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Chapter 7
Advances of Implicit Description
Techniques in Modelling and Control
of Switched Systems

E. Moisés Bonilla, Michel Malabre and Vadim Azhmyakov

Abstract Our contribution is devoted to a constructive overview of the implicit1

system approach in modern control of switched dynamic models. We study a class2

of non-stationary autonomous switched systems and formally establish the existence3

of solution. We next incorporate the implicit systems approach into our consideration.4

At the beginning of the contribution, we also develop a specific system example that is5

used for illustrations of various system aspects that we consider. Our research involves6

among others a deep examination of the reachability property in the framework of7

the implicit system framework that we propose. Based on this methodology, we8

finally propose a resulting robust control design for the switched systems under9

consideration and the proposed control strategy is implemented in the context of the10

illustrative example.11 AQ1

Notation12

Let us first introduce the necessary notation used in this manuscript.13

• Script capitals V , W , . . . denote finite-dimensional linear spaces with elements14

v, w, . . .. The dimension of a space V is denoted by dim(V ), V ≈ W stands for15

dim(V ) = dim(W ). Moreover, in the case V ⊂ W , W
V or W

/
V stands for the16

quotient space W modulo V . The direct sum of independent spaces is written as ⊕.17

X−1V stands for the inverse image of the subspace V by the linear transformation18

X . Given a linear transformation X : V → W , the expression ImX = XV denotes19
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2 E. M. Bonilla et al.

its image and KerX denotes the corresponding kernel. In the case V ≈ W , we write20

X : V ↔ W . Given a space X = S ⊕ T , the natural projection on S along T21

is denoted as P : X → S //T . A zero-dimensional subspace is denoted by {0},22

and the identity operator is I. ei ∈ R
n stands for the vector whose i-th entry is23

equal to 1 and the other ones are equal to 0. {ek, . . . e�} stands for the subspace24

generated by the vectors ek, . . . e�.25

• Additionally R
+, R

+∗, Z
+ and N stand for sets of non-negative real numbers, pos-26

itive real numbers, non-negative integers and correspondingly for positive integers27

(the natural numbers), respectively. The notations C∞ (
R

+, V
)

and L∞ (
R

+, V
)

28

are used for the space of infinitely differentiable functions and space of bounded29

functions from R
+ to V .30

7.1 Introduction31

We review recent contributions related to the implicit linear systems and to the corre-32

sponding modelling approaches. We mainly analyse here the effective control design33

schemes for some specific classes of complex systems, namely, for dynamic systems34

with switches. First, let us mention the celebrated implicit systems representation35

proposed by Rosenbrock [39]. It was developed in the context of a specific general-36

ization of proper linear systems (see also [28]).37

Recall that an implicit representation Σ imp(E, A, B, C) is a set of differential38

and algebraic equations of the generic form1:39

Edx/dt = Ax + Bu and y = Cx, ∀ t ≥ 0, (7.1)40

where E : Xd → X eq , A : Xd → X eq , B : U → X eq and C : Xd → Y are lin-41

ear maps. The spaces Xd ≈ R
n , X eq ≈ R

neq , U ≈ R
m and Y ≈ R

p are usually42

called the “descriptor”,“equation” and the “input” and the “output” spaces, respec-43

tively. In [5], it was shown that under the condition neq ≤ n one can constructively44

describe a linear system with an internal Variable Structure. However, in case neq45

< n, when the system under consideration is solvable, solutions are generally non-46

unique. In some sense, there is an additional degree of freedom in (7.1) that can47

finally incorporate (by an implicit way) a structure variation. In [8], a non-square48

implicit description was effectively used for modelling and control of various classes49

of linear systems. This effective control approach also includes systems with internal50

switches. Moreover, the necessary and sufficient conditions for a unique dynamic51

system behaviour (expressed in terms of the overall implicit model) are developed.52

These conditions imply existence of the system parts which are associated with the53

common internal dynamic equation and also with the algebraic constraints. The last54

one are “controlled” (in an hidden way) by the degree of freedom. It was also shown55

how to include the variable internal structure representation into the common square56

1In the case where there is no output equation y = Cx , we simply write Σ imp(E, A, B).
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7 Advances of Implicit Description Techniques … 3

implicit descriptions for an (A, E, B) invariant subspace generated by the kernel of57

the generic output map. The above-mentioned embedding makes it possible to get58

an unobservable variable internal structure. As a consequence of this effect, a proper59

closed-loop system with a controllable pre-specified structure was obtained.60

In [13], we have taken advantage of the results obtained in [8] for a particular61

model (a class) of the so-called “time-dependent, autonomous switched systems”62

[29]. In [10], the authors propose a specific variable structure decoupling control63

strategy based on the celebrated ideal proportional and derivative (PD) feedback.64

Moreover, our contribution [14] is dedicated to a proper practical approximation65

of the ideal PD feedback mentioned above. This control strategy “rejects” in some66

sense the given variable structure and makes it possible to establish the stability67

property (stabilization) of both implicit control strategies. In [15], the authors have68

tackled the descriptor variable observation problem for implicit descriptions having69

column minimal indices blocks. In this paper, two concrete design procedures are70

considered, namely, the (i) Linear descriptor observers approach (based on the fault71

detection techniques) and the (ii) Indirect variable descriptor observers technique.72

The last one is based on the finite time structure detection methodology. In the first73

design scheme, the observer is composed of the celebrated Beard-Jones filter which74

makes it possible to observe the existing degree of freedom in rectangular implicit75

representations. Since this observation is accomplished by a pole-zero cancellation,76

this technique is reserved to minimum phase systems. The second idea from the77

contribution mentioned above is based on an adaptive structure detection. This tech-78

nique is implemented in finite time and guarantees avoiding of possible stability79

problems (due to the temporarily unstable closed-loop systems into the detection80

procedure [11]).81

Our contribution is organized as follows. In Sect. 7.2, we review a class of time-82

dependent autonomous switched systems which can be studied in combination with83

the newly developed approach of the linear time-invariant implicit systems [8, 13].84

In Sect. 7.3, we review some properties of the rectangular implicit representations85

[8, 12]. Section 7.4 is devoted to the important structural property associated with86

the system reachability [6, 8, 9, 12, 16]. Section 7.5 includes the control strategy87

development for the rectangular implicit representations when the descriptor variable88

is available [8, 14]. In Sect. 7.6, we present some numerical simulations. Section 7.789

summarizes our contribution.90

7.2 Time-Dependent Autonomous Switched Systems91

In [13], taking into consideration the analytic results obtained in [8], an important92

class of the so-called time-dependent autonomous switched systems [29, 40] has been93

considered. It can be formally represented by the following state-space representa-94

tion Σ state(Aqi , B, Cqi ):95
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4 E. M. Bonilla et al.

d

dt
x̄ = Aqi x̄ + Bu and y = Cqi x̄, (7.2)96

where u and y are the input and output variables. Here, qi are elements of a finite set
of indexes (locations) Q. The system remains in location

qi ∈ Q = {q1, . . . , qη| qi ∈ R
μ, i ∈ {1, . . . , η}}

for all time instants t ∈ [Ti−1, Ti ), and some i ∈ N,

Ti−1 ∈ T

{
Ti ∈ R

+
∣∣∣∣T0 = 0, Ti−1 < Ti ∀i ∈ N, with lim

i→∞ Ti = ∞
}

.

The matrices Aqi and Cqi have here a particular structure (cf. [33, 42]):97

Aqi = A0 + A1 D(qi ) and Cqi = C0 + C1 D(qi ), (7.3)98

where B ∈ R
n̄×m , A0 ∈ R

n̄×n̄ , C0 ∈ R
p×n̄ , A1 ∈ R

n̄×n̂ , C1 ∈ R
p×n̂ and D(qi ) ∈99

R
n̂×n̄ , i ∈ {1, . . . , η}. Moreover, A1 and B are monic, C1 and D(qi ) are epic, and100

D(0) = 0.101

Let us first introduce an illustrative example which will be used along with this102

chapter.103

7.2.1 Example (Part 1)104

Consider (7.2) and (7.3) with the following state-space matrices (q = (α, β)):105

A0 =
[

0 1
1 0

]
, A1 =

[
1
1

]
, B =

[
0
1

]
, C0 = [

0 2
]
, C1 = [

1
]
, D(q) = [

α β
]
,106

q ∈ {
q1, q2, q3

}
, q1 = (−1,−1), q2 = (−1, 0), q3 = (−1,−2). (7.4)107

Here108

Aqi =
[

α (1 + β)

(1 + α) β

]
, B =

[
0
1

]
, Cqi = [

α (β + 2)
]
. (7.5)109

For a pair (α, β) we have an expression of the transfer function (i ∈ {1, 2, 3})110

Fqi (s) = Cqi (sI − Aqi )
−1 B = (β + 2)s − α

(s + 1)(s − (1 + α + β))
. (7.6)111
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7 Advances of Implicit Description Techniques … 5

For the possible three index values q ∈ Q, we obtain the corresponding three112

dynamic behaviours [37, 44, 45]:113

B∞
q1

=
{
(u(·), y(·)) ∈ C∞ (Ii , R

2)∣∣∣
[ −1 (d/dt + 1)

]
[

u
y

]
= 0

}
114

B∞
q2

=
{
(u(·), y(·)) ∈ C∞ (I j , R

2
)∣
∣∣
[ −(2d/dt + 1) (d/dt + 1)(d/dt)

][ u
y

]
= 0

}
115

B∞
q3

=
{
(u(·), y(·)) ∈ C∞ (Ik, R

2
)∣∣
∣
[ −1 (d/dt + 1)(d/dt + 2)

][ u
y

]
= 0

}
(7.7)116

associated with the disjoints Ii , I j , Ik ∈ {Iτ = [Tτ−1, Tτ ) ⊂ R
+| τ ∈ N, Tτ−1 ∈ T

}
,117

i , j , k ∈ N.118

Taking into consideration the dynamic “behaviour” determined by Eq. (7.7), one119

can interpret it as a result of formally different state-space representations. However,120

one can show that it is a consequence of the same system represented by (7.2), (7.3)121

and by (7.4). The evident change of its internal structure is caused by the pole-zero122

cancellation. The last one generates uncontrollable and/or unobservable modes, see123

Fig. 7.1.124

Comparing Fig. 7.1 with the dynamic behaviours (7.7), one can conclude that the125

lack of order of B∞
q1

is due to an unobservable mode O. In fact, one could carefully126

handle the unobservable subspace for getting a desired internal structure. Indeed,127

in [13] we have taken an advantage of the particular structure (7.3) in the sense of128

handling the unobservable subspace. This approach also includes the consequent129

changes of structure inside a known set of models. Let us refer in that connection130

to the so-called ladder systems which consider irreducible factors of order 1 over R,131

irreducible factors of order 2 over R and lead/lag compensation networks [7, 13].132

. . . . . . . .C : β = −1

O
: β

=−α −
2

β +α +
1 =

0

α

β
q2

q1

q3

•

•

•

Fig. 7.1 Structural properties of the state-space representation Σ state(Aqi , B, Cqi ) with
matrices (7.5). The characteristic polynomial is det(s I − Aqi ) = (s + 1)

(
s − (1 + α + β)

)
, the

uncontrollable and unobservable modes, C and O, are and

, respectively
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6 E. M. Bonilla et al.

