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We tackle the problem of reectance estimation from a set of multi-view images, assuming known geometry. The approach we put forward turns the input images into reectance maps, through a robust variational method. The variational model comprises an image-driven delity term and a term which enforces consistency of the reectance estimates with respect to each view. If illumination is xed across the views, then reectance estimation remains under-constrained: a regularization term, which ensures piecewise-smoothness of the reectance, is thus used. Reectance is parameterized in the image domain, rather than on the surface, which makes the numerical solution much easier, by resorting to an alternating majorization-minimization approach. Experiments on both synthetic and real-world datasets are carried out to validate the proposed strategy.

Introduction

Acquiring the shape and the reectance of a scene is a key issue, e.g., for the movie industry, as it allows proper relighting. The current proposed solutions focus on small objects and stand on multiple priors [START_REF]Unity-Technologies: Delightingtool[END_REF] or need very controlled environments [34,Chapter 9]. Well-established shape acquisition techniques such as multi-view stereo exist for accurate 3D-reconstruction. Nevertheless, they do not aim at recovering the surface reectance. Hence, the original input images are usually mapped onto the 3D-reconstruction as texture. Since the image graylevel mixes shading information (induced by lighting and geometry) and reectance (which is characteristic of the surface), relighting based on this approach usually lacks realism. To improve the results, reectance needs to be separated from shading.

In order to more precisely illustrate our purpose, let us take the example of a Lambertian surface. In a 2D-point (pixel) p conjugate to a 3D-point x of a Lambertian surface, the graylevel I(p) is written

I(p) = ρ(x) s(x) • n(x). (1) 
In the right-hand side of (1), ρ(x) ∈ R is the albedo 1 , s(x) ∈ R 3 the lighting vector, and n(x) ∈ S 2 ⊂ R 3 the outer unit-length normal to the surface. All these elements a priori depend on x i.e., they are dened locally. Whereas I(x) is always supposed to be given, dierent situations can occur, according to which are also known, among ρ(x), s(x) and n(x).

One equation (1) per pixel is not enough to simultaneously estimating the reectance ρ(x), the lighting s(x) and the geometry, represented here by n(x), because there are much more unknowns than equations.

1 Since the albedo suces to characterize the reectance of a Lambertian surface, we will name it reectance as well. Fig. 1 The workshop metaphor (extracted from a paper by Adelson and Pentland [START_REF] Adelson | Perception as Bayesian inference, chap. The perception of shading and reectance[END_REF]). Image (a) may be interpreted either by: (b) incorporating all the brightness variations inside the reectance; (c) modulating the lighting of a white planar surface;

(d) designing a uniformly white 3D-shape illuminated by a parallel and uniform light beam. This last interpretation is one of the solutions of the shape-from-shading problem. ρ(x) and n(x), which has two degrees of freedom. Assuming moreover that the reectance ρ(x) is known, the shape-from-shading technique [START_REF] Horn | Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object From One View[END_REF] uses the shading s(x)•n(x) as unique clue to recover the shape n(x) from Equation [START_REF] Adelson | Perception as Bayesian inference, chap. The perception of shading and reectance[END_REF], but the problem is still ill-posed.

A classical way to make photometric 3D-reconstruction well-posed is to use m > 1 images taken using a single camera pose, but under varying known lighting:

I i (p) = ρ(x) s i (x) • n(x), i ∈ {1, . . . , m} (2) 
In this variant of shape-from-shading called photometric stereo [START_REF] Woodham | Photometric Method for Determining Surface Orientation from Multiple Images[END_REF], the reectance ρ(x) and the normal n(x) can be estimated without any ambiguity, as soon as m ≥ 3 non-coplanar lighting vectors s i (x) are used.

Symmetrically to [START_REF] Agarwal | Building Rome in a Day[END_REF], solving the problem:

I i (p) = ρ(x) s(x) • n i (x), i ∈ {1, . . . , m} (3) 
allows to estimate the lighting s(x), as soon as the reectance ρ(x) and m ≥ 3 non-coplanar normals n i (x), i ∈ {1, . . . , m}, are known. This can be carried out, for instance, by placing a small calibration pattern with known color and known shape near each 3D-point x [START_REF] Quéau | Microgeometry capture and RGB albedo estimation by photometric stereo without demosaicing[END_REF].

The problem we aim at solving in this paper is slightly dierent. Suppose we are given a series of m > 1 images of a scene taken using a single lighting, but m camera poses. According to Lambert's law, this ensures that a 3D-point looks equally bright in all the images where it is visible. Such invariance is the basic clue of multi-view stereo (MVS), which has become a very popular technique for 3D-reconstruction [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF]. Therefore, since an estimate of the surface shape is available, n(x) is known. Now, we have to index the pixels by the image number i. Fortunately, additional data provided by MVS are the correspondences between the dierent views, taking the form of m-tuples of pixels (p i ) i∈{1,...,m} which are conjugate to a common 3Dpoint x.

Our problem is written 2 :

I i (p i ) = ρ(x) s(x) • n(x), i ∈ {1, . . . , m} (4) 
where p i is the projection of x in the i-th image, and ρ(x) and s(x) are unknown. Obviously, this system reduces to Equation [START_REF] Adelson | Perception as Bayesian inference, chap. The perception of shading and reectance[END_REF], since its m equations are the same one: the right-hand side of (4) does not depend on i, not more than the left-hand side I i (p i ) since, as already noticed, the lighting s(x) does not vary from one image to another, and the surface is Lambertian.

Multi-view helps estimating the reectance, because it provides the 3D-shape via MVS. However, even if n(x) is known, Equation (1) remains ill-posed. This is illustrated, in Figure 1, by the solutions (b) and (c), which correspond to the same image (a) and to a common planar surface. In the absence of any prior, Equation (1) has an innity of solutions in ρ(x) s(x). In addition, determining ρ(x) from each of these solutions would give rise to another ambiguity, since s(x) is not forced to be unit-length, contrarily to n(x).

Such a double source of ill-posedness probably explains why various methods for reectance estimation have been designed, introducing a variety of priors in order to disambiguate the problem. Most of them assume that brightness variations induced by reectance changes are likely to be strong but sparsely distributed, while the lighting is likely to induce smoother changes [START_REF] Land | Lightness and retinex theory[END_REF].

2 Even if they look very similar, Problems (2), ( 3) and (4) have completely dierent peculiarities. This suggests to separate a single image into a piecewise smooth layer and a more oscillating one. In the computer vision literature, this is often referred to as intrinsic image decomposition, while the terminology cartoon + texture decomposition is more frequently used by the mathematical imaging community (both these problems will be discussed in Section 2).

