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Joint Tumor Segmentation in PET-CT Images using
Co-Clustering and Fusion based on Belief Functions

Chunfeng Lian, Su Ruan∗, Thierry Denœux, Hua Li, and Pierre Vera

Abstract—Precise delineation of target tumor is a key factor
to ensure the effectiveness of radiation therapy. While hybrid
positron emission tomography-computed tomography (PET-CT)
has become a standard imaging tool in the practice of radiation
oncology, many existing automatic/semi-automatic methods still
perform tumor segmentation on mono-modal images. In this
paper, a co-clustering algorithm is proposed to concurrently
segment 3-D tumors in PET-CT images, considering that the two
complementary imaging modalities can combine functional and
anatomical information to improve segmentation performance.
The theory of belief functions is adopted in the proposed method
to model, fuse, and reason with uncertain and imprecise knowl-
edge from noisy and blurry PET-CT images. To ensure reliable
segmentation for each modality, the distance metric for the
quantification of clustering distortions and spatial smoothness is
iteratively adapted during the clustering procedure. On the other
hand, to encourage consistent segmentation between different
modalities, a specific context term is proposed in the clustering
objective function. Moreover, during the iterative optimization
process, clustering results for the two distinct modalities are
further adjusted via a belief-functions-based information fusion
strategy. The proposed method has been evaluated on a dataset
consisting of twenty-one paired PET-CT images for non-small
cell lung cancer (NSCLC) patients. The quantitative and quali-
tative evaluations show that our proposed method performs well
compared with the state-of-the-art methods.

Index Terms—Tumor Co-Segmentation, Co-Clustering, Con-
text Information, Information Fusion, Adaptive Distance Metric,
Spatial Regularization, Belief Functions, PET-CT.

I. INTRODUCTION

PRECISE segmentation of target tumor is indispensable
in the practical process of radiation therapy. It assists in

maximizing dose delivery in tumor tissues while minimizing
side effects in organs at risk (OARs). Also, it is the basis
for developing robust radiomic approaches for the prediction
of therapy outcomes [1]–[3]. Positron emission tomography
(PET), with the radio-tracer fluoro-2-deoxy-D-glucose (FDG),
is a functional imaging modality that can non-invasively mon-
itor metabolic activities of tumor cells. Target tumor usually
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Fig. 1. A tumor shown in integrated PET-CT images: (a) FDG-PET image in
the axial plane and (b) the corresponding CT. The yellow dotted box indicates
the volume of interest (VOI).

demonstrates high standardized uptake values (SUVs) in FDG-
PET images, which facilitates its differentiation from adjacent
OARs (e.g. Fig. 1(a)). However, due to imprecise acquisition
system and limited spatial resolution, positive tissues in PET
images are blurry and noisy, which make it a challenging work
for clinicians to precisely delineate tumors using solely PET
images. Compared with PET, computed tomography (CT) is
poor in contrast for the discrimination between tumor tissues
and OARs, but it have relatively high spatial resolution, and
can provide detailed anatomical information as well (e.g.
Fig. 1(b)). In addition, the calculation of radiation dose de-
pends on knowledge from CT images. The development of
hybrid PET-CT scanner effectively combines the complemen-
tary information from the two distinct imaging modalities.
While PET-CT has become a standard imaging technique in
radiation oncology, many existing automatic/semi-automatic
methods still delineate tumor volumes in mono-modal images.

Diverse mono-modal methods for automatic/semi-automatic
segmentation of target tumor in PET images have been pro-
posed [4], [5], which include thresholding methods [6], [7],
region growing methods [8], [9], methods based on level
set/active contours [10], [11], graph-based methods [12]–[14],
gradient-based methods [15], [16], statistical methods [17]–
[19], supervised learning methods [20], [21], and clustering
methods [22]–[26]. Deep convolutional neural networks (CN-
N) [27] have also been applied to segmenting PET tumors [28].
It is worth noting that clustering methods have shown compet-
itive performance in tumor delineation, especially considering
that tumor tissues of different patients usually present het-
erogenous uptakes and irregular contours [4]. For example,
an improved FCM (i.e., FCM-SW) method was proposed
in [23] for the segmentation of heterogeneous PET tumors.
A generalized FCM (i.e., SPEQTACLE) method was proposed
in [25], where the fuzzy distributions of PET images were tak-
en into account during tumor delineation. A spatial evidential
clustering (i.e., SECM) method was proposed in [24] for the
segmentation of lung tumors in multi-tracer PET images. More
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recently, a novel evidential clustering method (i.e., ECM-MS)
was proposed in our previous study [26] to delineate target
tumor using solely PET images, where the most informative
imaging features were automatically selected to reliably quan-
tify clustering distortions and spatial smoothness.

Some other methods use information from one modality to
guide the delineation of target tumor in another modality [29]–
[31]. For example, Mu et al. [31] proposed an improved level
set method to segment tumor in FDG-PET images, where
knowledge from corresponding CT images was adopted to
guide the initialization of zero level set. In [30], Wojak et al.
proposed a joint variational segmentation method, in which
PET information is regarded as a local constraint to adjust the
segmentation results in CT images. These methods attempted
to delineate a unique contour in PET and CT images, without
considering that the two distinct imaging modalities actually
demonstrate complementary while distinct characteristics of
the same target.

