
& \phi(t)=\left\{\begin{array}{cl}
\mathrm{e}^{-\frac{1}{1-\left(t^{\prime}\right)^{2}}}, & t \in A=\left(\frac{1}{6}, \frac{2}{6}\right), t^{\prime}=12 t-3 \\
-\mathrm{e}^{-\frac{1}{1-\left(t^{\prime \prime}\right)^{2}}}, & t \in B=\left(\frac{4}{6}, \frac{5}{6}\right), t^{\prime \prime}=-12 t+9 \\
0, & t \in \mathbb{R} \backslash(A \cup B)
\end{array}\right. \\
& r(t)=\int_{0}^{t}\left(\sum_{i=0}^{3}(-1)^{i} \phi\left(\frac{2}{75} \sigma-i\right)\right) \mathrm{d} \sigma, \quad t \in[0,150] .
\end{aligned}
$$

The model matching error is computed as follows:

$$
\left|y(t)-y^{*}(t)\right|=\left|y(t)-\int_{0}^{t} \mathrm{e}^{-\frac{1}{\tau}(t-\sigma)} u_{r}(\sigma) \mathrm{d}(\sigma)\right| .
$$

Fig. 7.4 Simulation results of Control with observation of the descriptor variable. a Output, y. b and \mathbf{c} Model matching error, $\left|y(t)-y^{*}(t)\right|$. d and e Control input, u. \mathbf{f} and \mathbf{g} Observation error, $\|\hat{x}-x\|_{2}$

In Fig. 7.4, we show the numerical simulations for this minimum phase case. In order to appreciate the performance of the remainder generator, in this simulation, we have set the initial condition: $\bar{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

7.7 Summary

In Sect. 7.2, we have shown how to use the linear implicit systems theory in order to model and control, in an efficient way, a class of complex systems, namely, timevarying, autonomous, switched systems. Thanks to a simple example, we have shown
that the internal structure variations can take into account wide situations with varying parameters, such as, among others: (1) the relative degree, (2) the system gain and (3) the values of the finite zeros.

In Sect. 7.3, we have shown how linear time-invariant implicit systems theory can be efficiently used to model a certain class of switched systems with autonomous location transitions.

For the equivalent state-space representations $\Sigma^{\text {state }}\left(A_{q_{i}}, B, C_{q_{i}}\right)$ (7.2) and (7.3), we have determined the common fixed structure. The general systems structure is represented by the implicit rectangular representation $\Sigma^{i r}(E, A, B, C)$ in (7.35). We also have derived a linear time-invariant implicit representation for the initial linear switched system with autonomous location transitions, $\Sigma^{\text {state }}\left(A_{q_{i}}, B, C_{q_{i}}\right)$. Note that the implicit global representations $\Sigma^{i g}\left(\mathbb{E}, \mathbb{A}_{i}, \mathbb{B}, C\right)$ in (7.37) and (7.40) are timedependent. Alternatively, the implicit rectangular representation $\Sigma^{i r}(E, A, B, C)$ in (7.35) is time-invariant.

As shown in some simple examples, the corresponding structure variation has a wide structure. For instance, it includes variable relative degree, variable gain and variable finite zeros.

In the particular structure (7.3) studied above, only the matrices $A_{q_{i}}$ and $C_{q_{i}}$ have a generic "switched" structure and additionally depend on index q_{i}. The independence (assumed above) of matrix B on the switchings $q_{i} \in \mathscr{Q}$ does not involve any restriction into the used formulation. The zeros and the unobservable subspace of the systems under consideration are indeed only characterized by the structure of the matrices $A_{q_{i}}$ and $C_{q_{i}}$.

The main advantage of these implicit representations is reflected in the structural concept of solvability. Indeed, condition (7.30) for having at least one solution for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$ and condition (7.31) for the existence of solution (for all $u(\cdot) \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}, \mathscr{U}\right)$ and for any initial condition) naturally lead to the global implicit representation (7.37).

When we restrict to proper systems, the matrices of the implicit rectangular representation (7.35), the algebraic constraint (7.36) and the implicit rectangular representation (7.37) have the particular form (7.40), which are precisely the structure of the switched system, (7.2), and (7.3) here considered.