Contributions. In this work, we show the relevance of using multi-view images for reectance estimation. Indeed, this enables a prior shape estimation using MVS, which essentially reduces the decomposition problem to the joint estimation of a set of reectance maps, as illustrated in Figure 2. We elaborate on the variational approach to multi-view decomposition into reectance and shading, which we initially presented in [START_REF] Mélou | Beyond Multi-view Stereo: Shading-Reectance Decomposition[END_REF]. The Cartoon + Texture Decomposition. Researchers in the eld of mathematical imaging have suggested various variational models for this task, using for instance nonsmooth regularization and Fourier-based frequency analysis [START_REF] Aujol | Structure-Texture Image Decomposition Modeling, Algorithms, and Parameter Selection[END_REF], or l 1 -TV variational models [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF]. Multi-view 3D-reconstruction. Instead of introducing possibly unveriable priors, or relying on user interactions, ambiguities can be reduced by assuming that the geometry of the scene is known. Intrinsic image decomposition has for instance been addressed using an RGB-D camera [9] or, closer to our proposal, multiple views of the same scene under dierent angles [START_REF] Laont | Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views[END_REF][START_REF] Laont | Coherent intrinsic images from photo collections[END_REF]. In the latter works, the geometry is rst extracted from the multi-view images, before the problem of reectance estimation is addressed. Geometry computation can be achieved using multi-view stereo (MVS). MVS techniques [START_REF] Seitz | A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms[END_REF] have seen signicant growth over the last decade, an expansion which goes hand in hand with the development of structure-from-motion (SfM) solutions [START_REF] Moulon | openMVG: An open multiple view geometry library[END_REF]. Indeed, MVS requires the parameters of the cameras, outputs of the SfM algorithm. Nowadays, these mature methods are commonly used in uncontrolled environments, or even with large-scale Internet data [START_REF] Agarwal | Building Rome in a Day[END_REF].

For the sake of completeness, let us also mention that some eorts in the direction of multi-view and photometrically consistent 3D-reconstruction have been devoted recently [START_REF] Jin | 3-D Reconstruction of Shaded Objects from Multiple Images Under Unknown Illumination[END_REF]18,[START_REF] Langguth | Shading-aware Multi-view Stereo[END_REF][START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF][START_REF] Maurer | Combining Shape from Shading and Stereo: A Variational Approach for the Joint Estimation of Depth, Illumination and Albedo[END_REF]. Similar to these meth-ods, we will resort to a compact representation of lighting, namely the spherical harmonics model.

Spherical Harmonics Lighting Model. Let us consider a point x lying on the surface S ⊂ R 3 of the observed scene, and let n(x) be the outer unit-length normal vector to S in x. Let H(x) be the hemisphere centered in x, having as basis plane the tangent plane to S in x.

Each light source visible from x can be associated to a point ω on H(x). If we describe by the vector s(x, ω)

the corresponding elementary light beam (oriented towards the source), then by denition of the reectance (or BRDF) of the surface, denoted r, the luminance of x in the direction v is given by

L(x, v) = H(x) r(x, n(x), s(x, ω) s(x, ω) , v) [s(x, ω) • n(x)] dω, (5) 
where [s(x, ω) • n(x)] is the surface illuminance. In general, r depends both on the direction of the light s(x, ω), and on the viewing direction v, relatively to n(x).

This expression of the luminance is intractable in the general case. However, if we restrict our attention to Lambertian surfaces, the reectance reduces to the albedo ρ(x), which is independent of any direction, and L(x, v) does not depend on the viewing direction v anymore. If the light sources are further assumed to be distant enough from the object, then s(x, ω) is independent of x i.e., the light beams are the same for the whole (supposedly convex) object, and thus the lighting is completely dened on the unit sphere. Therefore, the integral (5) acts as a convolution on H(x), having as kernel s(ω) • n(x). Spherical harmonics, which can be considered as the analogue to the Fourier series on the unit sphere, have been shown to be an ecient low-dimensional representation of this convolution [START_REF] Basri | Lambertian reectances and linear subspaces[END_REF][START_REF] Ramamoorthi | An Ecient Representation for Irradiance Environment Maps[END_REF]. Many vision applications [18,[START_REF] Wu | Highquality shape from multiview stereo and shading under general illumination[END_REF] use second order spherical harmonics, which can capture over 99% of the natural lighting [START_REF] Frolova | Accuracy of spherical harmonic approximations for images of Lambertian objects under far and near lighting[END_REF] using only nine coecients. This yields an approximation of the luminance of the form

L = ρ π σ • ν, (6) 
where ρ ∈ R is the albedo (reectance), σ ∈ R 9 is a compact lighting representation, and ν ∈ R 9 stores the local geometric information. The latter is deduced from the normal according to:

ν =           n 1 n 1 n 2 n 1 n 3 n 2 n 3 n 2 1 -n 2 2 3n 2 3 -1           . (7) 
In ( 6), the lighting vector σ is the same in all the points of the surface, but the reectance ρ and the geometric vector ν vary along the surface S of the observed scene. Hence we will write (6) as:

L(x) = ρ(x) π σ • ν(x), ∀x ∈ S. (8) 
Our aim in this paper is to estimate the reectance ρ(x) in each point x ∈ S, as well as the lighting vector σ, given a set of multi-view images and the geometric vector ν(x). We formalize this problem in the next section.

Multi-view Reectance Estimation

In this section, we describe with more care the problem of reectance estimation from a set of multi-view images. First, we need to explicit the relationship between graylevel, reectance, lighting and geometry.

Image Formation Model

Let x ∈ S be a point on the surface of the scene. Assume that it is observed by a graylevel camera with linear response function and let I :

Ω ⊂ R 2 → R be the image,
where Ω is the projection of S onto the image plane.

Then, the graylevel in the pixel p ∈ Ω conjugate to x is proportional to the luminance of x in the direction of observation v:

I(p) = γ L(v, x), (9) 
where the coecient γ > 0, referred to in the following as the camera coecient, is unknown 3 . By assum- ing Lambertian reectance and the light sources distant enough from the object, Equations ( 8) and (9) yield:

I(p) = γ ρ(x) π σ • ν(x). (10) 
Now, let us assume that m images I i of the surface, i ∈ {1, . . . , m}, obtained while moving a single camera, are available, and discuss how to adapt [START_REF] Cho | Photometric stereo under non-uniform light intensities and exposures[END_REF].

Case 1: unknown, yet xed lighting and camera coefcient. If all the automatic settings of the camera are disabled, then the camera coecient is independent from the view. We can thus incorporate this coecient and the denominator π into the lighting vector: σ := γ π σ.