Up to now, most existing methods for tumor co-
segmentation in PET-CT images are graph-based [32]–[37].
In [34], by constructing a hyper graph, a random walk method
was proposed for automatic co-segmentation of multi-modal
medical images (e.g. PET-CT and PET-MRI). In [33], an
extension of [32], the co-segmentation was formulated as a
binary labeling problem of Markov random field (MRF) on a
graph consisting of two sub-graphs. The two sub-graphs cor-
respond to PET and CT images, respectively; the interaction
between them was modeled by an adaptive context energy.
A maximum flow graph cut algorithm was then adopted to
solve the formulated MRF optimization problem for consistent
co-segmentation. In [36], the random walk and graph cut
methods were effectively combined, where the random walk
was performed on PET images as a stable initialization to
improve the co-segmentation performance of the subsequent
maximum flow graph cut with a specific energy function.
In [37], a topology graph was combined with an intensity
graph to improve graph cut with topology modeling for semi-
automatic segmentation of target tumor in PET-CT images.
Although these graph-based methods are efficient and intu-
itive for the co-segmentation task, their performance may be
influenced by the quality of predefined tumor and background
seeds. In addition, they make decision only according to the
information provided by intensity values of image voxels,
while other imaging features, e.g., texture features [38]–[40],
describing the spatial context of each voxel are ignored.

Apart from these graph-based approaches, some other
methodologies, e.g., active contours [41], supervised learn-
ing [42], [43], and stochastic modeling [44], [45], have
also been applied to co-segmenting multi-modal medical
images. For example, in [42], [43], textural features were
extracted from PET-CT images to train classification models
for the identification of tumor voxels. A statistical method
based on hidden Markov tree (HMT) was proposed in [44]
for tumor co-segmentation in PET-CT images pre-processed
by wavelet/contourlet enhancement. A hidden Markov fields
(HMF) based method was proposed in [45] for joint tumor
segmentation in multi-modal medical images, where a copula-
based fusion strategy was adopted to model dependency be-

tween different modalities. One critical challenge for the appli-
cation of such statistical methods on PET-CT co-segmentation
is how to conjointly define stochastic distributions of PET
and CT voxels that could be very different. CNN-based
approaches have also shown promising performance for multi-
source medical image segmentation. For example, a multi-
scale CNN method was proposed in [46] to segment tumor
in multi-modal MRI. More recently, a multi-channel multi-
scale encoder-decoder network (i.e., M2EDN) method was
proposed in [47] to learn task-oriented fusion of multi-source
information for brain structure segmentation in MRI. These
deep learning methods are also applicable in PET-CT tumor
co-segmentation, while limited number of training samples
(i.e., PET-CT images) may potentially hamper the segmenta-
tion performance. Also, similar to [29]–[31], the above active
contour-based, statistical, and learning-based co-segmentation
methods [41]–[47] tend to yield a unique contour in both PET
and CT images, ignoring the specificity of each modality.

Effectively modeling uncertainty and imprecision inherent
in PET and PET-CT images is of great concern for accurate
segmentation of blurry and inhomogeneous targets [19]. In our
study, this critical issue is addressed via the theory of belief
functions (BFT) [48]. As a powerful tool for representing and
reasoning with partial (imprecise, uncertain) knowledge, BFT
can provide reliable ways to fuse information from different
sources, turning out to be effective for joint tumor delineation
in PET-CT images. Based on BFT, we propose a co-clustering
method to concurrently segment volumetric PET and CT
images in a unified framework. Diverse imaging features are
extracted for the comprehensive characterization of PET and
CT voxels, while without prior knowledge concerning the most
informative ones. As an extension of our previous mono-
modal method [26], a joint feature selection and distance
metric adaptation procedure is included in the proposed co-
clustering method to ensure reliable quantification of cluster-
ing distortions for both PET and CT images. In addition, a
specific spatial regularization is also included to protect local
homogeneity in each mono-modality. To encourage consisten-
cy between PET and CT, a special context term is proposed to
softly penalize conflicting segmentation in the two distinct but
also complementary modalities. During the iterative process of
clustering, results in PET and CT are further adjusted by fusing
them via the Dempster’s combination rule [48], considering
that knowledge from one modality could be regarded as
additional evidence to assist the segmentation in the other one.

The rest of this paper is organized as follows. BFT is
briefly recalled in Section II. The proposed co-segmentation
method is then introduced in Section III. In Section IV, the
proposed method is evaluated by a cohort of real-patient PET-
CT images. Some discussions and the conclusion are presented
in Section V and Section VI, respectively.

II. THEORY OF BELIEF FUNCTIONS

The theory of belief functions (BFT) is also known as the
Dempster-Shafer theory or evidence theory [48]. It has been
successfully applied in diverse fields, including image analy-
sis [49]–[52], and data classification/clustering [53]–[59], etc.
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As a formal framework for modeling, fusing, and reasoning
with partial (uncertain, imprecise) information, BFT extends
both the set-membership approaches and probability theory,
and has strong connections with other theories of uncertainty,
e.g., possibility theory and imprecise probability. BFT has two
main components, i.e., the quantification of pieces of evidence,
and the combination of quantified evidence.