In Sect. 7.4, we have tackled the most important concept studied in System Theory, the reachability. For the general case of implicit systems, represented by (7.10), with E and A not necessarily square, Frankowska [16] has been the first to give a functional interpretation of reachability. For this, she has used the Viability Theory [2]. More precisely, she has shown that reachability is equivalent to finding a smooth trajectory $x(\cdot)$, solution of (7.10), starting from the initial condition x_{0} and reaching the desired x_{1} in a given finite time t_{1}, namely, $x(0)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$. Frankowska [16] has shown that reachability is geometrically characterized by the well-known reachable space, $\mathscr{R}_{\mathscr{X}_{d}}^{*}$. Of course, $\mathscr{R}_{\mathscr{X}_{d}}^{*}$ is contained in the viability kernel $\mathscr{V}_{\mathscr{X}_{d}}^{*}$, since this last guaranties the existence of at least one trajectory, solution of (7.10), leaving from x_{0}. This is also clear from $\mathscr{R}_{\mathscr{C}_{d}}^{*}=\mathscr{V}_{\mathscr{X}_{d}}^{*} \cap \mathscr{S}_{\mathscr{X}_{d}}^{*}$.

It has to be pointed out that the fundamental reachability Definition 7.11 requires no explicit control actions, and in general, the trajectories inside the reachability
subspace are handled by input actions and by internal degree of freedom actions; it might exist reachable systems without any effective external input (see, for instance, Example 7.2). In order to guarantee that the trajectories are caused by control inputs, we have introduced the external reachability concept; for this, we have combined the Frankowska's reachability notion [16] with the notion of unicity of the descriptor variable solution of Lebret [25].

In the case of implicit descriptions constituted by minimal column indices, there exists no external input for controlling the whole descriptor variable: this is due to the existence of completely free variables. In order to partly control implicit representations having an internal degree of freedom, we have introduced the external output dynamics assignment concept; for this we have used the characterization of Lebret and Loiseau [26], which enables us to make unobservable the degree of freedom by means of a $P . D$. feedback, and insure that the closed-loop system gets the external reachability property.

In Sect. 7.5, we have proposed a control scheme based on proportional and derivative feedbacks of the descriptor variable, in order to obtain a closed-loop system which is proper, linear and time-invariant, whatever be the positions of the internal switches.

The Canonical Form of Lebret and Loiseau [26] has enabled us to characterize the internal structure of the implicit descriptions.

Following the typical geometric procedure of the disturbance decoupling problem [47], we have decoupled the variable structure by means of an ideal P.D. feedback [8].

In [10], we have proposed an effective procedure to approximate the ideal static P. D. feedback by means of a dynamic P. feedback. Following the ideas of [33, 42], in [14] we have studied the stability aspects.

In Sect.7.6, we have presented a MATLAB ${ }^{\circledR}$ numerical simulation. We have used a descriptor variable observer based on fault detection techniques [15]. This observer is composed of a Beard-Jones filter, which aim is to observe the existing degree of freedom in rectangular implicit representations. Notice that after the initial transient, this observer remains insensitive to the switchings events (see Fig. 7.4f, g); this is the case, because the observer is based on the fault detection of a continuous linear system. Since this observation is accomplished by a pole-zero cancellation, this technique is reserved to minimum phase systems, with respect to the output-degree-of-freedom transfer, namely, to implicit rectangular representations having Hurwitz output decoupling zeros. When unstable zeros are present, alternatives exist (see [15]).

Acknowledgements This research was conducted in the framework of the regional programme "Atlanstic 2020, Research, Education and Innovation in Pays de la Loire", supported by the French Region Pays de la Loire and the European Regional Development Fund.