Moreover, if the illumination is xed, the lighting vector σ is independent from the view. In any point x

3 This coecient depends on several factors such as the lens aperture, the magnication, the exposure time, etc. which is visible in the i-th view, Equation (10) becomes:

I i (π i (x)) = ρ(x) σ • ν(x), (11) 
where we denote by π i the 3D-to-2D projection associated to the i-th view. In [START_REF] Frolova | Accuracy of spherical harmonic approximations for images of Lambertian objects under far and near lighting[END_REF], the unknowns are the reectance ρ(x) and the lighting vector σ. Equations [START_REF] Frolova | Accuracy of spherical harmonic approximations for images of Lambertian objects under far and near lighting[END_REF], i ∈ {1, . . . , m}, constitute a generalization of (4) to more complex illumination scenarios. For the whole scene, this is a problem with n + 9 unknowns and up to nm equations, where n is the number of 3D-points x which have been estimated by multi-view stereo. However, as for System (4), only n equations are linearly independent, hence the problem of reectance and lighting estimation is under-constrained.

Case 2: unknown and varying lighting and camera coefcient. If lighting is varying, then we have to make the lighting vector view-dependent. If it is also assumed to vary, the camera coecient can be integrated into the lighting vector with the denominator π i.e., σ i := γ i π σ i , since the estimation of each σ i will include that of γ i . Equation [START_REF] Cho | Photometric stereo under non-uniform light intensities and exposures[END_REF] then becomes:

I i (π i (x)) = ρ(x) σ i • ν(x). (12) 
There are even more unknowns (n + 9m), but this time the nm equations are linearly independent, at least as long as the σ i are not proportional i.e., if not only the camera coecient or the lighting intensity vary across the views, but also the lighting direction 4 . Typically, n is of the order of [10 3 , 10 6 ], hence the problem is overconstrained as soon as at least two out of the m lighting vectors are non-collinear. This is a situation similar to uncalibrated photometric stereo [5], but much more favorable: the geometry is known, hence the ambiguities arising in uncalibrated photometric stereo are likely to be reduced. However, contrarily to uncalibrated photometric stereo, lighting is not actively controlled in our case. Lighting variations are likely to happen e.g., in outdoor scenarios, yet they will be limited. The m lighting vectors σ i , i ∈ {1, . . . , m}, will thus be close to each other: lighting variations will not be sucient in practice for disambiguation (ill-conditioning).

Since [START_REF] Frolova | Accuracy of spherical harmonic approximations for images of Lambertian objects under far and near lighting[END_REF] is under-constrained and ( 12) is ill-conditioned, additional information will have to be introduced either ways, and we can restrict our attention to the varying lighting case [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF].

4 Another case, which we do not study here, is when the lighting and camera coecient are both varying, yet only lighting is calibrated. This is known as semi-calibrated photometric stereo [START_REF] Cho | Photometric stereo under non-uniform light intensities and exposures[END_REF].

So far, we have assumed that graylevel images were available. To extend our study to RGB images, we abusively assume channel separation, and apply the framework independently in each channel ∈ {R, G, B}. We then consider the expression:

I i (π i (x)) = ρ (x) σ i • ν(x) (13)
where ρ (x) and σ i denote, respectively, the colored reectance and the i-th colored lighting vector, relatively to the response of the camera in channel . A more complete study of Model ( 13) is presented in [START_REF] Quéau | LED-based Photometric Stereo: Modeling, Calibration and Numerical Solution[END_REF].

Since we will apply the same framework independently in each color channel, we consider hereafter the graylevel case only i.e., we consider the image formation model ( 12) instead of [START_REF] Garces | Intrinsic Images by Clustering[END_REF]. The question which arises now is how to estimate the reectance ρ(x) from a set of equations such as [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF], when the geometry ν(x) is known but the lighting σ i is unknown.

Reectance Estimation on the Surface

We place ourselves at the end of the multi-view 3Dreconstruction pipeline. Thus, the projections π i are known (in practice, they are estimated using SfM techniques), as well as the geometry, represented by a set of n 3D-points x j ∈ R 3 , j ∈ {1, . . . , n}, and the corresponding normals n(x j ) (obtained for instance using SFM techniques), from which the n geometric vectors ν j := ν(x j ) are easily deduced according to (7).

The unknowns are then the n reectance values ρ j := ρ(x j ) ∈ R and the m lighting vectors σ i ∈ R 9 , which are independent from the 3D-point number j due to the distant light assumption. At rst glance, one may think that their estimation can be carried out by simultaneously solving [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF] in all the 3D-points x j , in a purely data-driven manner, using some tting function F : R → R:

min {ρj ∈R}j {σ i ∈R 9 }i m i=1 n j=1 v i j F ρ j σ i • ν j -I i j , (14) 
where we denote I i j = I i (π i (x j )), and v i j is a visibility boolean such that v i j = 1 if x j is visible in the i-th image, and v i j = 0 otherwise.

Let us consider, for the sake of pedagogy, the simplest case of least-squares tting (F (x) = x 2 ) and per- fect visibility (v i j ≡ 1). Then, Problem ( 14) is rewritten in matrix form:

min ρ∈R n S∈R 9×m N (ρ ⊗ S) -I 2 F , (15) 
where the Kronecker product ρ⊗S is a matrix of R 9n×m , ρ being a vector of R n which stores the n unknown reectance values, and S a matrix of R 9×m which stores the m unknown lighting vectors σ i ∈ R 9 , column-wise, N ∈ R n×9n is a block-diagonal matrix whose j-th block, j ∈ {1, . . . , n}, is the row vector ν j , matrix I ∈ R n×m stores the graylevels, and

• F is the Frobenius norm. Using the pseudo-inverse N † of N, [START_REF] Golub | Matrix Computations[END_REF] is rewritten:

min ρ∈R n S∈R 9×m ρ ⊗ S -N † I 2 F . (16)
Problem ( 16) is a nearest Kronecker product problem, which can be solved by singular value decomposition (SVD) [START_REF] Golub | Matrix Computations[END_REF]Theorem 12.3.1].

However, this matrix factorization approach suers from three shortcomings:

1) It is valid only if all 3D-points are visible under all the viewing angles, which is rather unrealistic. In practice, [START_REF] Golub | Matrix Computations[END_REF] should be replaced by

min ρ∈R n S∈R 9×m V • [N (ρ ⊗ S) -I] 2 F , (17) 
where V ∈ {0, 1} n×m is a visibility matrix containing the values v i j , and • is the Hadamard product.

This yields a Kronecker product problem with missing data, which is much more arduous to solve.

2) It is adapted only to least-squares estimation. Considering a more robust tting function would prevent a direct SVD solution.

3) If lighting is not varying (σ i = σ, ∀i ∈ {1, . . . , m}), then it can be veried that ( 15) is ill-posed. Among its many solutions, the following trivial one can be exhibited:

S trivial = σ diuse 1 1×m , (18) 
ρ trivial = E i [I i 1 ], . . . , E i [I i n ] , (19) 
where:

σ diuse = [0, 0, 0, 1, 0, 0, 0, 0, 0] (20) 
and E i is the mean over the view indices i. This trivial solution means that the lighting is assumed to be completely diuse 5 , and that the reectance is equal to the image graylevel, up to noise only. Obviously, this is not an acceptable interpretation. As discussed in the previous subsection, in real-world scenarios we will be very close to this degenerate case, hence additional regularization will have to be introduced, which makes things even harder.

