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Abstract—A new frequency-shift keying continuous phase
modulation (CPM) signal, directly inspired from quantum
physics, is defined, and its attractive spectral property of single
side-band is shown. The principle of the modulator and the
demodulator are discussed; and a simplified coherent detector,
based on signal correlation using an orthogonal basis, is proposed
showing that this new modulation can operate using existing
digital communication technology.

I. I NTRODUCTION

Continuous phase modulation (CPM) [1] is known to com-
bine constant signal envelope and good bandwidth efficiency
[2, 3]. For these attractive properties, a significant interest is
then addressed to CPM since it was developed in the 80s
[1], and it has been widely used in digital communication
systems, e.g., in satellite communications, deep-space, optical
fiber, etc. For instance, CPM has been introduced in the
DVB-RCS2 standard [4]. The aim for the use of CPM in
these contexts of communication is twofold: first, to exploit
their inner immunity against nonlinear distorsions, resulting
from the constant envelope; second, to take advantage of
their recursive nature allowing their particular use in serially
concatenated schemes [5]. Consequently, CPM is classified
as power efficient digital modulation, and is therefore often
prefered to linear modulations.

Further to the advantages mentioned above, in the present
paper, we propose a totally new CPM scheme having the
original feature of a single side-band (SSB) spectrum property
providing a very compact frequency occupation. This SSB
property can be exploited to perform high rate and low
frequency bandwidths transmissions without taking care of
the image frequency interference, typical of ordinary double
side-band signals. The new CPM is hereafter called Single
Side-Band Phase Shift Keying (SSB-PSK), which uses a
generic phase derivative pulsedϕ/dt with Lorentzian shape
and a2π phase increment. The Lorentzian pulse is a specific
shape addressing fundamental quantum physics, in particular,
the on-demand injection of a single electron in a quantum
conductor. Following a theoretical proposal by Levitovet al.
[6], a short voltage pulseV (t) is applied on a contact of
the conductor giving a current pulseI(t) = 2e2V (t)/h0 (e
is the electron charge andh0 the Planck constant). Tuning
the pulse amplitude and duration such that the net charge
Q =

∫

I(t)dt = e, a single electron is injected from the
contact to the conductor. However, the voltage pulse perturbs
all electrons of the conductor creating unwanted excitations.
Levitov et al. in [6] showed that ifV (t) has a Lorentzian shape

(and only this shape) a pure single electron state is created: a
leviton. The experimental demonstration of levitons and their
exploitation are given in [7, 8] setting the basis for aquantum
levitonics. When V (t) is a Lorentzian pulse, the electron
energy distribution (equivalently frequency spectrum) becomes
SSB. The SSB-PSK is then proposed as first immediate
application of a classical levitonics for digital transmissions
based on CPM [9].

This paper is organized as follows. In Section II, we first
briefly introduce the system model. The fundamental modula-
tion principle is studied in Section III. Then, a low complexity
coherent receiver is described in Section IV. Numerical results
are reported in Section V. Finally, a conclusion and some
perspectives are drawn in Section VI.

II. SYSTEM MODEL

The CPM signal at carrier frequencyfc is defined as

s(t) =

√

Es

Ts
ej(2πfct+ϕ(t))

=

√

Es

Ts
ej(2πfct+h

∑+∞

k=−∞
akϕ0(t−kT ))),

(1)

whereEs is the average symbol energy,Ts is the duration
of symbol ak, h is an integer modulation index ensuring an
2π phase increment,ϕ(t) is phase function andϕ0(t) is a
Levitonic phase-shift function, given by

ϕ0(t) = 2µ arctan

(

t

w

)

. (2)

The information symbolsak are assumed to be independent
and identically distributed and take values in the alphabet
{0, 1}, i.e., no antipodal coding is performed in order to
preserve the SSB property.ϕ0(t) is the phase response and
it is obtained by

ϕ0(t) =

∫ t

−∞
g(τ)dτ, (3)

where g(t), the frequency pulse, is a truncated Lorentzian
pulse defined as

g(t) =
dϕ0(t)

dt
= µ

2w

t2 + w2
, t ∈ [0, LTs]

∫ t

0

g(τ)dτ = ϕ0(LTs) = 2π, t ≥ LTs

(4)

with w the pulse width, a tuning parameter impacting greatly
modulation performance, particularly its spectral efficiency.
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Fig. 1. Length-4Ts frequency pulse: the Lorentzian pulse for different width
values,w/Ts = 0.28, 0.37, 0.55.