A. Evidence Quantification

In the framework of belief functions, we reason under
uncertainty based on the modeling of evidence [48]. Let ω be
a variable taking values in a finite domain Ω = {ω1, · · · , ωc},
called the frame of discernment. An item of uncertain evidence
regarding the actual value of ω can be represented by a mass
function m on Ω, defined from the powerset 2Ω to the interval
[0, 1], such that ∑

A⊆Ω

m(A) = 1. (1)

Each mass m(A) denotes a degree of support attached to the
proposition “the true value of ω is in the subset A”, and to no
more specific proposition. Function m is said to be normalized
if m(∅) = 0, where the empty set denotes hypothesis beyond
the finite domain Ω. Any subset A with m(A) > 0 is called
a focal element. In particular, if all focal elements of a mass
function are singletons, it is said to be Bayesian, and is then
equivalent to a probability distribution. A mass function with
only one focal element is said to be categorical, and is then
equivalent to a set.

We can associate belief and plausibility functions to a
normalized mass function m, from 2Ω to [0, 1], which are
defined as:

Bel(A) =
∑
B⊆A

m(B); Pl(A) =
∑

B∩A6=∅

m(B), (2)

for all A ⊆ Ω. Quantity Bel(A) can be interpreted as the
degree to which the evidence supports A (also known as
credibility), while Pl(A) can be interpreted as the degree to
which the evidence is not contradictory to A. Functions Bel
and Pl are in one-to-one correspondence with mass function
m. For all A ⊆ Ω, we always have Bel(A) ≤ Pl(A),
which indicates that the belief (or probability) supporting
the proposition “ω ∈ A” is bounded by the corresponding
credibility and plausibility.

B. Evidence Combination

A key operation in BFT is that beliefs are elaborated by
fusing evidence from multiple information sources. The basic
mechanism for evidence combination is Dempster’s rule [48].
Let m1 and m2 be two mass functions derived from indepen-
dent items of evidence. They can be fused using Dempster’s
rule to form a new mass function m1⊕2 defined as

m1⊕2(A) =
1

1−Q
∑

B∩C=A

m1(B)m2(C), (3)

for all A ⊆ Ω \ ∅, where Q =
∑

B∩C=∅m1(B)m2(C). It is
worth noting that Dempster’s rule generalizes set intersection

and probabilistic conditioning, by which beliefs can be refined
after information fusion.

For example, let m1 and m2 be two independent mass
functions to help reasoning the actual value of an object.
They are defined on a frame of discernment Ω = {ω1, ω2},
which means that all possible values of the studied object are
included in Ω. Thus, large value of m1(Ω) or m2(Ω) reflects
that the corresponding piece of evidence is imprecise, since
m1(Ω) and m2(Ω) quantify the degree of support attached
to the hypothesis “the actual value of the studied object is
in Ω”, which does not provide any more specific indications.
Assuming m1 and m2, and their combination via (3), i.e.,
m1⊕2, have the form of

A m1(A) m2(A) m1⊕2(A)
{ω1} 0.5 0.2 0.56
{ω2} 0 0.2 0.11

Ω 0.5 0.6 0.33

According to m1(Ω) = 0.5 and m2(Ω) = 0.6, we can observe
that both m1 and m2 are severly imprecise, while the fusion of
them effectively reduces the imprecision to m1⊕2(Ω) = 0.33.
In addition, we can also find that the mass function m1⊕2

after information fusion also reduces the uncertainty in both
m1 and m2, as the belief associated with the proposition “the
actual value of the object is ω1” has increased to 56%, i.e.,
m1⊕2({ω1}) = 0.56.

However, to ensure the effectiveness of Dempster’s combi-
nation rule, mass functions from distinct information sources
should not contain high conflicts (which means large Q in (3)).
To quantify the conflicts or inconsistence between different
bodies of evidence, abounding dissimilarity measurements
have been proposed, in which the metric dJ designed by
Jousselme et al. [60] is a commonly used one. For any two
mass functions m1 and m2, their dissimilarity dJ(m1,m2) is
quantified as

dJ(m1,m2) =

√
1

2
(m1 −m2)J(m1 −m2)T , (4)

where J is a positive definite matrix whose elements are
Jaccard indexes, i.e., J(A,B) = |A ∩ B|/|A ∪ B|, ∀A,B ∈
2Ω \ ∅. The quantification (4) satisfies the requirements for a
valid distance metric. In addition, it effectively accounts for
the interaction between the focal elements of Ω [60], thus
can truthfully reflect the conflicts between different pieces of
evidence.

For instance, assume that m1, m2, and m3 are three mass
functions on Ω = {ω1, ω2}, with the form of

A m1(A) m2(A) m3(A)
{ω1} 0.7 0.2 0.2
{ω2} 0 0 0.5

Ω 0.3 0.8 0.3

We can observe that m1 is in consistence with m2, as
m1({ω2}) = m2({ω2}) = 0; while, on the other hand, both
m1 and m2 contradicts with m3, since the latter piece of
evidence concentrated on ω2 with m3({ω2}) = 0.5. If we
use directly the Euclidean metric to quantify the dissimi-
larity between these three mass functions, ||m1 −m2||2 =
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||m1 −m3||2 = 0.71 is inappropriate, because it does not
reflect the actual situation. However, if (4) is applied with

J =

 1 0 0.5
0 1 0.5

0.5 0.5 1

 (5)

to calculate the dissimilarity, the results are dJ(m1,m2) =
0.35 and dJ(m1,m3) = 0.50, which effectively reflect that
m1 is more consistent with m2 than with m3.