5 In the computer graphics community, this is referred to as ambient lighting.

Overall, the optimization problem which needs to be addressed is not as easy as [START_REF] Horn | Shape From Shading: A Method for Obtaining the Shape of a Smooth Opaque Object From One View[END_REF]. It is a non-quadratic regularized problem of the form:

min {ρj ∈R}j {σ i ∈R 9 }i p i=1 n j=1 v i j F ρ j σ i •ν j -I i j + n j=1 k|x k ∈V(xj ) R(ρ j , ρ k ), (21) 
where V(x j ) is the set of neigbors of x j on surface S, and the regularization function R needs to be chosen appropriately to ensure piecewise-smoothness.

However, the sampling of the points x j on surface S is usually non-uniform, because the shape of S is potentially complex. It may thus be dicult to design appropriate delity and regularization functions F and R, and to design an appropriate numerical solving. In addition, some thin brightness variations may be missed if the sampling is not dense enough. Overall, direct estimation of reectance on the surface looks promising at rst sight, but rather tricky in practice. Therefore, we leave this as an interesting future research direction and follow in this paper a simpler approach, which consists in estimating reectance in the image domain.

Reectance Estimation in the Image Domain

Instead of trying to colorize the n 3D-points estimated by MVS i.e., of parameterizing the reectance over the (3D) surface S, we can also formulate the reectance estimation problem in the (2D) image domain.

Equation ( 12) is equivalently written, in each pixel p := π i (x) ∈ Ω i := π i (S):

I i (p) = ρ i (p) σ i • ν i (p), (22) 
where we denote ρ i (p) := ρ(π i -1 (p)) and ν i (p) := ν(π i -1 (p)). Instead of estimating one reectance value ρ(x) per estimated 3D-point, the reectance estimation problem is thus turned into the estimation of m reectance maps

ρ i : Ω i ⊂ R 2 → R. ( 23 
)
On the one hand, the 2D-parameterization [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] does not enforce the consistency of the reectance maps.

This will have to be explicitly enforced later on. Besides, the surface will not be directly colorized, but the estimated reectance maps have to be back-projected and fused over the surface in a nal step.

On the other hand, the question of occlusions (visibility) does not arise, and the domains Ω i are subsets of a uniform square 2D-grid. Therefore, it will be much easier to design appropriate delity and regularization terms. Besides, there will be as many reectance estimates as pixels in those sets: with modern HD cameras, this number is much larger than the number of 3D-points estimated by multi-view stereo. Estimation will thus be much denser.

With such a parameterization choice, the regularized problem [START_REF] Land | Lightness and retinex theory[END_REF] will be turned into:

min {ρ i : Ω i →R}i {σ i ∈R 9 }i p i=1 p∈Ω i F ρ i (p) σ i •ν i (p)-I i (p) + p i=1 p∈Ω i q∈V i (p) R(ρ i (p), ρ i (q)) s.t. C({ρ i } i ) = 0, (24) 
with C some function to ensure multi-view consistency, and where V i (p) is the set of neighbors of pixel p which lie inside Ω i . Note that, since Ω i is a subset of a square, regular 2D-grid, this neighborhood is much easier to handle than that appearing in [START_REF] Land | Lightness and retinex theory[END_REF].

In the next section, we discuss appropriate choices for F , R and C in [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF], by resorting to a Bayesian rationale.

4 A Bayesian-to-variational Framework for Multi-view Reectance Estimation Following Mumford's Bayesian rationale for the variational formulation [START_REF] Mumford | Bayesian rationale for the variational formulation[END_REF], let us now introduce a Bayesianto-variational framework for estimating reectance and lighting from multi-view images.

Bayesian Inference

Our problem consists in estimating the m reectance maps ρ i : Ω i → R and the m lighting vectors σ i ∈ R 9 , given the m images I i : Ω i → R, i ∈ {1, . . . , m}. As we already stated, a maximum likelihood approach is hopeless, because a trivial solution arises. We rather resort to Bayesian inference, estimating

({ρ i } i , {σ i } i )
as the maximum a posteriori (MAP) of the distribution

P({ρ i } i , {σ i } i |{I i } i ) = P({I i } i |{ρ i } i , {σ i } i ) P({ρ i } i , {σ i } i ) P({I i } i ) , (25) 
where the denominator is the evidence, which can be discarded since it depends neither on the reectance nor on the lighting, and the factors in the numerator are the likelihood and the prior, respectively.

Likelihood. The image formation model ( 22) is never strictly satised in practice, due to noise, cast-shadows and possibly slightly specular surfaces. We assume that such deviations from the model can be represented as independent (with respect to pixels and views) Laplace laws 6 with zero mean and scale parameter α:

P({I i } i |{ρ i } i , {σ i } i ) = m i=1 1 2α |Ω i | exp - 1 α ρ i σ i • ν i -I i i,1 = 1 2α m i=1 |Ω i | exp - 1 α m i=1 ρ i σ i • ν i -I i i,1 (26) 
where

• i,p , p ≥ 0, is the p -norm over Ω i and |Ω i | is the cardinality of Ω i .
Prior. Since the reectance maps {ρ i } i are independent from the lighting vectors {σ i } i , the prior can be factorized to P({ρ i } i , {σ i } i ) = P({ρ i } i )P({σ i } i ). Since the lighting vectors are independent from each other, the prior distribution of the lighting vectors factorizes to P({σ i } i ) = m i=1 P(σ i ). As each lighting vector is unconstrained, we can consider the same uniform distribution i.e., P(σ i ) = τ , independently from the view index i. This distribution being independent from the unknowns, we can discard the lighting prior from the inference process. Regarding the reectance maps, we follow the retinex theory [START_REF] Land | Lightness and retinex theory[END_REF], and consider each of them as piecewise-constant. The natural prior for each such map is thus the Potts model:

P(ρ i ) = K i exp - 1 β i ∇ρ i i,0 (27) 
where ∇ρ i (p) = ∂ x ρ i (p), ∂ y ρ i (p) represents the gradient of ρ i at pixel p (approximated, in practice, using rst-order forward stencils with a Neumann boundary condition), and with K i a normalization coecient and β i a scale parameter. Note that we use the abusive 0norm notation ∇ρ i i,0 to denote:

∇ρ i i,0 = p∈Ω i q∈V i (p) f ρ i (p) -ρ i (q) (28) 
with f (x) = 1 if x = 0, and f (x) = 0 otherwise. The m reectance maps are obviously not independent: the reectance, which characterizes the surface, should be independent from the view. It follows that [START_REF] Basri | Lambertian reectances and linear subspaces[END_REF] We consider the Laplace law here because: i) since it has higher tails than the Gaussian, it allows for sparse outliers to the Lambertian model such as cast-shadows or specularities;

ii) it yields convex optimization problems, unlike other heavytailed distributions such as Cauchy or t distributions.