As it is shown in the next sections, the particular matrices’ structure (7.3) of133

the time-dependent autonomous switched systems (7.2) enables its representation by134

time-independent linear rectangular implicit descriptions (7.1). The corresponding135

control here is given in the form of static or dynamic descriptor variable feedbacks.136

7.3 Implicit Systems137

Let us come back to the time-dependent autonomous switched systems described by138

(7.2) and (7.3). We next define the descriptor variable x = [
x̄ T x̂ T

]T
, where x̂ =139

−D(qi )x̄ , and get the following expression:140

[
I 0
0 0

]
d

dt
x =

[
A0 −A1

D(qi ) I

]
x +

[
B
0

]
u141

y = [
C0 −C1

]
x . (7.8)142

From (7.8), we easily deduce that all the possible structure variations of (7.2) and143

(7.3) share the same dynamics represented by the rectangular implicit representation:144

[
I 0

]
dx/dt = [

A0 −A1
]

x + Bu and y = [
C0 −C1

]
x . (7.9)145

So, if there is a static or dynamic descriptor variable feedback controlling the rect-146

angular implicit representation (7.9), it also controls (7.2) and (7.3).147

We next review some properties of the rectangular implicit representations. These148

useful properties make it easy to study the time-dependent autonomous switched149

systems in the theoretic framework of linear time-invariant implicit systems theory.150

7.3.1 Existence of Solution151

Let us begin with some formal definitions of the implicit representation Σ imp (E ,152

A, B, C) of the generic form (cf. (7.1)).153

Definition 7.1 (Implicit representation) An implicit representation, Σ imp (E , A, B,154

C), is a set of differential and algebraic equations of the form (7.1), where155

Hypothesis H1. KerB = {0} and Im C = Y .156

Hypothesis H2. Im
[

E A B
] = X eq .157

Definition 7.2 (Input/descriptor system [12, 24, 37]) An implicit representation158

Σ imp (E , A, B),159

Edx/dt = Ax + Bu ∀ t ≥ 0, (7.10)160
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7 Advances of Implicit Description Techniques … 7

is called an input/descriptor system, when for all initial condition x0 ∈ Xd , there161

exists at least one solution (u, x) ∈ C∞ (
R

+, U × Xd
)
, such that x(0) = x0. The162

input/descriptor system is completely defined by a triple: Σi/d = (
R

+,U × Xd ,163

B[E,A,B]
)
, with behaviour:164

B[E,A,B] =
{
(u, x) ∈ C∞ (

R
+, U × Xd

) ∣
∣∣

[
(Ed/dt − A) −B

] [ x

u

]
= 0

}
.

(7.11)165

At this point, it is important to clarify what exactly means the qualitative expres-166

sion “there exists at least one solution”.167

Let us first review the existence of solution for two conceptually crucial points:168

1. given any initial condition and169

2. for all admissible inputs.170

7.3.1.1 Existence of Solution Given Any Initial Condition171

A. Behavioural approach172

Following Hautus [20] and Hautus and Silverman [21], Geerts [18] generalized the173

solvability results of [19]. An important advantage of this generalization is the natural174

way of definition. It is based on the distributional framework [41] and, moreover,175

considers the usual time domain associated with the ordinary differential equations.176

This fact constitutes the real starting point of the so-called behavioural approach177

[37]. Geerts introduced the following definition for the distributional version2 of the178

implicit representation (7.10)3: pEx = Ax + Bu + Ex0.179

Definition 7.3 (C-solvability in the function sense [18]) Given the solution set,180

SC(x0, u)
def=

{
x ∈ C nd

imp

∣∣∣ [p E − A] x = Bu + Ex0

}
, the implicit representation181

(7.10) is C-solvable in the function sense if ∀x0 ∈ Xd ∃ u ∈ C m
sm : SC(x0, u) ∩182

C n
sm �= ∅. Given the “consistent initial conditions set”, IC

def= {
z0 ∈ Xd | ∃u ∈ C m

sm183

∃x ∈ SC(z0, u) ∩ C nd
sm : x(0+) = z0

}
, and the “weakly consistent initial conditions184

set”, Iw def= {
z0 ∈ Xd | ∃u ∈ C m

sm ∃x ∈ SC(z0, u) ∩ C nd
sm

}
, a point x0 ∈ Xd is called185

C-consistent if x0 ∈ IC and weakly C-consistent if x0 ∈ Iw.186

The C-solvability in the function sense is concerned with solutions only composed187

of some arbitrarily often differentiable ordinary functions. The two notions of con-188

sistency, C-consistent and weakly C-consistent, lead to smooth solutions, namely,189

2Geerts [18] considered the linear combinations of impulsive and smooth distributions, with μ

coordinates, denoted by C
μ
imp, as the signal sets. The set C

μ
imp is a subalgebra and it can be decom-

posed as C
μ
p−imp ⊕ C

μ
sm, where C

μ
p−imp and C

μ
sm denote the subalgebras of pure impulses and smooth

distributions, respectively [41]. The unit element of this subalgebra is the Dirac delta distribution,
δ. Any linear combination of δ and its distributional derivatives δ(�), � > 1, is called impulsive.
3 Ex0 stands for Ex0δ, x0 ∈ Xd being the initial condition, and pEx stands for δ(1) ∗ Ex (∗ denotes
convolution); if pEx is smooth and Eẋ stands for the distribution that can be identified with the
ordinary derivative, Edx/dt , then pEx = Eẋ + Ex0+ .
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8 E. M. Bonilla et al.

with no impulsions, but the C-consistency avoids jumps at the origin, namely, the190

smooth solutions are continuous on the left. Note that the weakly C-consistent case191

enables jumps at the origin.192

Geerts in [18] characterized the existence of solutions for every initial condition193

in his main result (see Corollary 3.6, Proposition 4.2 and Theorem 4.5). Hereafter, weAQ2194

summarize some results concerning smooth solutions, together with their geometric195

equivalences (see [12] for details).196

Theorem 7.1 (C-solvability in the function sense [18]) If H2 is fulfilled, then the197

implicit representation (7.10) is C-solvable in the function sense if and only if Iw =198

Xd , namely, if and only if Im E + AKerE + Im B = X eq , i.e. if and only if199

EV ∗
X d

= Im E . (7.12)200

Moreover, the initial conditions will be C-consistent, IC = Xd , if and only if Im E +201

Im B = X eq , i.e. if and only if202

EV ∗
X d

+ Im B = X eq . (7.13)203

V ∗
X d

is the supremal (A, E, B)-invariant subspace contained in Xd [30, 43],204

V ∗
X d

def= sup {V ⊂ Xd | AV ⊂ EV + Im B } , (7.14)205

which is the limit of the following algorithm:206

V 0
X d

= Xd , V μ+1
X d

= A−1
(

EV μ

X d
+ Im B

)
. (7.15)207

B. Viability approach208

In order to study the reachability problem for implicit systems, Frankowska in [16]209

introduced the specific set-valued map (the set of all admissible velocities) F : Xd �210

Xd , F(x) = E−1
(

Ax + Im B
) = {v ∈ X |Ev ∈ Ax + Im B}, and considered the211

generic differential inclusion:212

dx/dt ∈ F(x), where x(0) = x0. (7.16)213

Frankowska [16] showed that the solutions of (7.10) and (7.16) are the same. Addi-214

tionally, the meaning of a viable solution was constructively clarified. The largest215

subspace of such viable solutions is given as follows.216

Definition 7.4 (Viability kernel [2, 16]) An absolutely continuous function, x : R
+

217

→ Xd , is called a trajectory of (7.16), if x(0) = x0 and dx/dt ∈ F(x) for almost218

every t ∈ R
+, that is to say, if there exists a measurable function, u : R

+ → U , such219

that x(0) = x0 and Edx/dt = Ax + Bu for almost every t ∈ R
+.220

471833_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:15/4/2019 Pages: 38 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

7 Advances of Implicit Description Techniques … 9

Let K be a subspace4 of Xd . A trajectory x of (7.16) is called viable in K , if221

x(t) ∈ K for all t ≥ 0. The set of such trajectories is called the set of viable solutions222

in K . The subspace K is called a viability domain of F, if for all x ∈ K : F(x) ∩ K223

�= ∅. The subspace K is called the viability kernel of (7.16) when it is the largest224

viability domain of F.225

Theorem 7.2 (Viability kernel [2]) The supremal (A, E, B)-invariant subspace226

contained in Xd , V ∗
X d

, is the viability kernel of Xd for the set-valued map, F :227

Xd � Xd , F(x) = E−1(Ax + Im B). Moreover, for all x0 ∈ V ∗
X d

, there exists a228

trajectory, x ∈ C∞
(
R

+, V ∗
X d

)
, solution of (7.10), satisfying x(0) = x0.229

A singular system is “strict” when the viability kernel coincides with the whole230

descriptor space, Xd , namely,231

V ∗
X d

= Xd . (7.17)232

As we have shown in Theorem 7.1, the specific condition (7.13) implies that for233

any initial condition limt→0+ x(t) = x0 ∈ Xd , there exists at least one solution pair234