References

1. Armentano, V.A.: The pencil $(s E-A)$ and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24(4), 616-638 (1986)
2. Aubin, J.P., Frankowska, H.: Viability kernels of control systems. In: Byrnes, C.I., Kurzhanski, A.B. (eds.) Nonlinear Synthesis, no. 9 in Progress in Systems and Control Theory, Birkhäuser, Boston, pp. 12-33 (1991)
3. Bernhard, P.: On singular implicit dynamical systems. SIAM J. Control Optim. 20(5), 612-633 (1982)
4. Bonilla, M., Malabre, M.: One side invertibility for implicit descriptions. In: 29th IEEE Conference on Decision and Control, pp. 3601-3602 (1990)
5. Bonilla, M., Malabre, M.: Variable structure systems via implicit descriptions. In: 1st European Control Conference, vol. 1, pp. 403-408 (1991)
6. Bonilla, M., Malabre, M.: External reachability (reachability with pole assignment by P.D. feedback) for implicit descriptions. Kybernetika 29(5), 449-510 (1993)
7. Bonilla, M., Malabre, M.: More about non square implicit descriptions for modelling and control. In: 39th IEEE Conference on Decision and Control, pp. 3642-3647 (2000)
8. Bonilla, M., Malabre, M.: On the control of linear systems having internal variations. Automatica 39, 1989-1996 (2003)
9. Bonilla, M., Lebret, G., Malabre, M.: Output dynamics assignment for implicit descriptions. Circ. Syst. Signal Process. 13(2-3), 349-359 (1994). Special issue on "Implicit and Robust Systems"
10. Bonilla, M., Pacheco, J., Malabre, M.: Almost rejection of internal structural variations in linear systems. In: 42nd IEEE Conference on Decision and Control, pp. 116-121 (2003)
11. Bonilla, M., Martínez, J.C., Pacheco, J., Malabre, M.: Matching a system behavior within a known set of models: a quadratic optimization based adaptive solution. Int. J. Adapt. Control Signal Process. 23, 882-906 (2009)
12. Bonilla, M., Lebret, G., Loiseau, J.J., Malabre, M.: Simultaneous state and input reachability for linear time invariant systems. Linear Algebr. Appl. 439, 1425-1440 (2013)
13. Bonilla, M., Malabre, M., Azhmyakov, V.: An implicit systems characterization of a class of impulsive linear switched control processes. Part 1: modeling. Nonlinear Anal. Hybrid Syst. 15, 157-170 (2015a)
14. Bonilla, M., Malabre, M., Azhmyakov, V.: An implicit systems characterization of a class of impulsive linear switched control processes. Part 2: control. Nonlinear Anal. Hybrid Syst. 18, 15-32 (2015b)
15. Bonilla, M., Malabre, M., Martınez-Garcia, J.C.: On the descriptor variable observation of rectangular implicit representations, in the presence of column minimal indices blocks. IMA J. Math. Control Inf. 1-29 (2017). https://doi.org/10.1093/imamci/dnx020
16. Frankowska, H.: On the controllability and observability of implicit systems. Syst. Control Lett. 14, 219-225 (1990)
17. Gantmacher, F.R.: The Theory of Matrices, vol. II. Chelsea, New York (1977)
18. Geerts, T.: Solvability conditions, consistency, and weak consistency for linear differentialalgebraic equations and time-invariant singular systems: the general case. Linear Algebr. Appl. 181, 111-130 (1993)
19. Geerts, T., Mehrmann, V.: Linear differential equations with constant coefficients: a distributional approach. Preprint 90-073 SFB 343, University of Bielefeld, Germany (1990)