Given that the Lorentzian pulse decreases very slowly,µ is
a correcting factor introduced to keep a2π phase increment
when the frequency pulseg(t) is truncated toL > 1 symbol
durations. This factor is defined as the ratio between the total
phase increment without any truncation and the one obtained
after Lorentzian truncation :

µ =
2π

∫ LTs/2

−LTs/2
2w

t2+w2 dt
=

π

arctan
(

LTs

2w

) . (5)

For the non-truncated Lorentzian pulse (L = ∞), µ = 1.
In figure 1, we illustrate the Lorentzian pulse, for different

width valuesw/Ts = 0.28, 0.37, 0.55. As g(t), the frequency-
shift function, is partial-response, the SSB-PSK modulation
exhibits inter-symbol interference (ISI) which is obviously
expected and goes up whenw is getting larger. It is therefore
imperative to choose a limited widthw for Lorentzian pulses
to reduce ISI effects on bit error rate (BER) performance.

For the signal given in (1), we perform a phase coding where
thekth bit of durationTs contributes to the total phaseϕ0(t) of
the carrier by2ak arctan

(

t−kTs

w

)

. Equivalently, a Lorentzian
pulse with a phase increment equal to2π is used to encode
bit 1 and no pulse is associated with bit 0.

We consider a point-to-point communication system over an
additive white Gaussian noise (AWGN) channel. The power-
limited input signals is summed to the complex noisez ∼
CN (0, σ2

0) resulting in the outputy

y = s+ z, (6)

with σ2
0 the Gaussian noise variance.

III. F UNDAMENTAL PRINCIPLE OF SSB-PSK
MODULATION

The spectrum of the complex signalx(t) = e−iϕ(t) is de-
fined by its Fourier transformX(f) =

∫ +∞
−∞ e−jϕ(t)ej2πftdt.

To obtain a single side-band spectrum, this Fourier transform

must have a zero value forf < 0. Therefore,x(t) must have
no pole in the lower half-plane and at least one pole in the
upper half-plane. Furthermore,x(t) has a constant complex
envelope. The simplest solution verifying the conditions men-
tioned above is then given by

x(t) = e−jϕ(t) =
t− t0 + jw0

t− t0 − jw0
. (7)

For this solution,x(t) has a pole att = t0+jw0, which implies
the phase-shift functionϕ(t) = ϕ0(t) = 2 arctan

(

t−t0
w

)

,
resulting in the Fourier transformX(f) = e−4πw0f , for f > 0
and zero otherwise.

The generalization of this principle is to add poles exclu-
sively in the upper half-plane, which allowsX(f) to maintain
this original SSB feature. Explicitly, this generalization con-
sists in generating more complex phases, sum ofN elementary
phasesϕi(t) of type ϕ0, occuring at timeti and of duration
wi (wi > 0). The general expression ofx(t) is then

x(t) = e−jϕ(t) =
N−1
∏

i=0

t− ti + jwi

t− ti − jwi
. (8)

Likewise, the SSB property is conserved if the phase shift
function is generalized to

ϕ(t) =

N−1
∑

i=0

hiϕi(t), (9)

wherehi are integers of same signs. Ifhi > 0 ∀i, X(f) has
zero value forf < 0; and if hi < 0 ∀i, X(f) has zero value
for f > 0. This explains why no antipodal coding is applied in
bit-to-symbol conversion before using this principle in phase
modulation of information bits.

IV. SSB-PSKDEMODULATION SCHEME

In this section, we propose a coherent demodulation scheme
based on symbol-by-symbol detection, i.e., the receiver makes
a decision on one symbol only, based on the observation
of one received symbol. The demodulation method relies on
the property of orthogonality between SSB-PSK modulated
signals with unique pulses of different amplitude levels corre-
sponding to symbol values; for binary modulation, we exploit
orthogonality between signals relative to bits 0 and 1.

A. Orthogonality Property

Let us denote byuh̃(t), h̃ = 0, 1, 2, ..., N a set of orthogo-
nal functions having the following form

uh̃(t) =
1√
2π

ejh̃ϕ0(t)

√

dϕ0(t)

dt

=
1√
2π

√

(t+ jw)h̃−1

(t− jw)h̃
,

(10)

whereϕ0(t) is a non-truncated Levitonic pulse defined in (2)
with µ = 1. We can easily verify that

∫ +∞
−∞ u ∗

h̃
(t)uh̃′(t)dt =



Fig. 2. Block diagram of the correlation-based demodulator.