the parameters (K i , β i ) are the same for each Potts model [START_REF] Moulon | openMVG: An open multiple view geometry library[END_REF], and that the reectance prior P({ρ i } i ) can be taken as the product of m independent distributions with the same parameters (K, β):

P({ρ i } i ) = K m exp - 1 β m i=1 ∇ρ i i,0 (29) 
but only if the coupling between the reectance maps is enforced by the following linear constraint:

C i,j (ρ i -ρ j ) = 0, ∀(i, j) ∈ {1, . . . , m} 2 , ( 30 
)
where C i,j is a Ω i × Ω j → {0, 1} correspondence function, which is easily created from the (known) projection functions {π i } i and the geometry, and which is dened as follows:

C i,j (p i ,p j ) =     
1 if pixels p i and p j correspond to the same surface point,

0 otherwise. ( 31 
)
Since maximizing the MAP probability ( 25) is equivalent to minimizing its negative logarithm, we eventually obtain the following constrained variational problem, which explicits the functions F , R and C in [START_REF] Maier | Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting[END_REF]:

min {ρ i : Ω i →R}i {σ i ∈R 9 }i m i=1 ρ i σ i • ν i -I i i,1 + λ m i=1 ∇ρ i i,0 s.t. C i,j (ρ i -ρ j ) = 0, ∀(i, j) ∈ {1, . . . , m} 2 , ( 32 
)
where λ = α/β and where we neglect all the normalization coecients.

Relationship with Cartoon + Texture

Decomposition Applying a logarithm transformation to both sides of [START_REF] Langguth | Shading-aware Multi-view Stereo[END_REF], we obtain:

Ĩi (p) = ρi (p) + log σ i • ν i (p) , (33) 
where the tilde notation is used as a shortcut for the logarithm.

By applying the exact same Bayesian-to-variational rationale, we would end up with the following variational problem:

min { ρi : Ω i →R}i {σ i ∈R 9 }i m i=1 ρi + log σ i • ν i -Ĩi i,1 + λ m i=1 ∇ρ i i,0 s.t. C i,j (ρ i -ρj ) = 0, ∀(i, j) ∈ {1, . . . , m} 2 , (34) 
The variational problem (34) can be interpreted as a multi-view cartoon + texture decomposition problem, where each log-image Ĩ is decomposed into a component C i := ρi which is piecewise-smooth (cartoon, here the log-reectance), and a component T i := log σ i • ν i which contains higher-frequency details (texture, here the log-shading). In contrast with conventional methods for such a task, the present one uses an explicit shading model for the texture term.

Note however that such a decomposition is justied only if the log-images Ĩi are considered. If using the original images I i , our framework should rather be considered as a multi-view cartoon × texture decomposition framework.

Bi-convex Relaxation of the Variational Model (32)

Problem ( 32) is a non-convex (due to the 0 -regularizers), non-smooth (due to the 0 -regularizers and to the 1 - delity term). Although some eorts have recently been devoted to the resolution of optimization problems involving 0 -regularizers [START_REF] Storath | Fast partitioning of vectorvalued images[END_REF], we prefer to keep the op- timization simple, and approximate these by (convex, but non-smooth) anisotropic total variation terms:

m i=1 ∇ρ i i,0 ≈ m i=1 ∇ρ i i,1 . (35) 
Besides, the correspondence function may be slightly inaccurate in practice, due to errors in the prior geometry estimation obtained via multi-view stereo. Therefore, we turn the linear constraint in (32) into an additional term. Eventually, we replace the non-dierentiable absolute values arising from the 1 -norms by the (dierentiable) Moreau envelope i.e., the Huber loss 7 :

|x| ≈ φ δ (x) :=      x 2 2 δ , |x| ≤ δ |x| - δ 2 , |x| > δ (36) 
Altogether, this yields the following smooth, bi-convex variational problem:

min ρ:={ρ i : Ω i →R}i σ:={σ i ∈R 9 }i ε(ρ, σ) := m i=1 p∈Ω i φ δ ρ i (p) σ i •ν i (p) -I i (p) + λ m i=1 p∈Ω i φ δ ∂ x ρ i (p) + φ δ ∂ y ρ i (p) + µ 1≤i<j≤m p i ∈Ω i p j ∈Ω j C i,j (p i , p j ) φ δ ρ i (p i ) -ρ j (p j ) . (37) 
In Equation [START_REF] Song | Structure adaptive total variation minimization-based image decomposition[END_REF], the rst term ensures photometric consistency (in the sense of the Huber loss function), the 7 We use δ = 10 -4 , in the experiments.

second one ensures reectance smoothness (smoothed anisotropic total variation), and the third term ensures multi-view consistency of the reectance estimates (again, in the sense of the Huber loss function). At last, λ and µ are tunable hyper-parameters controlling the reectance smoothness and the multi-view consistency, respectively.

5 Alternating Majorization-minimization for Solving [START_REF] Song | Structure adaptive total variation minimization-based image decomposition[END_REF] To solve [START_REF] Song | Structure adaptive total variation minimization-based image decomposition[END_REF], we propose an alternating majorizationminimization method, which combines alternating and majorization-minimization optimization techniques. As sketched in Figure 3, this algorithm works as follows.

Given an estimate (ρ (k) , σ (k) ) of the solution at iteration (k), the lighting vectors and the reectance maps are successively updated according to:

ρ (k+1) = argmin ρ ε (k) ρ (ρ), (38) 
σ (k+1) = argmin σ ε (k) σ (σ), (39) 
where ε

(k) ρ and ε (k) σ are local quadratic majorants of ε(•, σ (k)
) and ε(ρ (k+1) , •) around, respectively, ρ (k) and σ (k) . Then, the process is repeated until convergence.

( To this end, let us rst remark that the function

ρ ( k ) , σ ( k ) ) ( ρ ( k + 1 ) , σ ( k ) ) ( ρ ( k + 1 ) , σ ( k + 1 ) ) . . . ε(ρ, σ) ε (k) ρ ε (k+1) ρ ε (k) σ
ψ δ (x; x 0 ) =      x 2 2 δ , |x 0 | ≤ δ, x 2 2 |x 0 | + |x 0 | 2 - δ 2 , |x 0 | > δ, (40) 
is such that ψ δ (x 0 ; x 0 ) = φ δ (x 0 ), and is a proper local quadratic majorant of φ δ around x 0 , ∀x 0 ∈ R. This is easily veried if |x 0 | ≤ δ, from the denition (36) of φ δ . If |x 0 | > δ, the dierence ψ δ (x; x 0 ) -φ δ (x) writes:

       (|x 0 | -δ) |x 0 | δ -x 2 2 |x 0 | δ , |x| ≤ δ, (|x| -|x 0 |) 2 2 |x 0 | , |x| > δ, (41) 
which is positive in any case.