III. METHOD

First of all, image features are extracted from a 3-D re-
gion of interest (ROI) in each mono-modality. The ROI is
a cuboid defined by users, which fully includes the target
tumor, such as the yellow dotted box shown in Fig. 1. Let
{Xpt

i }ni=1 be feature vectors in Rp for n voxels in PET, while
{Xct

i }ni=1 for the corresponding n voxels in CT. Using these
extracted features, the proposed method co-segments tumor
in the two distinct modalities via concurrently looking for
matrices Mpt = {mpt

i }ni=1 and Mct = {mct
i }ni=1, where mpt

i

and mct
i are, respectively, the mass functions for voxel i in

PET and CT. For PET (resp. CT), mpt
i (resp. mct

i ) quantifies
the mass of belief attached to all possible propositions with
respect to its cluster. We assume that all the voxels belong
either to the background (i.e. hypothesis ω1) or to the positive
tissue (i.e. hypothesis ω2), without existence of outliers. Thus,
the whole frame of clusters is set as Ω = {ω1, ω2}. The
mass function for each voxel, both in PET and CT, obeys
mi({ω1}) +mi({ω2}) +mi(Ω) ≡ 1. As mi(Ω) measures the
ambiguity regarding the clusters ω1 and ω2, blurring boundary
and severe heterogeneous regions will have large mass on Ω.
Finally, the crisp segmentation is obtained by making decisions
based on Mpt and Mct.

As a co-clustering algorithm, the proposed method searches
for a pair of Mpt and Mct via minimizing a global cost
function, which is constructed by independent costs in each
modality, and context cost deduced by inconsistent segmenta-
tion between the two distinct but complementary modalities.

A. Cost for Segmentation in Mono-Modality

The cost for each mono-modality is an extension of a
classical evidential clustering algorithm [53], with a form
similar to that in our previous mono-modal method [26]. The
novelty is that a specific spatial regularization and distance
metric adaptation procedure are integrated for clustering image
voxels. Without loss of generality, the following discussion
taking the cost for PET, i.e., Jmono(Mpt), as an example:

Let cluster ω1 (resp. ω2) be represented by a center V pt
1

(resp. V pt
2 ) in Rp. For each nonempty subset Aj ⊆ Ω \ ∅, we

assume that its prototype V̄ pt
j is defined as the barycenter of

the centers associated to the singletons composing Aj , i.e.,

V̄ pt
j =

1

cj

2∑
k=1

skjV
pt
k , (6)

where skj is binary, and it equals 1 if and only if ωk ∈ Aj ;
while cj = |Aj | denotes the cardinality of Aj . To learn Mpt

in an unsupervised way, Jmono(Mpt) is then defined as

Jmono(Mpt) =

n∑
i=1

∑
Aj

c2j [mpt
i (Aj)]

2
[
d2(Xpt

i , V̄
pt
j )
]

+η

n∑
i=1

∑
t∈Φ(i)

[
d2
m(mpt

i ,m
pt
i,t)
] [
d2(Xpt

i , X
pt
i,t)
]

+λF − log
(
d2(X̄pt

ω1
, X̄pt

ω2
)
)
,

(7)

which consists of four terms:
1) Term 1: Similar to the original ECM, the first term of

(7) denotes the restriction between clustering distortions and
mass functions.

2) Term 2: The second term of (7) is a spatial regularization
defined in the framework of belief functions for enhancing
local homogeneity of neighboring voxels. According to the
spatial prior of a PET volume, matrix Mpt = {mpt

i }ni=1 that
we want to learn can be regarded as a specific random field,
where each mass function mpt

i is a random vector in R3,
and its distribution depends on the mass functions of adjacent
voxels. Let Φ = {Φ(i)}ni=1 be a 3-D neighborhood system,
where Φ(i) = {1, . . . , T} is the set of the T neighbors for
voxel i. The corresponding mass functions of voxels in Φ(i)
are {mpt

i,1, . . . ,m
pt
i,T }, while the feature vectors of these voxels

are {Xpt
i,1, . . . , X

pt
i,T }. Then, based on the above assumption

about Mpt,
∑

t∈Φ(i)

[
d2
m(mpt

i ,m
pt
i,t)
] [
d2(Xpt

i , X
pt
i,t)
]

of (7)
quantifies the smoothness around voxel i, where d2(Xpt

i , X
pt
i,t)

denotes the distance between voxel i and its neighbor t in
the feature space; while, d2

m(mpt
i ,m

pt
i,t) measures the indepen-

dence between mpt
i and mpt

i,t, i.e., the inconsistency between
the mass functions of voxel i and its neighbor t. Based on (4),
we set d2

m(mpt
i ,m

pt
i,t) = (mpt

i −m
pt
i,t)J(mpt

i −m
pt
i,t)

T , where
matrix J is defined by (5).

3) Term 3: To describe image voxels, we include textural
features as complementary information for voxel intensities.
The challenge to this end is that a large amount of textural fea-
tures can be extracted, but without prior knowledge concerning
the most informative features. In addition, the quantified high-
dimensional feature vectors may contain unreliable variables
due to noise and limited resolution of PET images. To tackle
this challenge, distance metric adaptation and/or feature selec-
tion (e.g., [61]) are desirable.