δh̃,h̃′ . In order to use this orthogonality property in demodu-
lation process of SSB-PSK modulated signal, we have rather
considered the set of signals

sh̃(t) = ejhϕ0(t) =

√

(t+ jw)h̃

(t− jw)h̃
. (11)

The correlation-based separation of signalssh̃(t) andsh̃′(t)
using orthogonality is given then by the following integration
formula

1

2π

∫ +∞

−∞
s ∗
h̃
(t)sh̃′(t)

dϕ0(t)

dt
dt = δh̃,h̃′ . (12)

where dϕ0(t)
dt is a weighting function in the integration func-

tion.
The extension of the definition of the set of orthogonal

functions defined over an interval no longer infinite but finite
Ts is straightforward; and consequently, the orthogonality
property is verified thanks to the following integration function

1

2π

∫ +Ts/2

−Ts/2

s ∗
h̃
(t)sh̃′(t)

dϕ0(t)

dt
dt = δh̃,h̃′ . (13)

Moreower, we have to emphasise that the weighting func-
tion dϕ0(t)

dt is a periodic Lorentzian sum and can be pre-
calculated off-line before performing the demodulation pro-
cess.

B. Binary Correlation-based Demodulator

For the binary case, the set of orthogonal functions used
in the demodulation process consists of two different vectors
given by sh̃, h̃ = hak, whereak = 0, 1. Exploiting orthogo-
nality property, the detection of the transmitted symbol, using
the received observationy(t), is based on the computation of
the following correlation functions for̃h = 0, h

Γh̃(t) =

∣

∣

∣

∣

∣

∫ t+Ts/2

t−Ts/2

y(t)s ∗
h̃
(t)

dϕ0(t)

dt
dt

∣

∣

∣

∣

∣

, (14)
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Fig. 3. Comparison of the power spectral densities: in blue for an SSB-PSK
signal, in red for a GMSK signal, for the same carrier frequency fc = 10/Ts.

in order to establish the likelihood ratio test

l =
Γ0

Γh

>0

<1
1. (15)

The demodulator scheme is depicted in figure 2. After car-
rier demodulation, correlation functions are computed based
on noisy inphase and quadrature phase components,cos(ϕ(t))
and sin(ϕ(t)).

V. NUMERICAL RESULTS AND COMPARISONS

A. SSB Spectral Property

The power spectral density (PSD) of the SSB-PSK mod-
ulated signal is represented by figure 3, averaged over 10
spectra corresponding to 10 different 2048 bits length streams
each, non truncated Lorentzian pulses of widthw = 0.37Ts

are used, i.e.,L = ∞ (numerically, we choose a value large
enough to guarantee a phase increment equal to2π or µ = 1).
The frequencies are in units of1/Ts. The carrier frequency
is fc = 10/Ts. In this example, we chooseh = 1, a positive
integer; as a result all the spectral components of the signal
are located then in the band greater thanfc. For comparison,
we also present the PSD of the GMSK modulated signal.

The PSD of the SSB-PSK modulated signal is indeed
unilateral when comparing it with the GMSK modulated signal
which is symmetrical with respect to the carrier frequencyfc.
Almost all of the power is concentrated in a1/Ts frequency
band and the power spectrum decreases steeply in steps of20
dB, spaced by frequential periods of1/Ts. This exponential
decrease is equal toe−4πwf (see Section III), which is equiv-
alent to 1/100 in linear scale and to20 dB in logarithmic scale
for w/Ts = 0.37. Consequently, the power exponential decay
of the SSB-PSK modulated signal is shown to be proportional
to the Lorentzian widthw. A tradeoff on the value ofw has
to be found in order to combine the ISI reduction by limiting
w (cf. section II) and ensuring a fast power decay outside the
useful band by increasingw.
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Fig. 4. Power spectral density of an SSB-PSK signal with 95% of the phase
increment of a pure Lorentzian.

Spikes, also called spectral lines, are also observed around
the frequenciesfc, fc + 1/Ts, fc + 2/Ts, etc. They are
due to the value of the phase increment which is equal to
2π, what is well-known in conventional phase modulation
techniques whose phase increment is2π [10]. However, it
remains important to emphasize that deviating a little from
this critical value will reduce or even eliminate these spectral
lines at the cost of a reappearance of very low amplitude
components in the lower band. The PSD of the SSB-PSK
modulated signal, with a phase increment equal to 95 % of
2π is represented on figure 4. The configuration of the signals
considered in figure 3 has been maintained for this illustration.
The major difference is the clear reduction of the spectral lines.
However, its spectral occupation has slightly increased.