Therefore, the function

ε (k) ρ (ρ) := m i=1 p∈Ω i ψ δ ρ i (p) σ i,(k) •ν i (p)-I i (p); r i,(k),(k) + λ m i=1 p∈Ω i ψ δ ∂ x ρ i (p); ∂ x ρ i,(k) (p) +ψ δ ∂ y ρ i (p); ∂ y ρ i,(k) (p) + µ 1≤i<j≤m p i ∈Ω i p j ∈Ω j C i,j (p i , p j ) ψ δ ρ i (p i ) -ρ j (p j ); ρ i,(k) (p i ) -ρ j,(k) (p j ) , ( 42 
)
with r i,(k1),(k2) = ρ i,(k1) (p) σ i,(k2)

• ν i (p) -I i (p), ( 43 
) is a local quadratic majorant of ε(•, σ (k) ) around ρ (k)
which is suitable for the update [START_REF] Storath | Fast partitioning of vectorvalued images[END_REF].

Similarly, the function

ε (k) σ (σ) := m i=1 p∈Ω i ψ δ ρ i,(k+1) (p)σ i •ν i (p)-I i (p); r i,(k+1),(k) + λ m i=1 p∈Ω i φ δ ∂ x ρ i,(k+1) (p) + φ δ ∂ y ρ i,(k+1) (p) + µ 1≤i<j≤m p i ∈Ω i p j ∈Ω j C i,j (p i , p j ) φ δ ρ i,(k+1) (p i ) -ρ j,(k+1) (p j ) (44) is a local quadratic majorant of ε(ρ (k+1) , •) around σ (k)
which is suitable for the update [START_REF]Unity-Technologies: Delightingtool[END_REF].

The update [START_REF] Storath | Fast partitioning of vectorvalued images[END_REF] then comes down to solving a large sparse linear least-squares problem, which we achieve by applying conjugate gradient iterations to the associated normal equations. Regarding [START_REF]Unity-Technologies: Delightingtool[END_REF], it comes down to solving a series of m independent small-scale linear least-squares problems, for instance by resorting to the pseudo-inverse.

We iterate the optimisation steps ( 38) and ( 39) until convergence or a maximum iteration number is reached, starting from the trivial solution of the non-regularized (λ = µ = 0) problem. This non-regularized solution is attained by considering diuse lighting (see [START_REF] Laont | Coherent intrinsic images from photo collections[END_REF]) and using the input images as reectance maps. In our experiments, we found 50 iterations were always sucient to reach a stable solution (10 -3 relative residual be- tween two consecutive energy values ε(ρ (k) , σ (k) ) and ε(ρ (k+1) , σ (k+1) )).

Proving convergence of our scheme is beyond the scope of this paper, but the proof could certainly be derived from that in [START_REF] Quéau | LED-based Photometric Stereo: Modeling, Calibration and Numerical Solution[END_REF], where a similar alternating majorization-minimization called alternating reweighted least-squares is used. Note, however, that the convergence rate seems to be sublinear (see Figure 4), hence possibly faster numerical strategies could be explored in the future. 
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Fig. 4 Top: evolution of the energy ε(ρ (k) , σ (k) ) dened in [START_REF] Song | Structure adaptive total variation minimization-based image decomposition[END_REF], in function of iterations (k), concerning the test presented in Figure 8. Bottom: absolute value of the relative variation between two successive energy values. Our algorithm stops when this value is less than 10 -3 , which happens in less than 50 iterations and takes around 3 minutes on a recent i7 processor, with non-optimized Matlab codes for m = 13 images of size 540 × 960.

Results

In this section, we evaluate the proposed variational method for multi-view reectance estimation, on a variety of synthetic and real-world datasets. We start by a quantitative comparison of our results with two singleview methods, namely, the cartoon + texture decomposition method from [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] and the intrinsic image decomposition method from [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF].

Quantitative Evaluation on a Synthetic Dataset

We rst test our reectance estimation method using m = 13 synthetic images, of size 540 × 960, of an object whose geometry is perfectly known (see Figure 5-a).

Two scenarios are considered:

• In Figure 6, a purely-Lambertian, piecewise-constant reectance is mapped onto the surface of the object, which is then illuminated by a skydome i.e.,

an almost diuse lighting. Shading eects are thus rather limited, hence applying to each image an estimation method which does not use an explicit reectance model e.g., the cartoon + texture decomposition method from [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF], should already provide satisfactory results. The reectance being perfectly piecewise constant, applying sparsity-based intrinsic image decomposition methods such as [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] to each image should also work well.

• In Figure 7, a more complicated (non-uniform) reectance is mapped onto the shirt, the hair is made partly specular, and the diuse lighting is replaced by a single extended light source, which induces much stronger shading eects. It will thus be much harder to remove shading without an explicit reectance model (cartoon + texture approach), while the single-view image decomposition approach should be non-robust to specularities.

In both cases, the competing methods [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] and [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] are applied independently to each of the m = 13 images. The estimates are thus not expected to be consistent, which may be problematic if the reectance maps should be further mapped onto the surface for, e.g., relighting applications. On the contrary, our approach simultaneously, and consistently, estimates the m reectance maps.

As we dispose of the reectance ground truth, we can numerically evaluate these results by estimating the root mean square error (RMSE) for each method, over the whole set of m = 13 images. The values are presented in Table 1. In order to compare comparable things, the reectance estimated by each method is scaled, in each channel, by a factor common to the m = 13 reectance maps, so as to minimize the RMSE.

This should thus highlight inconsistencies between the reectance maps.

Based on the qualitative results from Figures 6 and7, and the quantitative evaluations shown in Table 1, we can make the following three observations:

1) Considering an explicit image formation model improves cartoon + texture decomposition. Actually, the cartoon part from the cartoon + texture decomposition is far less uniform than the reectance estimated using both other methods. Shading is only blurred, and not really removed. This could be improved by augmenting the regularization weight, but the price to pay would be a loss of detail in the parts containing thinner details (as the shirt, in the example of Figure 7).

2) Simultaneously estimating the multi-view reectance maps makes them consistent and improves robustness to specularities. When estimating each reectance map individually, inconsistencies arise, which is obvious for the hair in the third line of Figure 6, and explains the RMSE values in Table 1. In contrast, our results conrm our basic idea i.e., that reectance estimation benets in two ways from the multi-view framework: this allows us not only to estimate the 3D-shape, but also to constrain the reectance of each surface point to be the same in all the pictures where it is visible. In addition, 3) A sparsity-based prior for the reectance should be preferred over total variation. As we use a TV-smoothing term, which favors piecewise-smooth reectance, the satisfactory results of Figure 6 were predictable. However, some penumbra remains visible around the neck.