(u, x) ∈ C∞ (
R

+, U × Xd
)

of (7.10).235

7.3.1.2 Existence of Solution for All Admissible Inputs236

When an implicit representation Σ imp (E , A, B) has a solution for all admissible237

inputs, it is simply called solvable.238

Definition 7.5 (Solvable representation [4]) The implicit representation (7.10) is239

called solvable, if for any u(·) ∈ C∞ (
R

+, U
)
, there exists at least one trajectory240

x(·) ∈ C∞(R+,Xd) solution of
[
Ed/dt − A

]
x(t) = Bu(t), ∀ t ≥ 0.241

Lemma 7.1 (Existence of solution [25, 27, 28] ) The implicit representation (7.10)242

admits at least one solution for all u(·) ∈ C∞ (
R

+, U
)

243

if and only if244

rang
[
λE − A B

] = rang
[
λE − A

]
, for almost all λ ∈ C (7.18)245

if and only if246

ImB ⊂ Im (λE − A), for almost any λ ∈ C (7.19)247

if and only if248

Im B ⊂ B∗
1 + B∗

2, (7.20)249

250

4We restrict our discussion to subspaces of finite-dimensional vector spaces. In [16] and in [2],
these definitions are stated in the more general framework of closed sets of normed vector spaces.
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10 E. M. Bonilla et al.

where B∗
1 and B∗

2 are the limits of the following geometric algorithms:251

B0
1 = X eq , Bμ+1

1 = E A−1Bμ
1 (7.21)252

253

B0
2 = {0} , Bμ+1

2 = AE−1Bμ
2 . (7.22)254

Corollary 7.1 (Existence of solution [8]) The following statements hold true:255

1. If the geometric condition256

Im A + Im B ⊂ Im E (7.23)257

holds, then the implicit representation (7.10) admits at least one solution for258

all u(·) ∈ C∞ (
R

+, U
)
, and for any initial condition limt→0+ x(t) = x0 ∈ Xd ,259

there exists at least one trajectory (u, x) ∈ C∞ (
R

+, U × Xd
)

solution of (7.10).260

2. If the geometric condition261

Im E + Im A = X eq (7.24)262

holds, then the implicit representation (7.10) admits at least one solution for all263

u(·) ∈ C∞ (
R

+, U
)
.264

Indeed, (7.23) implies B∗
1 = Im E and VX ∗

d
= Xd , and (7.24) implies (7.19).265

(a) (b)
ImB⊂B∗

1+B∗
2

(7.20) ⇐⇒ ImB⊂Im(λE−A), f.a.a. λ∈C

(7.19)

=
⇒

=
⇒

ImA+ImB⊂ImE
(7.23)

ImE+ImA=X eq
(7.24)

=⇒

VX ∗
d

=Xd

(7.17)
⇐⇒

ImE + ImB = X eq

EVX ∗
d

+ ImB = X eq

(7.13)
=⇒

ImE +AKerE + ImB = X eq

EVX ∗
d

= ImE
(7.12)

(c) (d) (e)

Fig. 7.2 Connexions between the notions of existence of solution. a, b Conditions of existence of
at least one solution for all admissible inputs of Lebret [25]. c Condition of viable solution of Aubin
and Frankowska [2] or smooth solution (without any jump) of Özçaldiran and Haliločlu [36]. d
Condition of Geerts [18] guaranteeing that the set of consistent initial conditions equals the whole
space. e Condition of C-solvability in the function sense of Geerts [18] or the condition of Przyluski
and Sosnowski [38] guaranteeing that the set of initial conditions of smooth solutions (with possible
jumps) equals the whole space, or the impulse controllability condition of Ishihara and Terra [23],
or the impulse-mode controllability with arbitrary initial conditions of Hou [22]
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7 Advances of Implicit Description Techniques … 11

In Fig. 7.2, we compare the solvability conditions of Geerts (7.12) and (7.13),266

based on a distributional framework, with the solvability condition of Frankowska267

(7.17), based on a viability approach; as well as the solvability conditions of Lebret268

[25], (7.19) and (7.20).269

7.3.2 Proper Implicit Representations270

We now are interested in the proper linear systems in the presence of internal switches,271

which can be represented and controlled by means of implicit representations. Let272

us first introduce some basic definitions and present the necessary analytic results273

which naturally lead to implicit representations given by a proper linear system with274

internal structure variations.275

Definition 7.6 (Regularity [17]) A pencil [λE − A], with λ ∈ C, is called regular if276

it is square and its determinant is not the zero polynomial. An implicit representation277

Σ imp (E , A, B, C) is called regular if its pencil [λE − A] is regular.278

Definition 7.7 (Internal properness [1, 3]) An implicit representation Σ imp (E , A,279

B, C) is called internally proper if its pencil [λE − A] is proper, namely, if its pencil280

is regular and has no infinite elementary divisor greater than 1. In other words, there281

is no derivative action in the system dynamics.282

It is common knowledge that an implicit representation is completely character-283

ized by the canonical Kronecker form of its pencil [λE − A], with λ ∈ C. Usually,284

there are four possible types of suitable blocks [17]:285

1. Finite elementary divisors (fed), as for example, [λE f ed − A f ed ]286

=
[

(λ − α) 1
0 (λ − α)

]
. The fed corresponds to the proper part of the system (inte-287

gral actions), and it was geometrically characterized by Wong [46] and Bernhard288

[3].289

2. Infinite elementary divisors (ied), as for example, [λEied − Aied ] =
[

1 λ

0 1

]
. The290

ied corresponds to the non-proper part of the system (time-derivative actions),291

and it was geometrically characterized by Armentano [1].292

3. Minimal column indices (mci), as for example, [λEmci − Amci ] =
[

λ 1 0
0 λ 1

]
. The293

mci corresponds to the existence of a certain degree of freedom (more variables294

than equations), and it was geometrically characterized by Armentano [1].295

4. Minimal row indices (mri), as for example, [λEmri − Amri ] =
⎡

⎣
λ 0
1 λ

0 1

⎤

⎦. The mri is296

related with the existence of algebraic and differential constraints on the external297

signals. For example, an admissible input has to satisfy some given algebraic and298

differential equations. Clearly, [1] geometrically characterized the mri.299
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12 E. M. Bonilla et al.

Example 7.1 Let us consider the following implicit representation:300

[Ed/dt − A]x − Bu =

⎡

⎢⎢
⎣

1 ied 0 0

0
[

d/dt 1
]

mci

⎤

⎥⎥
⎦

⎡

⎣
xied

x̄mci

x̂mci

⎤

⎦ −
[ −1

1

]
u = 0,

y − Cx = y − [
1 2 −1

]
⎡

⎣
xied

x̄mci

x̂mci

⎤

⎦ = 0,

(7.25)301

and let us suppose that the degree of freedom satisfies the algebraic equation:302

Dx = [
a b c

]
⎡

⎣
xied

x̄mci

x̂mci

⎤

⎦ = 0, (7.26)303

1. if
[

a b c
] = [

1 1 0
]
, we then get the non-proper external behaviour:304

y(t) = du(t)/dt, (7.27)305

2. if
[

a b c
] = [

0 1 −1
]
, we then get the proper external behaviour:306

y(t) = e−t x̄c(0) +
∫ t

0
e−(t−τ)u(τ )dτ − u(t). (7.28)307

As we can see from the analysis realized above the existence of the degree of308

freedom can lead to a non-proper solution. This fact implies the necessity to add309

some specific geometric conditions on the degree of freedom in order that proper310

solutions are guaranteed.311

Let us consider an implicit representationΣ ig(E, A, B, C), where E :Xd → X g ,312

A : Xd → X g , B : U → X g , C : Xd → Y , such that the following hypotheses313

are satisfied:314

Hypothesis H3. Σ ig(E, A, B, C) satisfies the standard assumptions H1 and H2,315

namely,316

KerB = {0}, Im C = Y and Im
[
E A B

] = X g. (7.29)317

Hypothesis H4. Σ ig(E, A, B, C) admits at least one solution for all u(·)318

∈ C∞ (
R

+, U
)
, which is implied by (cf. Corollary 7.1 (7.24)):319

Im E + Im A = X g. (7.30)320

Hypothesis H5. The differential part of Σ ig(E, A, B, C), say Σ ir (E, A, B):321

Edx/dt = Ax + Bu (E : Xd → X eq , A : Xd → X eq , B : U → X eq , X eq ⊂322
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7 Advances of Implicit Description Techniques … 13

X g), admits at least one solution for all u(·) ∈ C∞ (
R

+, U
)
, and for any initial323

condition limt→0+ x(t) = x0 ∈ Xd , there exists at least one trajectory (u, x) ∈324

C∞ (
R

+, U × Xd
)

solution of Σ ir (E, A, B), which is implied by (cf. Corollary325

7.1: (7.23))326

Im A + Im B ⊂ Im E . (7.31)327

Keeping in mind assumptions (7.29), (7.30) and (7.31), the implicit representation328

Σ ig(E, A, B, C) can be expressed as follows:329

[
E
0

]

︸ ︷︷ ︸
E

d

dt
x =

[
A
D

]

︸ ︷︷ ︸
A

x +
[

B
0

]

︸ ︷︷ ︸
B

u and y = Cx . (7.32)330

Lemma 7.2 (Σ ig internally proper [8]) Let us consider the implicit global repre-331

sentation Σ ig(E, A, B, C), (7.32), satisfying the standard assumptions (7.29), and332

the solvability assumptions (7.30) and (7.31). Then, (7.32) is internally proper if and333

only if334

KerD ⊕ KerE = Xd . (7.33)335

Let us note that assumptions (7.29.c) and (7.30) are equivalent to336

X g = Im E ⊕ Im D. (7.34)337

Let us introduce the following implicit representations definitions.338

Definition 7.8 (Rectangular implicit representation) An implicit representation339

Σ ir (E, A, B, C),340

E
d

dt
x = Ax + Bu and y = Cx, (7.35)341

where the matrices E and A have more columns than rows, and the solvability342

condition (7.31) is satisfied, is called implicit rectangular representation.343

Definition 7.9 (Algebraic constraint) An algebraic constraint is a set of algebraic344

equations independent of the input variable, Σalc(0, D, 0):345

0 = Dx, (7.36)346

where D : Xd → X alc is a linear map and the finite-dimensional space, X alc, is347

called the algebraic constraint space.348

Definition 7.10 (Global implicit representation) If we gather the implicit rectangu-349

lar representation (7.35) with the algebraic constraint (7.36), which describes the350

degree of freedom, we get the following global implicit representation, Σ ig(E, A,351

B, C):352
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14 E. M. Bonilla et al.