20. Hautus, M.L.J.: The formal Laplace transform for smooth linear systems. In: Marchesini, G., Mitter, S.K. (eds.) Mathematical Systems Theory. Lecture Notes in Economics and Mathematical Systems (Systems Theory), vol. 131, pp. 29-47. Springer, Heidelberg (1976)
21. Hautus, M.L.J., Silverman, L.M.: System structure and singular control. Linear Algebr. Appl. 50, 369-402 (1983)
22. Hou, M.: Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Autom. Control AC 49(10), 1723-1727 (2004)
23. Ishihara, J.Y., Terra, M.H.: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Autom. Control AC 46(6), 991-994 (2001)
24. Kuijper, M.: First-order representations of linear systems. Ph.D. thesis, Katholieke Universiteit Brabant, Amsterdam (1992)
25. Lebret, G.: Contribution à l'Étude des Systémes Linéaires Généralisés: Approches Géométrique et Structurelle. Ph.D. thesis, Université de Nantes, France (1991)
26. Lebret, G., Loiseau, J.J.: Proportional and proportional-derivative canonical forms for descriptor systems with outputs. Automatica 30(5), 847-864 (1994)
27. Lewis, F.L.: A survey of linear singular systems. Circ. Syst. Signal Process. 5(1), 3-36 (1986)
28. Lewis, F.L.: A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28(1), 119-137 (1992)
29. Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhäuser, Boston, MA (2003)
30. Malabre, M.: More geometry about singular systems. In: 26th IEEE Conference on Decision and Control, pp. 1138-1139 (1987)
31. Malabre, M.: Generalized linear systems, geometric and structural approaches. Linear Algebr. Appl. 122(123/124), 591-621 (1989)
32. Morse, A.S.: Structural invariants of linear multivariable systems. SIAM J. Control Optim. 11(3), 446-465 (1973)
33. Narendra, K.S., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Autom. Control 39, 2469-2471 (1994)
34. Özçaldiran, K.: Control of Descriptor Systems. Ph.D. thesis, Georgia Institute of Technology, United States (1985)
35. Özçaldiran, K.: A geometric characterization of the reachable and controllable subspaces of descriptor systems. Circ. Syst. Signal Process. 5(1), 37-48 (1986)
36. Özçaldiran, K., Haliločlu, L.: Structural properties of singular systems. Kybernetika 29(6), 518-546 (1993)
37. Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer, New York (1998)
38. Przyluski, K.M., Sosnowski, A.: Remarks on the theory of implicit linear continuous-time systems. Kybernetika 30(5), 507-515 (1994)
39. Rosenbrock, H.H.: State-Space and Multivariable Theory. Nelson, London (1970)
40. van der Schaft, A.J., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol. 251. Springer, New York (2000)
41. Schwartz, L.: Theorie des Distributions. Hermann, Paris (1978)
42. Shorten, R.N., Narendra, K.S.: Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-invariant systems. Int. J. Adapt. Control Signal Process. 16, 709-728 (2002)
43. Verghese, G.C.: Further notes on singular descriptions. In: Joint Automatic Control Conference, vol. 18, p. 85, TA4 (1981)
44. Willems, J.C.: Input-output and state space representations of finite-dimensional linear timeinvariant systems. Linear Algebr. Appl. 50, 581-608 (1983)
45. Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control 36(3), 259-264 (1991)
46. Wong, K.T.: The eigenvalue problem $\lambda T x+S x$. J. Differ. Equ. 1, 270-281 (1974)
47. Wonham, W.M.: Linear Multivariable Control A Geom. Approach, 3rd edn. Springer, New York (1985)