Since we also know the object geometry, it seems that we could compensate for penumbra. However, this would require that the lighting is known as well, which is not the case in the framework of the targeted usecase, since an outdoors lighting is uncontrolled. Moreover, we would have to consider not only the primary lighting, but also the successive bounces of light on the dierent parts of the scene (these were taken into account by the ray-tracing algorithm, when synthesizing the images).

In contrast, the sparsity-based approach [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] is able to Table 1 RMSE on the reectance estimates (the estimated and ground truth reectance maps are scaled to [0, 1]), with respect to each channel and to the whole set of images, for our method and two single-view approaches. Our method overcomes the latter on the two considered datasets. See text for details.

Test Channel Cartoon + texture [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] Intrinsic decomposition [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] Ours 

Handling Inaccurate Geometry

In the previous experiments, the geometry was perfectly known. In real-world scenarios, errors in the 3D-shape estimation using SfM and MVS are unavoidable. Therefore, it is necessary to evaluate the ability of our method to handle inaccurate geometry. 8 show that our method seems robust to such small inaccuracies in the object geometry, and is thus relevant for the intended application.

In Figure 9, we qualitatively evaluate our method on the outputs of an SfM/MVS pipeline applied to a realworld dataset, which provides estimates of the camera parameters and a rough geometry of the scene. These experiments conrm that small inaccuracies in the geometry input can be handled. The specularities are also appropriately removed, and the reectance maps present the expected cartoon-like aspect. However, the reectance is under-estimated in the sides of the nose and around the chin. Indeed, since lighting is xed, these areas are self-shadowed in all the images. Two workarounds could be used: forcing the regularization term (and, possibly, losing ne-scale details), or actively controlling the lighting in order to be sure that no point on the surface is shadowed in all the views. This is further discussed in the next subsection.

Input images

Cartoon + texture [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] Intrinsic decomposition [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] Ours Ground truth of the reectance using the cartoon + texture decomposition described in [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] (with its parameter xed to 0.4). Third row: estimation of the reectance using the method proposed in [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] (with 4 clusters). Forth row: estimation of the reectance using the proposed approach (with λ = 8 and µ = 1000). Fifth row: ground truth.

Input images

Cartoon + texture [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] Intrinsic decomposition [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] Ours Ground truth Fig. 7 First row: three (out of m = 13) synthetic views of the object of Figure 5-a, computed with a non-uniform shirt reectance, a uniform, but partly specular hair reectance, illuminated by a single extended light source. Second row: estimation of the reectance using the cartoon + texture decomposition described in [START_REF] Le Guen | Cartoon + Texture Image Decomposition by the TV-L1 Model[END_REF] (with its parameter xed to 0.4). Third row: estimation of the reectance using the method proposed in [START_REF] Gehler | Recovering Intrinsic Images with a Global Sparsity Prior on Reectance[END_REF] (with 6 clusters). Forth row: estimation of the reectance using the proposed approach (with λ = 2.5 and µ = 1000). Fifth row: ground truth. Results are qualitatively similar to those shown in Figure 7, obtained with perfect geometry. The RMSE in the RGB channels are, respectively: 0.24, 0.14 and 0.13, which are only slightly higher than those attained with perfect geometry (see Table 1).

Fig. 9 Test on a real-world dataset. First row: three (out of m = 8) views of the scene. Second row: estimated reectance maps using the proposed approach (with λ = 2 and µ = 1000). Geometry and camera parameters were estimated using an SfM/MVS pipeline.

Tuning the Hyper-parameters λ and µ

In the previous experiments, we arbitrarily chose the values of parameters λ and µ which provided the best results. Of course, such a tuning, which may be tedious, must be discussed.

In order to highlight the inuence of these parameters, let us rst question what would happen without neither regularization nor multi-view consistency i.e., when λ = µ = 0. In that case, only the photometric term would be optimised, which corresponds to the maximum likelihood case. If lighting is not varying, then we are in a degenerate case which may result in estimating diuse lighting (see Equation ( 20)) and replacing the reectance maps by the images. Lighting will thus be baked in the reectance maps, which is precisely what we pretend not to do.

To avoid this eect, the smoothness term must be activated by setting λ > 0. If we still consider µ = 0, then the variational problem (37) comes down to m independent image restoration problems. In fact, these problems are similar to 1 -TV denoising problems, ex- cept that a physically plausible delity term is used to help removing the illumination artifacts not only from the total variation regularization, but also by incorporating prior knowledge of the surface geometry. However, because the photometric term is invariant by the transformation (ρ i , σ i ) := (κ i ρ i , σ i /κ i ), κ i > 0, each reectance map ρ i is estimated only up to a scale factor, hence the m maps will not be consistent, as this is the case for the competing single-view methods. Fig. 10 Quantitative inuence of parameter λ, using images from the same dataset as that of Figure 7, with µ = 1000.

The latter issue is solved by activating the multiview consistency term i.e., by setting µ > 0. In that case, there is still an ambiguity {ρ i , σ i } i := {κρ i , σ i /κ}, κ > 0, but it is now global i.e., independent from i.

To solve this ambiguity, it is enough in practice to set one reectance value arbitrarily, or to normalize the reectance values.

Overall, it is necessary to ensure that both λ and µ are strictly positive. The choice of µ is not really critical. Indeed, the multi-view consistency regularizer which is controlled by µ arises from relaxing a hard constraint (compare ( 32) and ( 37)). Hence, µ only needs to be chosen high enough so that the regularizer approximates fairly well a hard constraint. In all the experiments, we used µ = 1000 and did not face any particular problem. Obviously, if the correspondences were not appropriately computed by SfM, then this value should be reduced, but SfM solutions such as [START_REF] Moulon | openMVG: An open multiple view geometry library[END_REF] are now mature enough to provide accurate correspondences.

The choice of λ is much more critical. This is illustrated in Figure 10, which shows the RMSE in each channel, using images from the same dataset as that of Figure 7, at convergence of our algorithm, as a function of λ. This graph shows that the optimal value of λ is very hard to nd: in this example, a high value of λ would diminish the RMSE in the face and the hair (which are mostly red), because this would make them uniform as expected (see Figure 11, last rows). However, a much lower value of λ is required in order to preserve the thin shirt details, which mostly contain green and blue components (see Figure 11, rst rows).

There is one situation where this tuning is much easier. It is when the lighting is not xed, but strongly varying. As discussed in Section 3, the problem of jointly estimating reectance and lighting is then over-determined, which theoretically makes the regularization unnecessary. In Figure 12, we show the results obtained in the case where each image is obtained under a dierent lighting. In that case, the thin structures of the shirt are preserved, while shading on the face is largely reduced, despite the choice of a very low regularization weight λ = 1. Note that we cannot use the limit case λ = 0 because not all pixels have correspondences in all images: there may thus be a few pixels for which the problem remains under-determined, and for which diusion is required. Overall, this experiment shows that, without any prior knowledge on the lighting, the only way to avoid introducing an empirical prior on the reectance, and thus its tuning, is to actively control lighting during the acquisition process. This means, combining multiview and photometric stereo.