E
d
dt x = Ax + Bu and y = Cx

E =
[

E
0

]
, A =

[
A
D

]
, B =

[
B
0

]
.

(7.37)353

The Cartesian product, X g
def= X eq × X cal , is the space of global equations. We354

shall assume that (7.34) is satisfied.355

7.3.3 Switched Systems356

Let us note that the above-mentioned conditions (7.33) and (7.34) imply the following357

important statement: there exist bases in Xd and also in X g such that (7.32) takes358

the specific form (D(qi ) is a variable matrix with respect to the location qi ∈ Q):359

[
I 0
0 0

]
d

dt

[
x̄
x̂

]
=

[
A0 −A1

D(qi ) I

] [
x̄
x̂

]
+

[
B
0

]
u and y = [

C0 −C1
] [

x̄
x̂

]
,

(7.38)360

and defining:

[
x̄
x̃

]
=

[
I 0

D(qi ) I

] [
x̄
x̂

]
, we get361

[
I 0
0 0

]
d
dt

[
x̄
x̃

]
=

[
(A0 + A1 D(qi )) 0

0 I

] [
x̄
x̃

]
+

[
B
0

]
u

y = [
(C0 + C1 D(qi )) −C1

]
[

x̄
x̃

]
,

(7.39)362

which coincides with time-dependent autonomous switched systems (7.2) with the363

particular structure (7.3).364

Remark 7.1 (Implicit representation of switched systems) The time-dependent365

autonomous switched systems (7.2), with the particular structure (7.3), are described366

by the global implicit representation Σ ig(E, Ai , B, C) (7.37), where the linear maps367

E : Xd → X eq , A : Xd → Xeq , B : U → X eq , C : Xd → Y and Di : Xd →368

X alc are equal to369

E = [
I 0

]
, A = [

A0 −A1
]
, C = [

C0 −C1
]
, Di = [

D(qi ) I
]
. (7.40)370

• The fixed structure of all Σ ig(E, Ai , B, C), which is active for a particular Di , is371

described by the implicit rectangular representation Σ ir (E, A, B, C) (7.1).372

• The degree of freedom is characterized by the algebraic constraints Σalc(0, Di , 0)373

(7.36).374

• Since dim X eq < dim Xd , there then exists a degree of freedom.375
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7 Advances of Implicit Description Techniques … 15

• Since Im A + Im B ⊂ Im E = X eq , Σ ir (E, A, B, C) admits at least one solu-376

tion for all u(·) ∈ C∞ (
R

+, U
)
, and for any initial condition limt→0+ x(t) = x0 ∈377

Xd , there exists at least one trajectory (u, x) ∈ C∞ (
R

+, U × Xd
)

solution of378

Σ ir (E, A, B).379

• Since Im Di = X alc and X eq × X alc ≈ Xd for all i ∈ {1, . . . , η} then the380

Σ ig(E, Ai , B, C) have unique solutions for any i ∈ {1, . . . , η}.381

• Since KerDi ⊕ KerE = Xd for all i ∈ {1, . . . , η} then the implicit global repre-382

sentations Σ ig(E, Ai , B, C) are proper.383

7.3.4 Example (Part 2)384

Let us continue Example 7.2.1385

A. Global implicit representation386

The state-space representation Σ state(Aqi , B, Cqi ), (7.2) and (7.5), is also repre-387

sented by the following global implicit representation (cf. (7.39)):388

⎡
⎣

1 0 0
0 1 0

0 0 0

⎤
⎦ d

dt
x̄
x̃ =

⎡
⎣

α (1+β ) 0
(1+α) β 0

0 0 1

⎤
⎦ x̄
x̃ +

⎡
⎣

0
1

0

⎤
⎦u

y = α (β +2) −1
x̄
x̃

KerE KerD

E
K

er
D

D
K

er
E

(7.41)389

Let us note that390

• Im A + Im B ⊂ Im E , X g = EKerD ⊕ DKerE = Im E ⊕ Im D and Xd391

= KerD ⊕ KerE then the implicit global representation (7.41) is externally proper392

(cf. Lemma 7.2).393

• The part limited to KerE and DKerE is algebraically redundant.394

• The part of the implicit global representation (7.41) limited to KerD, in the domain,395

and to EKerD, in the co-domain, which matrices are depicted with continuous396

lines, coincides with the state representations (7.2) and (7.5).397

• The upper part of the implicit global representation (7.41) is an implicit rectan-398

gular representation, in which matrices are depicted with dashed lines. This part399

explicitly contains the changes in the behaviour which are due to the switches in400

the α and β parameters.401

• The lower part of the implicit global representation (7.41) is an algebraic con-402

straint which includes the components of the descriptor variable which are always403

zero.404
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16 E. M. Bonilla et al.

B. Fixed structure405

Premultiplying (7.41) by

⎡

⎣
1 0 −1
0 1 −1
0 0 1

⎤

⎦, and defining: x =
[

x̄
x̂

]
=

⎡

⎣
1 0 0
0 1 0

−α −β 1

⎤

⎦
[

x̄
x̃

]
,406

we get the implicit global representation Σ ig(E, Ai , B, C) (cf. (7.37)):407

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ d

dt
x =

⎡

⎣
0 1 −1
1 0 −1
α β 1

⎤

⎦ x +
⎡

⎣
0
1
0

⎤

⎦ u and y = [
0 2 −1

]
x . (7.42)408

In the upper part of the implicit global representation (7.42), we get the rectangular409

implicit representation Σ ir (E, A, B, C) (cf. (7.35)):410

[
1 0 0
0 1 0

]
d

dt
x =

[
0 1 −1
1 0 −1

]
x +

[
0
1

]
u and y = [

0 2 −1
]

x . (7.43)411

In the lower part of the implicit global representation (7.42), we get the algebraic412

constraint Σalc(0, Di , 0) (cf. (7.36)):413

0 = [
α β 1

]
x . (7.44)414

C. Kronecker normal form415

In order to better understand how the internal structure variation is acting in the416

implicit representations Σ ig(E, Ai , B, C) and Σ ir (E, A, B, C), let us obtain their417

respective Kronecker normal forms.418

C.1 Kronecker normal forms of Σ ig(E, Ai , B, C):419

• If β = −1:420

Gig1[λE − Ai ]Dig1 =

⎡

⎢⎢
⎣

1 ied 0 0

0 (λ − α)
f ed

0

0 0 (λ + 1)
f ed

⎤

⎥⎥
⎦ . (7.45)421

• If β �= −1 and α + β = −2:422

Gig2[λE − Ai ]Dig2 =

⎡

⎢⎢
⎣

1 ied 0 0

0 (λ + 1)
f ed

1

0 0 (λ + 1)
f ed

⎤

⎥⎥
⎦ . (7.46)423

• If β �= −1 and α + β �= −2:424
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7 Advances of Implicit Description Techniques … 17

Gig3[λE − Ai ]Dig3 =

⎡

⎢⎢
⎣

1 ied 0 0

0 (λ − 1 − α − β)
f ed

0

0 0 (λ + 1)
f ed

⎤

⎥⎥
⎦ , (7.47)425

where Gig1 =
⎡

⎣
0 0 −1
1 0 1

−1 1 0

⎤

⎦, Dig1 =
⎡

⎣
0 1 0
0 1 1
1 (1 − α) 1

⎤

⎦, Gig2426

=
⎡

⎣
0 0 −1
1 0 1

(1 + β) −(1 + β) 0

⎤

⎦, Dig2 =
⎡

⎣
0 1 0
0 1 − 1

1+β

1 2 β

1+β

⎤

⎦, Gig3 =427

⎡

⎢
⎣

0 0 −1(
1 − 1+β

2+α+β

)
1+β

2+α+β
1

(1 + β) −(1 + β) 0

⎤

⎥
⎦ and Dig3 =

⎡

⎢⎢
⎣

0 1 1
2+α+β

0 1
(

1
2+α+β

− 1
(1+β)

)

1 −(α + β)
(

β

1+β
− α+β

2+α+β

)

⎤

⎥⎥
⎦.428

C.2 Kronecker normal form of Σ ir (E, A, B, C):429

Gir [λE − A]Dir =
⎡

⎣
λ 1

mci
0

0 0 (λ + 1)
f ed

⎤

⎦ (7.48)430

where Gir =
[

1 0
−1 1

]
and Dir =

⎡

⎣
1 0 0
1 0 1
1 1 1

⎤

⎦.431

Remark 7.2 (Internal structure variation) When we split the global implicit repre-432

sentation Σ ig(E, A, B, C), (7.41), via the global implicit representation433

Σ ig(E, Ai , B, C), (7.42), into the rectangular implicit representation434

Σ ir (E, A, B, C), (7.43), and the algebraic constraint Σalc(0, Dk, 0), (7.44), we get435

the common structure of the system which is described by Σ ir (E, A, B, C) (7.43).436

When comparing the Kronecker normal forms, (7.45), (7.46) and (7.47), of the437

pencils associated with (7.42), with the Kronecker normal form, (7.48), of the pencil438

associated with (7.43), we realize that the variable internal structure of the global439

implicit representation (7.42) is taken into account by the fixed block minimal column440

index of the Kronecker normal form (7.48), λ 1
mci

, associated with the rectangular441

implicit representation (7.43).442

471833_1_En_7_Chapter � TYPESET DISK LE � CP Disp.:15/4/2019 Pages: 38 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18 E. M. Bonilla et al.