Author Queries

Chapter 7

Query Refs.	Details Required	Author's response
AQ1	Please confirm if the corresponding author is correctly identified. Amend if necessary.	
AQ2	Corollary 3.6, Proposition 4.2 and Theorem 4.5 is cited in text but not provided their respective chapters. Please provide them or delete these citations.	
AQ3	Please note that the equations are treated as image	

Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections．If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins．

Instruction to printer	Textual mark	Marginal mark
Leave unchanged	．．．under matter to remain	（ 1
Insert in text the matter indicated in the margin		New matter followed by α or $h^{(\times 2)}$
Delete	／through single character，rule or underline \qquad or through all characters to be deleted	$\text { of or } \% \text { (ax }$
Substitute character or substitute part of one or more word（s）	／through letter or \longmapsto through characters	new character／or new characters／
Change to italics	－under matter to be changed	\leftharpoonup
Change to capitals	\equiv under matter to be changed	三
Change to small capitals	＝under matter to be changed	＝
Change to bold type	\sim under matter to be changed	\sim
Change to bold italic	\approx under matter to be changed	Sur
Change to lower case	Encircle matter to be changed	三
Change italic to upright type	（As above）	4
Change bold to non－bold type	（As above）	nn
Insert＇superior＇character	／through character or α where required	Y or X under character e．g．${ }^{2}$ or \dot{x}^{2}
Insert＇inferior＇character	（As above）	人 over character e．g．令
Insert full stop	（As above）	\odot
Insert comma	（As above）	，
Insert single quotation marks	（As above）	$\begin{aligned} & \dot{y} \text { or } \dot{x} \text { and/or } \\ & \dot{y} \text { or } \dot{x} \end{aligned}$
Insert double quotation marks	（As above）	$\begin{aligned} & \ddot{y} \text { or } \ddot{x} \text { and/or } \\ & \ddot{y} \text { or } \ddot{x} \end{aligned}$
Insert hyphen	（As above）	H
Start new paragraph	－	－
No new paragraph	${ }^{\sim}$	\checkmark
Transpose	\square	\square
Close up	linking ${ }^{\text {characters }}$	\bigcirc
Insert or substitute space between characters or words	／through character or α where required	Y
Reduce space between characters or words	between characters or words affected	\uparrow

[^0]: E. M. Bonilla

 CINVESTAV-IPN, Control Automático, UMI 3175 CINVESTAV -CNRS,
 A.P. 14-740, 07000 México City, México
 e-mail: mbonilla@cinvestav.mx
 M. Malabre (\boxtimes)

 CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes)
 UMR 6004, B.P. 92101,44321 Nantes Cedex 03, France
 e-mail: Michel.Malabre@1s2n.fr
 V. Azhmyakov

 Department of Mathematical Science, Universidad EAFIT, Medellin, Colombia
 e-mail: vazhmyako@eafit.edu.co

[^1]: ${ }^{1}$ In the case where there is no output equation $y=C x$, we simply write $\Sigma^{i m p}(E, A, B)$.

[^2]: ${ }^{2}$ Geerts [18] considered the linear combinations of impulsive and smooth distributions, with μ coordinates, denoted by $\mathscr{C}_{\text {imp }}^{\mu}$, as the signal sets. The set $\mathscr{C}_{\text {imp }}^{\mu}$ is a subalgebra and it can be decomposed as $\mathscr{C}_{\text {p-imp }}^{\mu} \oplus \mathscr{C}_{\mathrm{sm}}^{\mu}$, where $\mathscr{C}_{\mathrm{p}-\mathrm{imp}}^{\mu}$ and $\mathscr{C}_{\mathrm{sm}}^{\mu}$ denote the subalgebras of pure impulses and smooth distributions, respectively [41]. The unit element of this subalgebra is the Dirac delta distribution, δ. Any linear combination of δ and its distributional derivatives $\delta^{(\ell)}, \ell>1$, is called impulsive.
 ${ }^{3} E x_{0}$ stands for $E x_{0} \delta, x_{0} \in \mathscr{X}_{d}$ being the initial condition, and $p E x$ stands for $\delta^{(1)} * E x$ (* denotes convolution); if $p E x$ is smooth and $E \dot{x}$ stands for the distribution that can be identified with the ordinary derivative, $E \mathrm{~d} x / \mathrm{d} t$, then $p E x=E \dot{x}+E x_{0^{+}}$.

[^3]: ${ }^{4}$ We restrict our discussion to subspaces of finite-dimensional vector spaces. In [16] and in [2], these definitions are stated in the more general framework of closed sets of normed vector spaces.

[^4]: ${ }^{5}$ Let us note that (7.31) implies that (cf. Fig.7.2): $E \mathscr{V}_{\mathscr{X}_{d}^{*}}+\operatorname{Im} B=\mathscr{X}_{e q}$ and $\mathscr{V}_{\mathscr{X}_{d}^{*}}=\mathscr{X}_{d}$, hence (7.64) takes the form (7.71).
 ${ }^{6}$ Recall that two representations are externally equivalent when the sets of all possible trajectories for their external signals (here u and y) are identical (see [37, 44, 45]).

[^5]: ${ }^{7}$ Since Theorem 7.5 is satisfied, one can also assign the output dynamics.