In our previous work [62], a supervised method has been
proposed to learn a low-rank dissimilarity metric for improv-
ing the performance of distance-based classifiers on high-
dimensional datasets containing unreliable and imprecise fea-
tures. Distinct from this previous work, here our goal is to
adapt distance metric for given data in an unsupervised learn-
ing protocol, so as to improve the performance of clustering
algorithms. Therefore, we look for a matrix Dpt ∈ Rp×q

during clustering, under the constraint q � p, by which the
dissimilarity between any two feature vectors, say Xpt

1 and
Xpt

2 , can be quantified as

d2(Xpt
1 , X

pt
2 ) = (Xpt

1 −X
pt
2 )Dpt(Dpt)T (Xpt

1 −X
pt
2 )T . (8)

A desired matrix Dpt transforms the original feature space
to a low-dimensional subspace, where discriminant input fea-



5

tures play a more significant role than uninformative ones
in calculating the dissimilarity. To find such a Dpt, the
distortion between any Xpt

i and cluster centroid V̄ pt
j , i.e.,

d2(Xpt
i , V̄

pt
j ) in the first term of (7), is represented by (8).

Moreover, the spatial regularization is also used to adapt the
distance metric, where d2(Xpt

i , X
pt
i,t) is also quantified by (8).

During the iterative minimization of (7), a large dissimilarity
d2
m(mpt

i ,m
pt
i,t) between mpt

i and mpt
i,t will indicate that Dpt

obtained as current step is unfit. Then, it should be adjusted
at the next step to reduce the dissimilarity between Xpt

i and
Xpt

i,t, so as to bring adjacent voxels closer.
To ensure the effectiveness of metric updating, the third term

of (7) is defined as the sparsity regularization ||Dpt||2,1 of ma-

trix Dpt, i.e., F =
∑p

i=1

√∑q
j=1(Dpt

i,j)
2. It aims at selecting

the most reliable input features to calculate distance d2(·, ·) in
the feature space (which exists in the other three terms). By
forcing rows of Dpt to be zero, the proposed method only
selects reliable features for clustering, while the influence of
unreliable features is controlled. Scalar λ is a tuning parameter
that controls the influence of this regularization.

4) Term 4: The last term of (7) is used to prevent the cost
function being trivially solved with Dpt = 0, which collapses
all the features vectors into a single point. Vectors X̄pt

ω1
and

X̄pt
ω2

are two seeds for the positive tissue and the background,
respectively, which can be predetermined automatically. We
empirically set a constant parameter (i.e., = 1) for this term,
mainly considering it serves to prevent Dpt = 0, in which
case the penalty will be activated and the corresponding loss
will get close to infinity. In addition, we experimentally found
that this term is insensitive to changing parameters.

B. Cost for Inconsistency between PET and CT

The proposed method encourages consistent segmentations
for PET and CT images, while not force them to be identical,
as the information provided by the two distinct modalities
may be partially contradicts with each other. These partial
conflicts are possibly caused by multiple reasons, e.g., the low-
contrast property of CT, the blurring nature of PET, and the
impropriate correspondence between PET and CT voxels that
are brought by the uncertainties in registration of these two
distinct modalities.

According to the above assumption, the disagreement be-
tween PET and CT segmentations can be softly modeled by
the dissimilarity between Mpt = {mpt

i }ni=1 and Mct =
{mct

i }ni=1. Thus, based on the metric introduced in (4), the
context penalty, i.e., Jjoint(Mpt,Mct), is defined as

Jjoint(Mpt,Mct) =

n∑
i=1

(mpt
i −m

ct
i )J(mpt

i −m
ct
i )T , (9)

where mpt
i and mct

i are the mass functions of two
corresponding voxels in PET and CT images, respectively;
while, J is the matrix introduced in (5).

To sum up, according to the discussions in Section III-A
and Section III-B, the proposed co-clustering method looks
for a pair of Mpt = {mpt

i }ni=1 and Mct = {mct
i }ni=1 via

Algorithm 1: Iterative minimization of the cost

Input feature vectors {Xpt
i }ni=1 and {Xct

i }ni=1; spatial
neighborhood Φ(i) of each voxel i; tuning parameters η,
λ, and γ; initial Mpt

(0), Mct
(0), Vpt

(0), Vct
(0),

Dpt
(0), and Dct

(0); tumor and background seeds ;
for l = 1, 2, . . . , lmax do

Step 1. Optimization in PET:
• E-step: calculate Mpt

(l) using the efficient
interior-point algorithm [63] with (12),
Mct

(l−1), Mpt
(l−1), Vpt

(l−1), and Dpt
(l−1) ;

• M-step I: calculate Vpt
(l) using (14) and Mpt

(l) ;
• M-step II: calculate Dpt

(l) via the Beck-Teboulle
proximal gradient algorithm [64] with (15),
Mpt

(l), Vpt
(l), and Dpt

(l−1) ;
Step 2. Optimization in CT:
• E-step: calculate Mct

(l) using the efficient
interior-point algorithm [63] with (12),
Mpt

(l), Mct
(l−1), Vct

(l−1), and Dct
(l−1) ;

• M-step I: calculate Vct
(l) using (14) and Mct

(l) ;
• M-step II: calculate Dct

(l) via the Beck-Teboulle
proximal gradient algorithm [64] with (15),
Mct

(l), Vct
(l), and Dct

(l−1) ;
Step 3. Adjust Mpt

(l) by fusion with Mct
(l) via (3),

with more information presented in Section III-C4;
if no significant change of (10) then

break;
end

end
Output a desired pair of Mpt

∗ and Mct
∗ ;

minimizing a global cost function:

J (Mpt,Mct) =Jmono(Mpt) + Jmono(Mct)

+ γJjoint(Mpt,Mct),
(10)

subject to the constraints mpt
ij ≥ 0, mct

ij ≥ 0, and∑
Aj

mpt
ij = 1, and

∑
Aj

mct
ij = 1, (11)

for all i = 1, . . . , n, and Aj ⊆ Ω \ ∅. In (10), Jmono(Mpt)
and Jmono(Mct) denote, respectively, the cost in PET and CT
that quantified by (7); while, Jjoint(Mpt,Mct) is the context
term (9) to quantify the inconsistence between segmentation
in PET and CT; parameter γ controls the influence of this
inconsistence.

C. Iterative Minimization of the Cost

To find the best pair of Mpt and Mct, we propose to
minimize the global cost function (10) in an iterative scheme.
The optimization procedure is summarized in Algorithm 1,
which can be detailed as follows.

1) Initialization: We initialize the mass functions (i.e. Mpt

and Mct) and the singleton cluster centers (i.e. Vpt and Vct)
for both PET and CT via the original ECM algorithm. Based
on the initial mass functions that obtained in PET, a very
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limited number of tumor and background seeds are predefined.
After that, the two feature vectors, i.e., X̄pt

ω1
(resp. X̄ct

ω1
) and

X̄pt
ω2

(resp. X̄ct
ω2

), used in the last term of (7) are calculat-
ed as the barycenters of the tumor and background seeds,
respectively. The output dimension, namely the number of
columns in feature transformation matrix Dpt (resp. Dct), is
then determined by applying principle component analysis on
all the feature vectors {Xpt

i }ni=1 (resp. {Xct
i }ni=1). The initial

Dpt (resp. Dct) is constructed by the top 95% eigenvectors.
The optimization procedure alternates between three parts:

the clustering in PET, the clustering in CT, and the fusion of
Mpt and Mct at current step. For the clustering in each mono-
modality, the optimization iterates between cluster assignment
(i.e. Mpt or Mct estimation) in the E-step, and both prototype
determination (i.e. Vpt or Vct estimation) and distance metric
adaptation (i.e. Dpt or Dct estimation) in the M-step.

2) Optimization in PET: This procedure only relates to the
minimization of the first term and the last term of (10), which
is performed in an EM-like protocol.

a) E-Step: Given Vpt, Dpt, and Mct, the minimization
of (10) turns to be a quadratic problem with respect to Mpt =
{mpt

i }ni=1. The derivative of (10) concerning the mass function
mpt

i (∈ R3), ∀i = 1, . . . , n, can be written as

∂J
∂mpt

i

=2mpt
i B + 2η

∑
t∈Φ(i)

[
d2(Xpt

i , X
pt
i,t)
]

(mpt
i −m

pt
i,t)J

+ 2γ(mpt
i −m

ct
i )J,

(12)

where the matrix J is defined by (5), d2(Xpt
i , X

pt
i,t) is mea-

sured by (8), mct
i is the mass function for the corresponding

ith voxel in CT, and

B =

 c21d2(Xpt
i , V̄

pt
1 ) 0 0

0 c22d
2(Xpt

i , V̄
pt
2 ) 0

0 0 c23d
2(Xpt

i , V̄
pt
3 )

 ,

(13)
where V̄ pt

j is determined by (6), ∀Aj ∈ {{ω1}, {ω2},Ω}, and
d2(Xpt

i , V̄
pt
j ) is calculated by (8). Based on the derivation

(12), and using Mpt and Mct obtained by the last step as ini-
tializations, an efficient interior-point algorithm with a limited-
memory BFGS approximation of the Hessian matrix [63] is
adopted to solve the quadratic problem, so as to obtain a
desired matrix Mpt at current step.

b) M-step I: Updating matrix Vpt of clustering centers
is only influenced by the first term of (10). Let fj =∑n

i=1 c
2
j (mpt

ij )2 and gj =
∑n

i=1 c
2
j (mpt

ij )2Xpt
i , ∀Aj ∈

{{ω1}, {ω2},Ω}. According to (6), the centers of clusters ω1

and ω2 are calculated, respectively and directly, as{
V pt

1 = 2f2(2g1+g3)+f3(g1−g2)
4f1f2+f3(f1+f2) ;

V pt
2 = 2f1(2g2+g3)+f3(g2−g1)

4f1f2+f3(f1+f2) .
(14)

c) M-step II: Similar to M-step I, the optimization of
Dpt relates to the first term of (10), i.e., Jms

ecm(Mpt) quanti-
fied by (7). The objective function (7) is only partly differen-
tiable as a function of Dpt, where the sparsity regularization
||Dpt||2,1 has a singularity at Dpt = 0. The derivative of the

differentiable part of (7) concerning Dpt can be written as

∂(·)
∂Dpt

= 2

n∑
i=1

∑
Aj

c2j [mpt
i (Aj)]

2(Xpt
i − V̄

pt
j )T (Xpt

i − V̄
pt
j )Dpt

+2η

n∑
i=1

Φ(i)∑
t

[
d2
m(mpt

i ,m
pt
i,t)
]

(Xpt
i −X

pt
i,t)

T (Xpt
i −X

pt
i,t)D

pt

−
2(X̄pt

ω1
− X̄pt

ω2
)T (X̄pt

ω1
− X̄pt

ω2
)Dpt

(X̄pt
ω1 − X̄

pt
ω2)Dpt(Dpt)T (X̄pt

ω1 − X̄
pt
ω2)T

,

(15)

based on which the Beck-Teboulle proximal gradient algorith-
m [64] is adopted to search for a qualified Dpt at current step,
using Dpt obtained at the last iteration as the initialization.