7.4 Reachability443

Reachability is the most important concept studied in System Theory, since it char-444

acterizes the set of vectors which can be reached from the origin, in a finite time,445

following trajectories, solutions of the system. For state-space representations Σ state
446

(A, B), dx/dt = Ax + Bu, this set of vectors is geometrically characterized by the447

reachability subspace (see, for example, [47]):448

R∗ = 〈A | Im B 〉 def= Im B + AIm B + · · · + An−1Im B, (7.49)449

and the trajectories are generated by the external control input, u.450

For the case of implicit representations—/ Σ imp(E, A, B), Edx/dt = Ax + Bu,451

where E and A are square but [λE − A] is not necessarily invertible, Özçaldiran452

extended his geometric characterization of reachability by considering the supremal453

(A, E, B) reachability subspace contained in Xd [34, 35]:454

R∗
X d

= VX ∗
d

∩ S ∗
X d

, (7.50)455

where V ∗
X d

is the supremal (A, E, B)-invariant subspace contained in Xd (7.14),456

computed by (7.15), and S ∗
X d

is the infimal (E, A, B)-invariant subspace associated457

with Im B,458

S ∗
X d

= inf
{
S ⊂ Xd

∣
∣ S = E−1 (AS + Im B)

}
, (7.51)459

which is the limit of the algorithm:460

S 0
X d

= KerE , S μ+1
X d

= E−1
(

AS μ

X d
+ Im B

)
. (7.52)461

The geometric characterization of R∗
X d

, given by (7.50), (7.14) and (7.51), is a462

nice generalization of the classical state-space characterization (7.49). Indeed, for463

Σ state(A, B) = Σ imp(I, A, B): V ∗
X = X and S ∗

X = 〈A | Im B 〉. Thus, it would464

appear quite natural that for the more general representations Σ imp(E, A, B), with E465

and A not necessarily square, the reachability would be also characterized by R∗
X d

.466

The trueness of this conjecture was established by Frankowska [16] using tools467

of differential inclusions. But, as enhanced later on, this reachability concept needed468

to be further determined in order to discriminate the action of an effective external469

control input from an internal degree of freedom.470

Indeed, the trajectories generated by Σ imp(E, A, B) depend on the initial con-471

ditions, x(0), and not only on the external control input, but also possibly on inter-472

nal degrees of freedom, which are completely free and unknown. Since the system473

Σ imp(E, A, B) represented by (7.10) has more unknowns than equations, when a474

solution does exist, this is, in general, non-unique. The possible resulting trajectories475

can be studied within so-called viability domains, see Frankowska [16].476
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7 Advances of Implicit Description Techniques … 19

7.4.1 R∗
Xd

: Reachable Subspace477

Frankowska formally defined reachability as follows:478

Definition 7.11 (Reachability [16]) The implicit representation (7.10) is called479

reachable if for any possible x0, x1 ∈ Xd and for any time t1 > t0 ≥ 0, there exists480

a trajectory x(·), solution of (7.10), such that x(t0) = x0 and x(t1) = x1.481

And using tools of differential inclusions, she proved for the more general case.482

Theorem 7.3 (Reachability [2, 16]) For any t1 > t0 ≥ 0, the reachable subspace of483

(7.10) at time t1, starting from any initial value x(t0), is equal to R∗
X d

. Moreover,484

R∗
X d

is the largest subspace such that for any x0, x1 ∈ R∗
X d

and any t1 > t0 ≥ 0,485

there exists a trajectory x(·) ∈ C∞
(
R

+, R∗
X d

)
, solution of (7.10), with x(t0) = x0486

and x(t1) = x1.487

Note that the reachability Definition 7.11 requires no explicit control
action!488

In order to have a better understanding of Frankowska’s reachability concept,489

let us decompose the descriptor and equation spaces in function of the supremal490

(A, E, B)-invariant subspace contained in Xd , V ∗
X d

, and of the supremal (A, E, B)491

reachability subspace contained in Xd , R∗
X d

.492

In the third Lemma of [12], it is proved that there exist some complementary493

subspaces, X1, X2, BC and RC , such that494

Xd = V ∗
X d

⊕ X1,

V ∗
X d

= R∗
X d

⊕ X2,

R∗
X d

= RC ⊕ (R∗
X d

∩ KerE),

(7.53)495

496 X eq = (EV ∗
X d

+ Im B) ⊕ AX1,

EV ∗
X d

+ Im B = (AR∗
X d

+ Im B) ⊕ EX2,

AR∗
X d

+ Im B = ER∗
X d

⊕ BC,

(7.54)497

498 U = B−1 ER∗
X d

⊕ B−1BC, (7.55)499

satisfying500

RC ≈ ER∗
X d

, X2 ≈ EX2, X1 ≈ AX1,

V ∗
X d

∩ KerE = R∗
X d

∩ KerE, Im B ∩ EV ∗
X d

= Im B ∩ ER∗
X d

.
(7.56)501
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20 E. M. Bonilla et al.

Given the geometric decompositions (7.53), (7.54) and (7.55), the implicit repre-502

sentation (7.10) takes the following form (recall (7.56)):503

⎡
⎢⎢⎣

IC 0

0 0
0

0 I2

∗

0 0

⎤
⎥⎥⎦ d

dtx=

⎡
⎢⎢⎣
A1,1 A1,2

A2,1 A2,2

A1

A2

0 A3

0

0 I1

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣
B1 0

0 IBC
0
0

⎤
⎥⎥⎦u

R C R
∗
X
d
∩Ker

E

X
2

V ∗
Xd

X1

R∗
Xd B

−1 ER
∗
X
d

B
−1 B

C
E

R
∗ X
d

B
C

E
X

2

AX
1

A
R

∗ X
d
+

Im
B

E
V

∗ X
d
+

Im
B

(7.57)504

In the third Lemma of [12], it is also proved that505

ER∗
X d

= 〈
A1,1

∣
∣ Im

[
A1,2 B1

] 〉
. (7.58)506

• ER∗
X d

has the form of the classical state reachable subspace (7.49).

• ER∗
X d

is handled by two actions: (i) the input action, via Im B1, and (ii) the

internal degree of freedom action, via Im A1,2.
• The pair

(
A1,1,

[
A1,2 B1

])
is reachable in the classical state sense.

507

Example 7.2 Let us consider the following implicit representation, which is consti-508

tuted by a minimal column index and has no input actions:509

[
1 0

] d

dt

[
x̄
x̂

]
= [

0 1
] [

x̄
x̂

]
+ [

0
]

u. (7.59)510

Let us compute its reachability subspace R∗
X d

: From algorithms (7.15) and (7.52),511

we get512

R∗
X d

= V ∗
X d

= {e1, e2} = Xd ,513

and also (cf. (7.53), (7.54) and (7.55)):514

Im E = ER∗
X d

= RC = {e1}, R∗
X d

∩ KerE = {e2},
BC = Im B = B−1 ER∗

X d
= B−1BC = {0}.515

The matrices involved in (7.57) are516

A1,1 = 0, A1,2 = 1, A2,1 = A2,2 = ∅, B1 = 0, IC = 1, IBC = ∅.517
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7 Advances of Implicit Description Techniques … 21

• (7.59) is reachable: R∗
X d

= V ∗
X d

.
• (7.59) has no inputs actions: Im B = {0}.
• (7.59) is handled by its internal degree of freedom: ER∗

X d
=

〈
A1,1

∣∣ Im
[

A1,2 B1
] 〉 = 〈0 | Im [ 1 0 ] 〉.

518

7.4.2 External Reachability519

In order to avoid the pathologies illustrated in the previous example, in [6] we have520

introduced the concept of external reachability.521

Definition 7.12 (External reachability [6]) The implicit representation (7.10) is522

called externally reachable (by P.D. feedback) if523

• It is reachable.524

• The spectrum of λ(E − B Fd) − (A + B Fp) can be freely assigned by the selection525

of u = Fpx + Fddx/dt .526

Theorem 7.4 (External reachability [6]) (7.10) is externally reachable (by P.D.527

feedback) if and only if528

R∗
X d

= Xd (7.60)529

530

dim

(
Im B

EV ∗
X d

∩ Im B

)

≥ dim
(
V ∗

X d
∩ KerE

)
. (7.61)531

• To prove this, Theorem, Bonilla, and Malabre [6] have used tools from Kronecker532

theory.533

• Theorem 7.4 is the combination of the notion of reachability by Frankowska [16]534

and the notion of unicity of the descriptor variable solution by Lebret [25]535

• Indeed, if there exists a proportional and derivative feedback of the descriptor536

variable which insures the unicity of the descriptor variable, no internal degree of537

freedom will be present. This implies that the trajectory of the descriptor variable538

is compulsorily due to an action of the external control input.539

Example 7.3 Let us consider again the implicit representation (7.59) of Example 7.2.540

For that example, we have computed R∗
X d

= Xd , BC = {0} and R∗
X d

∩ KerE =541

{e2} ≈ R
1. Hence, Theorem 7.4 is not satisfied.542

This means that there exists no external control input u ∈ C∞ (
R

+, U
)
, to control543

the whole descriptor variable, x of system (7.59).544
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22 E. M. Bonilla et al.