Table I provides the effect of the Lorentzian truncation on
the PSD of the SSB-PSK modulated signal. In this table, we
present the spectral occupation of the modulated signalfor
several values ofL = ∞, 12, 4, 2. This spectral occupation,
denoted byBw, is expressed in terms of1/Ts frequency band
occupied by98% of the signal power transmitted forw =
0.37Ts. For comparison, we also give the spectral occupation
of a GMSK modulated signal. For instance, forBT = 0.3,
Bw = 0.86. We can clearly note through these results that
for non-truncated Lorentzian pulses, the spectral occupation
of the SSB-PSK modulation remains close to those reached
by the GMSK modulation. However, the more truncated the
waveform is, the more spectral occupation increases.

B. Bit Error Rate Performance

In this section, we investigate the performance of the SSB-
PSK modulation in terms of BER over an AWGN channel.
In particular, we plot in figure 5, BER curves of SSB-
PSK modulation for several Lorentzian pulse length values
L = 100, 4, 2, as a function ofEb/N0 the bit-energy-to-
noise ratio. This quantifies the effect of truncation on the
performance of the proposed demodulation scheme and thus
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Fig. 5. BER performance for several truncation scenariosL = 100, 4, 2.

its immunity against ISI. It is a non-surprizing result that
SSB-PSK modulation with the most severe truncation of the
Lorentzian pulse is the most efficient, since it is subject tothe
the lowest ISI level.

Furthermore, a theoretical bound on the bit error probability
is given in order to illustrate the potential of this new modula-
tion. This performance bound is described using error events
and minimum distance concepts [11]. The normalized squared
Euclidian distance of a binary CPM is defined in [1] as

d2 =
1

2Ts

∫

|s(t,aTx)− s(t,aRx)|2 dt (16)

For an error location arbirarily choosen asae, the error event
consists in transmitting the symbol sequenceaTx and receiving
the symbol sequenceaRx, defined both as

aTx = (..., ae−1, ae, ae+1) ,

aRx = (..., ae−1, āe, ae+1) .
(17)

The phases of SSB-PSK modulated signals relative to both
aTx andaRx information sequences diverges at positione end
converges again due to the2π phase increment. Consequently,
the minimum euclidian distancedmin is then relative to a
single-symbol error event. The probability of bit error is then
bounded as

Pb ≤
1

2
Q

(

√

d2min
Eb

N0

)

, (18)

TABLE I
SPECTRAL OCCUPATION

SSB-PSK

L ∞ 12 4 2
µ 1 1.04 1.13 1.29
Bw 1 1.08 1.26 1.53



whereQ(x) = 1√
2π

∫∞
x

e−u2/2du. This performance bound
is achieved for the maximum likelihood sequence estimation
(MLSE). AssumingN transmitted symbols, the MLSE rule
for the estimation ofa = (a1, a1, ..., aN ) is given by

(â1, â1, ..., âN ) = argmax
a∈{0,1}N

∣

∣

∣

∣

∣

∫ NTs/2

−NTs/2

y(t)s∗(t,a)dt

∣

∣

∣

∣

∣

2

. (19)

The proposed demodulator scheme is a sub-optimal demodula-
tor, since it is based on symbol-by-symbol detection and does
not taking into account the memory of the modulated signal.
Therefore, a great attention will be addressed to design the
optimal demodulation scheme of this new modulation in the
future works.

VI. CONCLUSIONS

We proposed in this paper an original binary CPM scheme
directly inspired from quantum physics. We explored its sin-
gular property of single-side band spectrum, by comparing its
PSD with the one obtained from a conventional GMSK scheme
widely used in transmission contexts that can be targeted
by this new proposal. Moreover, we developped a simple
demodulator. Being a partial response, the demodulator per-
formance has been investigated for several pulse length values
in order to evaluate its potentiel. Furthermore, since the phase
increment is equal to2π, neither the use of Viterbi decoder
to perform MLSE detector nor pulse amplitude modulation
(PAM) decomposition is straightforward. Therefore, future
works will pay more attention to find the optimal demodulator
scheme.
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