3) Optimization in CT: The adaptation of Mct, Vct, and
Dct, which relates to the last two terms of (10), is following
the same way as that for Mpt, Vpt, and Dpt discussed
above. To update Mct at current step, Mpt obtained by
Section III-C2 is utilized in (12).

4) Fusion of PET and CT: It is worth noting that Mpt

and Mct obtained in Section III-C2 and III-C3 are in fact
two independent pieces of evidence regarding the same tar-
get tumor. They are complementary, as PET and CT can
provide, respectively, functional and anatomical information.
In addition, they are also consistent due to the soft context
term defined by (9). Therefore, in this step, Mpt is further
updated by fusing it with Mct via the Dempster’s rule (i.e.
(3)). The updated Mpt is then used as the initialization for
the optimization (i.e. Section III-C2) in the next iteration.

The whole optimization procedure will not terminate the
alternation between the steps described in Section III-C2,
III-C3, and III-C4, until the value of (10) has no significant
change between two consecutive iterations.

D. Decision Making
Mass functions obtained by Algorithm 1 can be further

refined. Without loss of generality, for an arbitrary voxel i,
we assume that {mi,1, . . . ,mi,T } are mass functions obtained
by the clustering algorithm that correspond to voxels in its
neighborhood Φ(i), i.e., adjacent voxels surrounding i. These
mass functions can be regarded as T independent pieces
of evidence to help reasoning the actual cluster of i. The
reliability of evidence mi,t to voxel i, ∀t ∈ {1, . . . , T}, is
inversely proportional to the spatial distance between voxel i
and t. Let this spatial distance be s2

it, and based on Dempster’s
discounting procedure [48], mi,t can be weighted by a coef-
ficient µt = exp(−s2

it) to obtain a discounted mass function:{
wmi,t({ωj}) = µtmi,t({ωj}), ∀j = 1, 2,

wmi,t(Ω) = 1−
∑2

j=1 wmi,t({ωj}).
(16)

Then, using the Dempster’s rule of combination (3), all the T
discounted mass functions are fused with the mass function
mi to output a renewed mass function mi. This procedure
is applied to both PET and CT. It can also be regarded as a
BFT-based filtering operation in a small cubic window.

Finally, based on refined mass functions, crisp clustering
of PET and CT voxels is performed via maximizing the
plausibility values calculated by (2).
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IV. MATERIALS AND EXPERIMENTS

In this section, our proposed co-clustering algorithm was
evaluated on 21 volumetric FDG-PET/CT images acquired
for non-small cell lung cancer (NSCLC) patients. First, our
proposed co-clustering method was compared with its mono-
modal variant (i.e., ECM-MS [26]). Then, it was further
compared with other sate-of-the-art segmentation methods,
including four mono-modal methods, i.e., 3D-LARW [12],
FCM-SW [23], SECM [24], and ECM [53], and two co-
segmentation methods, i.e., HMT [44] and M2EDN [47].

A. Material and Features

Totally 21 FDG-PET-CT images of NSCLC patients were
studied, which were acquired on a Biograph LSO Sensation 16
(Siemens Medical Solutions, Hoffman Estates, Knoxville, TN,
USA). The PET images were smoothed with a Gaussian filter
(full width at half maximum = 5 mm) after reconstruction.
They had the same anisotropic resolution of 4.06 × 4.06 × 2
mm3, and the size of the axial PET slices was 168 × 168.
The spatial resolution of the corresponding CT images was
0.98 × 0.98 × 3 mm3, and the size of the axial CT slices
was 512 × 512. The tumor lesions were manually delineated
by experienced clinicians in PET by the guidance of the
corresponding CT. These tumor lesions were mostly located in
or near the mediastinum, and some of them were located in the
apex, without significant respiratory displacements at visual
inspection of the gated images. Generally, these tumor lesions
demonstrated heterogenous FDG uptake, and had various sizes
ranging from 1.9 mL to 135.8 mL.

Considering that the image resolution is anisotropic, in
our experiments, a 3 × 3 window in 2-D was defined to
extract features both in PET and CT images; moreover, for
simplicity, the same kinds of features were extracted in both
of them. Using the predefined box, the average intensity value,
the maximum intensity, the minimum intensity, the range of
intensity value (i.e., maximum−minimum), and the standard
deviation of intenstiy were calculated as features for the center-
ing voxel. The gray level size zone matrix (GLSZM) [40] was
adopted to extract seven texture features, as its effectiveness in
medical image characterization has already been evaluated [1].
Similarly, the gray-level co-occurrence matrix (GLCM) [38]
was also utilized to extract fifteen features. To sum up, for
each PET and CT voxel, a 28-dimensional feature vector was
extracted, consisting of 6 intensity-based, 7 GLSZM-based,
and 15 GLCM-based features.