Example 7.4 If we add an effective input action to (7.59), say545

[
1 0

] d

dt

[
x̄
x̂

]
= [

0 1
]

[
x̄
x̂

]
+ [

1
]

u, (7.62)546

we get from algorithms (7.15) and (7.52): R∗
X d

= V ∗
X d

= {e1, e2} = Xd , which547

imply Im B = Im E = ER∗
X d

= Im B ∩ ER∗
X d

= {e1} ≈ R
1 and R∗

X d
∩ KerE =548

{e2} ≈ R
1. Hence, Theorem 7.4 is still not satisfied. This means that there exists no549

external control input u ∈ C∞ (
R

+, U
)

able to control the whole descriptor variable,550

x , of system (7.62).551

However, we would like to control, at least partly, systems with representations
like (7.62).552

7.4.3 Externally Assignable Output Dynamics553

In order to partly control implicit representations with an internal degree of free-554

dom, like (7.62), we have introduced in [9] the concept of external output dynamics555

assignment.556

Definition 7.13 (External output dynamics assignment [9]) The implicit represen-557

tation (7.10) has an assignable external output dynamics when there exists a P.D.558

feedback u = Fpx + Fddx/dt + ur such that the closed-loop system is externally559

reachable.560

Theorem 7.5 (External output dynamics assignment [9]) The implicit representa-561

tion Σ imp(E, A, B, C), (7.1), has an assignable external output dynamics if and only562

if563

R∗
X d

+ V ∗ = Xd (7.63)564

565

dim

(
Im B

EV ∗
X d

∩ Im B

)

≥ dim
(
V ∗

X d
∩ KerE

) − dim
(
V ∗ ∩ E−1Im B

)
, (7.64)566

V ∗ is the supremal (A, E, B) invariant subspace contained in KerC [30, 31],567

V ∗ def= sup {V ⊂ KerC | AV ⊂ EV + Im B } , (7.65)568

which is the limit of the following algorithm:569

V 0 = Xd , V μ+1 = KerC ∩ A−1(EV μ + Im B). (7.66)570
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7 Advances of Implicit Description Techniques … 23

V ∗ characterizes the supremal part of the implicit representation Σ imp (E, A, B, C)571

which can be made unobservable when using a P.D. feedback u = Fpx + Fddx/dt572

+ ur , namely, for all derivative feedback Fd : Xd → U there exists a proportional573

feedback Fp : Xp → U , such that (A + B Fp)V ∗ ⊂ (E − B Fd)V ∗. The set feed-574

back pairs (Fp, Fd) satisfying this geometric inclusion is noted as F(V ∗).575

Condition (7.64) has been established by Lebret [25] to guarantee unicity of the576

output.577

Example 7.5 For the implicit representation (7.62) of Example 7.4, let us add an578

output equation:579

[
1 0

] d

dt

[
x̄
x̂

]
= [

0 1
] [

x̄
x̂

]
+ [

1
]

u and y = [
a b

]
x, (7.67)580

with a2 + b2 �= 0.581

From (7.67), (7.15) and (7.52), we get R∗
X d

= Xd , Im B = Im E = EV ∗
X d

∩582

Im B = {e1} ≈ R
1 and V ∗

X d
∩ KerE = {e2} ≈ R

1, then E−1Im B = Xd .583

From (7.67) and (7.66), follows that V ∗ = KerC = {be1 − ae2} ≈ R
1. Hence,584

Theorem 7.5 is satisfied and there exists a P.D. feedback, u = Fpx + Fddx/dt + ur ,585

such that the output dynamics of the closed-loop system is externally reachable, like,586

for example,587

u = [
(1 − a) −b

] d

dt

[
x̄
x̂

]
+ [

a (b − 1)
]

[
x̄
x̂

]
+ ur588

obtaining in this way:589

[
1 0

] d

dt

[
ξ̄

ξ̂

]
= [

1 0
]

[
ξ̄

ξ̂

]
+ [

1
]
ur and y = [

1 0
]

[
ξ̄

ξ̂

]
,590

where

[
ξ̄

ξ̂

]
=

[
a b
b −a

] [
x̄
x̂

]
.591

7.4.4 Example (Part 3)592

Let us come back to the rectangular implicit representation (7.43), which comes593

from the implicit global representation (7.42) of the switched system of Sects. 7.2.1594

and 7.3.4, described by (7.2) and (7.5), or by (7.41).595

From (7.43), (7.15) and (7.52), we get Im A + Im B ⊂ Im E = X eq , V ∗
X d

= R∗
d596

= Xd , EV ∗
X d

= Im E and EV ∗
X d

∩ Im B = Im B. Also, KerE = {e3} ≈ R
1 and597

E−1Im B = {e2, e3}.598

From (7.43) and (7.66), follows that V ∗ = KerC = {e1, e2}, then V ∗ ∩ E−1Im B599

= {e2} ≈ R
1.600
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24 E. M. Bonilla et al.

Hence, Theorem 7.5 is satisfied and there then exists a P.D. feedback u = Fpx +601

Fddx/dt + ur , such that the output dynamics of the closed-loop system is externally602

reachable.603

7.5 Control604

Lebret and Loiseau [26] have extended the famous Morse Canonical Form [32] to605

the general case of implicit descriptions. In that paper, Lebret and Loiseau have606

completely characterized the internal structure of the implicit descriptions. With607

respect to the minimal column indices, which are responsible for the variation of the608

internal structure, they have distinguished two kinds of blocks, namely,609

Blocks Lqi : These blocks characterize the degree of freedom which are observ-610

able at the output. For reachable representations, R∗
X d

= Xd , their number is611

characterized as follows:612

card
{

Lq(i); qi ≥ 1
} = dim

(
KerE

V ∗ ∩ KerE

)
. (7.68)613

Blocks Lσi : These blocks characterize the degree of freedom which are unobserv-614

able at the output. For reachable representations, R∗
X d

= Xd , their number is615

characterized as follows:616

card
{

Lσ(i); σi ≥ 1
} = dim

(
V ∗ ∩ KerE

)
. (7.69)617

The internal structure variation will then be unobservable at the output if there618

exists a pair (F∗
p , F∗

d ) ∈ F(V ∗), such that619

V ∗ ⊃ Ker(E − B F∗
d ). (7.70)620

7.5.1 Decoupling of the Variable Structure621

In [8], we have introduced the variable structure decoupling problem.622

Problem 7.1 (Variable structure decoupling [8]) Let us consider the global implicit623

representation Σ ig(E, A, B, C), (7.37), such that the solvability assumptions, (7.31)624

and (7.34), and the internal properness condition, (7.33), are satisfied.625

Under which geometric conditions does there exist a P.D. feedback, u = F∗
p x +626

F∗
d dx/dt , for the implicit rectangular representation Σ ir (E, A, B, C), (7.35), such627

that the external behaviour of the closed-loop system is time-invariant with pre-628

specified dynamics?629
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7 Advances of Implicit Description Techniques … 25

Xd

Xd
V ∗

EXd

EXd
EF∗

d
V ∗

Y

AF∗
p

A∗

Φ Π
C

C∗

Xd

Xd
V ∗

EXd

EXd
EF∗

d
V ∗

U

EF∗
d

E∗

Φ Π
B

B∗

A∗ = E(−1)
∗ A∗

B∗ = E(−1)
∗ B∗

Fig. 7.3 Maps induced by AF∗
p

and EF∗
d

. Φ and 
 are canonical projections. The map E∗ is

invertible and E (−1)∗ is its inverse

Theorem 7.6 (Variable structure decoupling [8]) If the implicit rectangular repre-630

sentation Σ ir (E, A, B, C), (7.35), satisfies (7.31), (7.34), (7.33) and 5
631

dim (KerE) ≤ dim
(
V ∗ ∩ E−1Im B

)
, (7.71)632

there then exists a P.D. feedback, u = F∗
p x + F∗

d dx/dt , such that the internal vari-633

able structure of the closed-loop system implicit rectangular representation634

Σ ir (EF∗
d
, AF∗

p
, B, C) is made unobservable, namely,635

V ∗ ⊃ Ker(E − B F∗
d ),636

where (F∗
p , F∗

d ) ∈ F(V ∗).637

Moreover, Σ ir (EF∗
d
, AF∗

p
, B, C) is externally equivalent6 to the state-space rep-638

resentation Σ state(A∗, B∗, C∗), where EF∗
d

= E − B F∗
d and AF∗

p
= A + B F∗

p , and639

A∗, B∗ and C∗, are induced by AF∗
p

and EF∗
d

as it is shown in Fig.7.3.640

Furthermore, if Σ ir (E, A, B, C), (7.35), satisfies641

R∗
X d

+ V ∗ = Xd ,642

then Σ state (A∗, B∗, C∗) is controllable (reachable), namely,
〈
A∗

∣∣ Im B∗
〉

643

= Xd
/
V ∗.644

For proving Theorem 7.6, in [8] we have done the following geometric decom-645

positions:646

Xd = (
V ∗ + E−1Im B

) ⊕ X0,

V ∗ = XV ∗ ⊕ (
V ∗ ∩ E−1Im B

)
,

E−1Im B = ((
V ∗ ∩ E−1Im B

) + KerE
) ⊕ X3,

KerE = (V ∗ ∩ KerE) ⊕ XE ,

(7.72)647

5Let us note that (7.31) implies that (cf. Fig. 7.2): EVX ∗
d

+ Im B = X eq and VX ∗
d

= Xd , hence
(7.64) takes the form (7.71).
6Recall that two representations are externally equivalent when the sets of all possible trajectories
for their external signals (here u and y) are identical (see [37, 44, 45]).
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26 E. M. Bonilla et al.

and we have shown that (7.71) implies that there exist two complementary subspaces,648

X1 and X2, such that649

V ∗ ∩ E−1Im B = X1 ⊕ X2 ⊕ (V ∗ ∩ KerE) and X2 ≈ XE . (7.73)650

Hence, under the bases (7.72) and (7.73), the map E restricted to Im B takes the651

following form:652

E ImB= * X1 X2 0 0 X3 *

KerE
E−1ImB

XV ∗ X0X1 X2

V ∗ ∩KerE

XEX3

V ∗

ImB

(7.74)653

Now, in view of the isomorphism X2 ≈ XE , for satisfying (7.70) we only have to654

move the zero block of XE to X2 by means of the derivative action F∗
d , namely,655

EF∗
d

ImB= 0 X̄1 0 0 X̄2 X̄3 *

KerEF∗
d

E−1ImB

XV ∗ X0X1 X2

V ∗ ∩KerE

XEX3

V ∗

ImB

(7.75)656

After having chosen F∗
d , we shall select F∗

p , such that (F∗
p , F∗

d ) ∈ F(V ∗), namely,657

(A + B Fp)V
∗ ⊂ (E − B Fd)V

∗. (7.76)658

Hence,659
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AF∗p ImB= 0 0 0 0 ∗ ∗ *