It happens that this problem is actively being addressed by the computer vision community [START_REF] Park | Robust multiview photometric stereo using planar mesh parameterization[END_REF]. Interestingly, in this research the focus is put on highly accurate geometry estimation, and not so much on reectance estimation (no reectance estimation result is shown). Therefore, it may be an interesting future research direction to incorporate our reectance estimation framework in such multi-view, multi-lighting approaches. Both highly accurate geometry and reectance could indeed be expected.

Conclusion and Perspectives

We have proposed a variational framework for estimating the reectance of a scene from a series of multiview images. We advocate a 2D-parameterization of reectance, turning the problem into that of converting the input images into reectance maps. Invoking from the front and from the left, respectively). Second row: estimated reectance maps using the proposed approach (with λ = 1 and µ = 1000). The thin structures of the shirt are preserved, while shading on the face is largely reduced. These results must be compared with those of the rst row in Figure 11, obtained with the same value of λ but under xed lighting.

However, the critical analysis of our results also highlighted some limitations and possible future research directions. For instance, avoiding the relaxation of the non-smooth, non-convex regularization, seems to be necessary in order to really ensure that the estimated reectance maps are piecewise-constant. In addition, choice of parameterizing reectance in the image (2D) domain is advocated for reasons of numerical simplicity, yet it seems somewhat more natural to work directly on the surface (this would avoid the multi-view consistency constraint). However, this would require turning our simple variational framework into a more arduous optimization problem over a manifold.

Finally, we could disambiguate the problem by measuring upstream the incoming light, using, for instance, environment maps. Without prior measurement, it seems that the only way to avoid resorting to an arbitrary prior for limiting the arising ambiguities consists in actively controlling the lighting (this would avoid resorting to spatial regularization). Therefore, another extension of our work consists in estimating reectance from multi-view, multi-lighting data, in the spririt of multiview photometric stereo techniques. However, this would require appropriately modifying the SfM/MVS pipeline, which relies on the constant brightness assumption.

Figure 1

 1 Figure 1 illustrates this source of ill-posedness through the so-called workshop metaphor introduced by Adelson and Pentland in [1]: among three plausible interpretations (b), (c) and (d) of image (a), we are particularly interested in (d), which illustrates the principle of photometric 3D-reconstruction. This class of methods usually assume that the lighting s(x) is known. Still, there remains three scalar unknowns per equation (1):

Fig. 2

 2 Fig.2Overview of our contribution. From a set of n images of a surface acquired under dierent angles, and a coarse geometry obtained for instance using multi-view stereo, we estimate a shading-free reectance map per view.

latter introduced a robust l 1 -

 1 TV framework for the joint estimation of piecewise-smooth reectance maps and of spherical harmonics lighting, with an additional term ensuring the consistency of the reectance maps. The present paper extends this approach by developing the theoretical foundations of this variational model. In this view, our parameterization choices are further discussed and the underlying ambiguities are exhibited. The variational model is motivated by a Bayesian rationale, and the proposed numerical scheme is interpreted in terms of a majorization-minimization algorithm. Finally, we conclude that, besides a preliminary measurement of the incoming lighting, varying the lighting along with the viewing angle, in the spirit of photometric stereo, is the only way to estimate the reectance without resorting to any prior. Organization of the Paper. After reviewing related approaches in Section 2, we formalize in Section 3 the problem of multi-view reectance estimation. Section 4 then introduces a Bayesian-to-variational approach to this problem. A simple numerical strategy for solving the resulting variational problem, which is based on alternating majorization-minimization, is presented in Section 5. Experiments on both synthetic and real-world datasets are then conducted in Section 6, before summarizing our achievements and suggesting future research directions in Section 7. 2 Related Works Studied since the 1970s [21], the problem of decomposing an image (or a set of images) into a piecewisesmooth component and an oscillatory one is a fundamental computer vision problem, which has been addressed in numerous ways.

Fig. 3

 3 Fig. 3 Sketch of the proposed alternating majorizationminimization solution. The partially freezed energies ε(•, σ) and ε(ρ, •) are locally majorized by the quadratic functions ε ρ (in red) and ε σ (in blue). Then, these quadratic majorants are (globally) minimized and the process is repeated until convergence is reached.

  since the location of bright spots due to specularity depends on the viewing angle, they usually occur in some places on the surface only under certain viewing angles. Considering multi-view data should thus improve robustness to specularities. This is conrmed in Figure 7 by the reectance estimates in the hair, where the specularities are slightly better removed than with single-view methods.

  Fig. 5 (a) 3D-shape used in the tests (the well-known Joyful Yell 3D-model), which will be imaged under two scenarios (see Figures 6 and 7). (b) Same, after smoothing, thus less accurate. (c)-(d) Zooms of (a) and (b), respectively, near the neck.

Purely

  well, without modeling secundary reections. It is also able to more appropriately remove shading on the face in the example of Figure7, while not degrading as much as total variation the thin structures of the shirt. Hence, the relative simplicity of the numerical solution, which is a consequence of the choice of replacing the Potts prior by a total variation one (see Section 4.3), comes with a price. In future works, it may be important to design a numerical strategy handling the original non-smooth, non-convex problem[START_REF] Quéau | Microgeometry capture and RGB albedo estimation by photometric stereo without demosaicing[END_REF].

  Thus, we use for the next experiment the surface shown in Figure 5-b (zoomed in Figure 5-d), which is obtained by smoothing the original 3D-shape of Figure 5-a (zoomed in Figure 5-c), using a tool from the meshlab software. The results provided in Figure

Fig. 6

 6 Fig. 6 First row: three (out of m = 13) synthetic views of the object of Figure 5-a, computed with a purely-Lambertian reectance taking only four dierent values (hair, face, shirt and plinth), illuminated by a skydome. Second row: estimation

Fig. 8

 8 Fig.8Same test as in Figure7, using a coarse version of the 3D-shape (see Figures5-b and 5-d), with λ = 2.5 and µ = 1000.

a

  Bayesian rationale leads to a variational model comprising a 1 -norm-based photometric data term, a Potts regularizer and a multi-view consistency constraint. For simplicity, both the latter are relaxed into a total variation term and a 1 -norm term, respectively. Numerical solving is carried out using an alternating majorizationminimization algorithm. Empirical results on both synthetic and real-world datasets demonstrate the interest of considering multi-view images for reectance estimation, as it allows to benet from prior knowledge of the geometry, to improve robustness to specularities and to guarantee consistency of the reectance estimates.

Fig. 11

 11 Fig.11Qualitative inuence of parameter λ, using images from the same dataset as that of Figure7, with µ = 1000.

Fig. 12

 12 Fig. 12 First row: three (out of m = 13) synthetic images computed under varying lighting (which comes here from the right,
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