KerEF∗
d

E−1ImB

XV ∗ X0X1 X2

V ∗ ∩KerE

XEX3

V ∗

ImB

(7.77)660

7.5.2 Example (Part 4)661

Let us now verify if the rectangular implicit representation (7.43) satisfies the662

geometric conditions of Theorem 7.6: R∗
d = Xd , V ∗ = {e1,−e2 − 2e3}, KerE =663

{e3} ≈ R
1 and E−1Im B = {e2, e3}; hence, V ∗ ∩ E−1ImB = {−e2 − 2e3} ≈ R

1,664

which implies (7.71). There then exists u = F∗
p x + F∗

d dx/dt making unobservable665

the structure variation. AQ3666

In order to satisfy (7.70), the derivative part of the control law has to contain the667

term
[

0 −1 1
]
. Indeed, Ker(E − B F∗

d ) = {−e2 − 2e3} ⊂ V ∗.668

In order to satisfy (7.76), the proportional part of the control law has to contain669

the term7
[ −1 −2/τ (1 + 1/τ)

]
, where τ is a positive real number. Indeed, (A +670

B F∗
p )V ∗ = {e1} = (E − B F∗

d )V ∗.671

Thus, the proportional and derivative feedback is672

u∗ = [ −1 −2/τ (1 + 1/τ)
]
x + [

0 −1 1
]
dx/dt + [

1/τ
]
ur . (7.78)673

Applying the control law (7.78) to system (7.42), we get the closed-loop system:674

⎡
⎣

1 0 0
0 0 1
0 0 0

⎤
⎦ d

dt ξ =

⎡
⎣

0 1 1
0 0 −1/τ
α −(β +2) −1

⎤
⎦ξ +

⎡
⎣

0
1/τ

0

⎤
⎦ur

y∗ = 0 0 1 ξ

,

(7.79)675

7Since Theorem 7.5 is satisfied, one can also assign the output dynamics.
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28 E. M. Bonilla et al.

where ξ = T −1x , T =
⎡

⎣
1 0 0
0 −1 0
0 −2 −1

⎤

⎦. In [14], we show that the necessary stability676

region is8
677

R∗
NSC(α, β) = {

(α, β)
∣∣ α · (β + 2) < 0

} ∪ {
(α, β)

∣∣ β = −2 & α �= 0
}
, (7.80)678

and that the sufficient stability region is9
679

R∗
SSC(α, β) = {

(α, β)
∣∣ α · (β + 2) < 0, β ≤ | β + 2 | ≤ β, α ≤ | α | ≤ α

}

∪{
(α, β)

∣
∣ β = −2, α ≤ | α | ≤ α

}
,

(7.81)680

where α, α, β and β are some given real numbers 0 < α ≤ α and 0 < β ≤ β.681

7.5.3 Rejection of the Variable Structure682

Since the implementation of the “pure” derivative-based actions is not practically683

feasible, we have to generate a proper filter with the aim to approximate the external684

behaviour of the ideal non-proper controller.685

In [14], we have considered the following problem.686

Problem 7.2 (Variable structure rejection [14]) Let us consider a global implicit687

representation Σ ig(E, A, B, C), (7.37), such that the solvability assumptions, (7.31)688

and (7.34), and the internal properness condition, (7.33), are satisfied, and Ex(t) is689

continuous for all t ≥ 0. Let us consider the P.D. feedback690

u∗ = F∗
p x + F∗

d dx/dt + ur (7.82)691

which constitutes a solution of Problem 7.1, where the feedback pair (F∗
p , F∗

d ) ∈692

F(V ∗) was chosen as it is indicated in Theorem 7.6.693

Find a proper approximation of the ideal control law (7.82) such that the closed-694

loop system is BIBO-stable and moreover, for a given δ > 0695

∣
∣ y(t) − y∗(t)

∣
∣ ≤ δ ∀ t ≥ t∗(δ), (7.83)696

where t∗(δ) is a fixed transient time, y∗ is the output for the ideal control law (7.82)697

and y is the output associated with the proper approximation of (7.82).698

8This region is obtained from det

⎡

⎣
s −1 −1
0 0 (s + 1/τ)

−α (β + 2) 1

⎤

⎦ = −((β + 2)s − α)(s + 1/τ).

9This region is obtained following the methodology of [42], namely, we solve two Lyapunov
equations for the two cases: (i) β �= −2 and (ii) α �= 0 (with β = −2), with a common positive
definite matrix P .
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7 Advances of Implicit Description Techniques … 29

Theorem 7.7 (Variable structure rejection [14]) Under the same conditions like in699

Theorem 7.6 and the additional assumptions700

Hypothesis H6. ur ∈ C∞ (
R

+, R
m

)
and d2ur/dt2 ∈ L∞ (

R
+, R

m
)
,701

Hypothesis H7. The matrix A∗, defined in Theorem 7.6 is Hurwitz,702

Hypothesis H8. Given q̄0, q̄1, . . ., q̄� ∈ Q, g = [
g1 · · · g�

]T
, g1, . . ., g� ∈ R

+, the703

locations q ∈ Q belong to the convex set704

Qq̄0(g) =
⎧
⎨

⎩
q ∈ Q

∣∣∣ q = q̄0 +
�∑

j=1

γ(i, j)g j q̄ j

⎫
⎬

⎭
,705

where for each
[
Ti−1, Ti ), the value of γ(i, j) takes constant values in the closed706

subset of R:
[
0, 1

]
,707

we now consider the following proper approximation of the ideal control law708

(7.82):709

dx̄/dt = −(1/ε)x̄ + (1/ε)F∗
d x,

u = −(1/ε)x̄ + (
(1/ε)F∗

d + F∗
p

)
x + ur ,

(7.84)710

where ε > 0. If for a given pair (ε, A∗), there exists a nonempty convex sufficient711

stability condition region R#
SSC(q; ε) contained in the stability region of the ideal712

solution, R∗
SSC(q), for which the linear combination X + Γ Δ0, of the matrices713

coming from714

⎡

⎣s

⎡

⎣
E 0

−B F∗
d εI

0 0

⎤

⎦ −
⎡

⎣
AF∗

p
I

0 −I
Di 0

⎤

⎦

⎤

⎦ ≈
[

sI − X Γ

−Δi −I

]
, (7.85)715

is a Hurwitz matrix and moreover, there exist constant positive definite matrices716

P, Q0 such that717

(
X + Γ Δ0

)T
P + P

(
X + Γ Δ0

) = −Q0,

λmin
(
Q0

) +
�∑

j=1

g jλmin
(
Q j

)
> 0,

(7.86)718

then Problem 7.2 has a solution. Here we denote Q j = (
Γ Δ j

)T
P + P

(
Γ Δ j

)
,719

j ∈ {1, . . . , �}.720
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30 E. M. Bonilla et al.

7.5.4 Example (Part 5)721

The proper approximation of the ideal control law (7.78) is (cf. (7.84))722

dx̄/dt = −(1/ε)x̄ + [
0 −1/ε 1/ε

]
x723

u = −(1/ε)x̄ + [ −1 −(2/τ + 1/ε) (1 + 1/τ + 1/ε)
]

x + [
1/τ

]
ur . (7.87)724

ε is a positive number which tunes the precision of the approximation.725

Equation (7.85) takes the form (cf. (7.42) and (7.78), with x = T ξ )726

⎡

⎢⎢⎢
⎢
⎣

s

⎡

⎢⎢⎢
⎢
⎣

1 0 0
0 −1 0
0 0 0
0 1 1

0 0
0 0
ε 0
0 ε

0 0 0 0 0

⎤

⎥⎥⎥
⎥
⎦

−

⎡

⎢⎢⎢
⎢
⎣

0 1 1
0 0 −1/τ

1 0
0 1

0 0 0
0 0 0

−1 0
0 −1

α −(β + 2) 1 0 0

⎤

⎥⎥⎥
⎥
⎦

⎤

⎥⎥⎥
⎥
⎦

≈
[

sI − X Γ

−Δi −I

]

X =

⎡

⎢⎢
⎣

0 1 1 0
0 0 0 1
0 0 −1/ε 0
0 0 0 0

⎤

⎥⎥
⎦ , Γ =

⎡

⎢⎢
⎣

1
(1/ε + 1/τ)

0
1/(ετ)

⎤

⎥⎥
⎦ , Δi = [

α −(β + 2) 0 0
]
.

727

If in our example we put τ = 4 and ε = 1/4, we then get728

X =

⎡

⎢
⎢
⎣

0 1 1 0
0 0 0 1
0 0 −4 0
0 0 0 0

⎤

⎥
⎥
⎦ , Γ =

⎡

⎢
⎢
⎣

1
17/4

0
1

⎤

⎥
⎥
⎦ ,729

and φ#
q = det

[
sI − X Γ

−Δi −I

]
= −(s + 4)

(
s3 + (17β/4 − α + 17/2)s2 + (β − 17α/730

4 + 2)s − α
)
. Thus the necessary stability region is731

R#
NSC(α, β; ε = 1/4) =

{
(α, β)

∣∣ α < 0, 17β/4 − α + 17/2 > 0

β2 + (4 − 305α/68) β + (4α/17 + 4 (17α/4 − 2) (α − 17/2)/17) > 0
}
,

732

thus q1, q2, q3 ∈ R#
NSC(−1, β; ε = 1/4) = {

(α, β)
∣∣ − (β + 2) < 0.1775

}
(see (7.4)733

and Fig. 7.1). Then (α, β) = (1, 0) and (α, β) = (1, 2). We assume that (c.f. H8)734
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7 Advances of Implicit Description Techniques … 31

(
α,−(β + 2)

) ∈
{
(−1, β) ∈ Q

∣∣ (−1,−(β + 2)) =
(−1, 0) + 0γ1(−1, 0) + 2γ2(0,−1), γ1 , γ2 ∈ [

0, 1
]}

.
735

Then,736

Δ0 = [ −1 0 0 0
]
, Δ1 = [

1 0 0 0
]
, Δ2 = [

0 1 0 0
]
,

X + Γ Δ0 =

⎡

⎢⎢
⎣

−1 1 1 0
−17/4 0 0 1

0 0 −4 0
−1 0 0 0

⎤

⎥⎥
⎦ ,

737

738

Γ Δ1 =

⎡

⎢⎢
⎣

1 0 0 0
17/4 0 0 0

0 0 0 0
1 0 0 0

⎤

⎥⎥
⎦ , Γ Δ2 =

⎡

⎢⎢
⎣

0 1 0 0
0 17/4 0 0
0 0 0 0
0 1 0 0

⎤

⎥⎥
⎦ .739

Choosing Q0 =
⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦, we get740

P =

⎡

⎢
⎢
⎣

3.7404 −0.5000 0.7480 −1.1154
−0.5000 1.1154 0.0620 −0.5000

0.7480 0.0620 0.3120 −0.2633
−1.1154 −0.5000 −0.2633 2.7404

⎤

⎥
⎥
⎦ , σ {P} =

⎧
⎪⎪⎨

⎪⎪⎩

0.1237
0.7815
2.3950
4.6079

,

Q1 =

⎡

⎢⎢
⎣

1.0000 3.7404 0.7482 −0.5000
3.7404 0 0 0
0.7482 0 0 0

−0.5000 0 0 0

⎤

⎥⎥
⎦ , σ {Q1} =

⎧
⎪⎪⎨

⎪⎪⎩

4.3795
−3.3795

0
0

,

Q2 =

⎡

⎢⎢
⎣

0 0.5000 0 0
0.5000 7.4808 0.7482 −0.5000

0 0.7482 0 0
0 −0.5000 0 0

⎤

⎥⎥
⎦ , σ {Q2} =

⎧
⎪⎪⎨

⎪⎪⎩

7.6199
0.0000

−0.1391
0

.

741

Then742

λmin
(
Q0

) + (α − α)λmin
(
Q1

) + (β − β)λmin
(
Q2

)

= 1 + 0(−3.3795) + 2(−0.1391) = 0.7218 > 0.
743

The last condition implies that the stability condition (7.86) is satisfied.744
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32 E. M. Bonilla et al.

7.6 Numerical Simulation745

We made a MATLAB® numerical simulation:746

“Start time” = 0.0, “Stop time” = 150, “Type” = “Variable–Step”, “Solver”
= “ode45 Domand–Prince”, “Max step size” = “auto”, “Relative toler-
ance” = 1e−4, “Min step size” = “auto”, “Absolute tolerance” = “auto”,
“Initial step size” = “auto”, “Consecutive min step size violations allowed”
= 1, “States shape preservation” = “Disable all”, et “Zero crossing control”
= “Disable all”.

747

The behaviours, B∞
qi

, take place as follows (recall (7.7)): In the time interval748

[0, 50) takes place B∞
q1

. In the time interval [50, 100) takes place B∞
q2

. In the time749

interval [100, 150] takes place B∞
q3

.750

We apply the proper approximation (7.87) of the ideal control law (7.78), with the751

choice: τ = 4 and ε = 0.25. We assume that we do not have access to the descriptor752

variable x , so we use the following descriptor variable observer synthesized in [15]753

(see equations (3.35) and (3.19) in [15]):754

dx̂c/dt =
[

0 −1
1 −2

]
x̂c +

[
1
1

]
y +

[
0
1

]
u,755

x̂� = [
0 1

]
x̂c + [ −1

]
y, (7.88)756

where757

[
x̄c

x̄�

]
=

⎡

⎣
1 0 0
0 1 0
0 1 1

⎤

⎦

−1

x . (7.89)758

The reference ur has been chosen as follows (see Definition 2.4.5–[37]):759

φ(t) =

⎧
⎪⎨

⎪⎩

e− 1
1−(t ′)2 , t ∈ A = ( 1

6 , 2
6 ), t ′ = 12t − 3

−e− 1
1−(t ′′)2 , t ∈ B = ( 4

6 , 5
6 ), t ′′ = −12t + 9

0 , t ∈ R\(A ∪ B)

r(t) =
∫ t

0

(
3∑

i=0

(−1)iφ(
2

75
σ − i)

)

dσ, t ∈ [0, 150].
760

The model matching error is computed as follows:761

∣∣ y(t) − y∗(t)
∣∣ =

∣∣∣∣ y(t) −
∫ t

0
e− 1

τ
(t−σ)ur (σ )d(σ )

∣∣∣∣ .762
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7 Advances of Implicit Description Techniques … 33

Fig. 7.4 Simulation results of Control with observation of the descriptor variable. a Output, y. b
and c Model matching error, | y(t) − y∗(t) |. d and e Control input, u. f and g Observation error,∥∥ x̂ − x

∥∥
2

In Fig. 7.4, we show the numerical simulations for this minimum phase case. In763

order to appreciate the performance of the remainder generator, in this simulation,764

we have set the initial condition: x̄(0) =
[

1
1

]
.765

7.7 Summary766

In Sect. 7.2, we have shown how to use the linear implicit systems theory in order767

to model and control, in an efficient way, a class of complex systems, namely, time-768

varying, autonomous, switched systems. Thanks to a simple example, we have shown769
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34 E. M. Bonilla et al.

that the internal structure variations can take into account wide situations with varying770

parameters, such as, among others: (1) the relative degree, (2) the system gain and771

(3) the values of the finite zeros.772

In Sect. 7.3, we have shown how linear time-invariant implicit systems theory can773

be efficiently used to model a certain class of switched systems with autonomous774

location transitions.775

For the equivalent state-space representations Σ state(Aqi , B, Cqi ) (7.2) and (7.3),776

we have determined the common fixed structure. The general systems structure is777

represented by the implicit rectangular representation Σ ir (E, A, B, C) in (7.35). We778

also have derived a linear time-invariant implicit representation for the initial linear779

switched system with autonomous location transitions, Σ state(Aqi , B, Cqi ). Note that780

the implicit global representations Σ ig(E, Ai , B, C) in (7.37) and (7.40) are time-781

dependent. Alternatively, the implicit rectangular representation Σ ir (E, A, B, C)782

in (7.35) is time-invariant.783

As shown in some simple examples, the corresponding structure variation has a784

wide structure. For instance, it includes variable relative degree, variable gain and785

variable finite zeros.786

In the particular structure (7.3) studied above, only the matrices Aqi and Cqi have787

a generic “switched” structure and additionally depend on index qi . The indepen-788

dence (assumed above) of matrix B on the switchings qi ∈ Q does not involve any789

restriction into the used formulation. The zeros and the unobservable subspace of790

the systems under consideration are indeed only characterized by the structure of the791

matrices Aqi and Cqi .792

The main advantage of these implicit representations is reflected in the structural793

concept of solvability. Indeed, condition (7.30) for having at least one solution for794

all u(·) ∈ C∞ (
R

+, U
)

and condition (7.31) for the existence of solution (for all795

u(·) ∈ C∞ (
R

+, U
)

and for any initial condition) naturally lead to the global implicit796

representation (7.37).797

When we restrict to proper systems, the matrices of the implicit rectangular rep-798

resentation (7.35), the algebraic constraint (7.36) and the implicit rectangular rep-799

resentation (7.37) have the particular form (7.40), which are precisely the structure800

of the switched system, (7.2), and (7.3) here considered.801

In Sect. 7.4, we have tackled the most important concept studied in System Theory,802

the reachability. For the general case of implicit systems, represented by (7.10), with803

E and A not necessarily square, Frankowska [16] has been the first to give a functional804

interpretation of reachability. For this, she has used the Viability Theory [2]. More805

precisely, she has shown that reachability is equivalent to finding a smooth trajectory806

x(·), solution of (7.10), starting from the initial condition x0 and reaching the desired807

x1 in a given finite time t1, namely, x(0) = x0 and x(t1) = x1. Frankowska [16] has808

shown that reachability is geometrically characterized by the well-known reachable809

space, R∗
X d

. Of course, R∗
X d

is contained in the viability kernel V ∗
X d

, since this last810

guaranties the existence of at least one trajectory, solution of (7.10), leaving from x0.811

This is also clear from R∗
X d

= V ∗
X d

∩ S ∗
X d

.812

It has to be pointed out that the fundamental reachability Definition 7.11 requires813

no explicit control actions, and in general, the trajectories inside the reachability814
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subspace are handled by input actions and by internal degree of freedom actions; it815

might exist reachable systems without any effective external input (see, for instance,816

Example 7.2). In order to guarantee that the trajectories are caused by control inputs,817

we have introduced the external reachability concept; for this, we have combined818

the Frankowska’s reachability notion [16] with the notion of unicity of the descriptor819

variable solution of Lebret [25].820

In the case of implicit descriptions constituted by minimal column indices, there821

exists no external input for controlling the whole descriptor variable: this is due822

to the existence of completely free variables. In order to partly control implicit823

representations having an internal degree of freedom, we have introduced the external824

output dynamics assignment concept; for this we have used the characterization of825

Lebret and Loiseau [26], which enables us to make unobservable the degree of826

freedom by means of a P.D. feedback, and insure that the closed-loop system gets827

the external reachability property.828

In Sect. 7.5, we have proposed a control scheme based on proportional and deriva-829

tive feedbacks of the descriptor variable, in order to obtain a closed-loop system which830

is proper, linear and time-invariant, whatever be the positions of the internal switches.831

The Canonical Form of Lebret and Loiseau [26] has enabled us to characterize832

the internal structure of the implicit descriptions.833

Following the typical geometric procedure of the disturbance decoupling834

problem [47], we have decoupled the variable structure by means of an ideal P.D.835

feedback [8].836

In [10], we have proposed an effective procedure to approximate the ideal static837

P.D. feedback by means of a dynamic P. feedback. Following the ideas of [33, 42],838

in [14] we have studied the stability aspects.839

In Sect. 7.6, we have presented a MATLAB® numerical simulation. We have840

used a descriptor variable observer based on fault detection techniques [15]. This841

observer is composed of a Beard-Jones filter, which aim is to observe the existing842

degree of freedom in rectangular implicit representations. Notice that after the initial843

transient, this observer remains insensitive to the switchings events (see Fig. 7.4f, g);844

this is the case, because the observer is based on the fault detection of a continuous845

linear system. Since this observation is accomplished by a pole-zero cancellation,846

this technique is reserved to minimum phase systems, with respect to the output-847

degree-of-freedom transfer, namely, to implicit rectangular representations having848

Hurwitz output decoupling zeros. When unstable zeros are present, alternatives exist849

(see [15]).850
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