In consideration of computational costs, after extracting
features in PET and CT independently, data in CT were down-
sampled to PET. Each voxel (and its feature vector) in CT
corresponds to one voxel in PET.

B. Evaluation Criteria

The manual delineation by experienced clinicians was per-
formed on PET images by the guidance of the corresponding
CT images. Regarding the manual delineation as the reference,
all the segmentation methods were comprehensively evaluated
by five criteria, including Dice coefficient (DSC), sensitivity
(SEN), positive predictive value (PPV), Hausdorff distance

Fig. 2. A co-segmentation example shown in the axial plane, where contours
delineated in PET (green) and CT (magenta) are compared to the ground truth
(blue) in the first and the second column, respectively; in the last column, all
the contours are overlaid in the fused images.

Fig. 3. Tumor volumes segmentated in PET (first column) and CT (second
column), where, as compared to the ground truth, where, the green region
consists of the true positive and true negative voxels, the magenta region
consists of the false positive voxels, while the orange region consists of the
false negative voxels.

(HD), and mean absolute surface distance (MSD). Let TP, FP,
TN, and FN denote the true positive, false positive, true nega-
tive, and false negative segmentation, respectively. We define
DSC = 2TP/ (2TP + FP + FN), SEN = TP/ (TP + FN), and
PPV = TP/ (TP + FP). The HD metric quantifies the maxi-
mum distance between the boundary points of two different
segmentations. Complementarily, the MSD metric measures
the average difference between two segmentation surfaces.

C. Parameter Setting

The three tuning parameters utilized in the proposed
method, i.e., η, λ, and γ, control, respectively, the influence
of the spatial regularization, the influence of the sparsity
regularization, and the consistence of the segmentation in PET
and CT. In our experiments, λ and γ were empirically set to 8
and 0.001, respectively; while, to maximize the segmentation
performance, the influence of the spatial penalty should be
determined by taking into account the size of tumors. More
specifically, η was empirically set to 0.003 and 0.2 for large
and small tumors, respectively. To this end, we first roughly
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PET only CT only PET co-segment CT co-segment 

Fig. 4. Comparing mono-modal segmentation to co-segmentation in PET. The
two rows correspond to two different examples. The green and blue contours
denote, respectively, the automatic segmentation and the reference.

TABLE I
QUANTITATIVE SEGMENTATION RESULTS (MEAN±STANDARD DEVIATION)

OBTAINED BY THE PROPOSED METHOD BASED ON CO-SEGMENTATION
AND MONO-MODAL SEGMENTATION, RESPECTIVELY.
PET only Co-segment PET CT only Co-segment CT

DSC 0.86± 0.05 0.87± 0.04 0.29± 0.17 0.86± 0.04
SEN 0.84± 0.08 0.86± 0.06 0.73± 0.29 0.86± 0.06
PPV 0.88± 0.08 0.88± 0.06 0.20± 0.14 0.86± 0.06
HD 2.60± 1.34 2.42± 1.03 11.47± 2.20 2.51± 1.47

MSD 0.22± 0.10 0.19± 0.08 3.63± 1.14 0.22± 0.12

pre-estimated the size of the to-be-segmented tumor based on
the initialization by the original ECM. Then, we empirically
regarded tumors with the rough volume less than 40 mL as
relatively small ones. The influence of these parameters will
be further analyzed in the discussion part (i.e. Section V).

D. Results

1) Illustrative results of co-segmentation: An example to
illustrate the co-segmentation performance of the proposed
method is shown in Fig. 2, where each row represents a
different slice in the axial plane of the same tumor. In the
first and second column, contours delineated in PET (green)
and CT (magenta), are compared respectively to the ground
truth (blue); while, in the last column, all of them are overlaid
in the fused images. As can be seen, segmentation in PET
is in consistent with that in CT, while they are not identical.
The 3-D tumor volumes in PET and CT are further shown in
Fig. 3, where the green, magenta, and orange regions represent,
respectively, true positive voxels, false positive voxels, and
false negative voxels, as compared to the ground truth.

2) Co-segmentation vs. mono-modal segmentation: To
demonstrate the effectiveness of the proposed co-segmentation
method, its performance was compared with that of mono-
modal segmentation in PET and CT. In our experiments,
mono-modal segmentation was performed by ECM-MS [26],
i.e., by setting γ in (10) to zero, and removing simultaneously
the fusion procedure described in Section III-C4.

Two illustrative results are shown in Fig. 4, from which we
can find that co-segmentation outperformed independent seg-
mentation in PET and CT in both two cases. Correspondingly,
the quantitative results on the 21 subjects are summarized in
Table I, from which we can find that co-segmentation led to
the best performance in terms of all the five metrics, compared
to independent segmentation produced by our previous mono-
modal method (i.e., ECM-MS [26]). More specifically, it

is worth noting that our previous ECM-MS obtained good
segmentation performance in segmenting PET images, which
thanks to two main reasons: 1) PET images are high in
contrast; 2) blur and heterogeneity inherent in them were
effectively handled in the framework of belief functions, with
the help of the proposed spatial regularization and distance
metric adaptation procedure. The extension of ECM-MS, i.e.,
the proposed co-clustering algorithm, further improved the
segmentation in PET images, as anatomical information from
CT images was included as the complementary knowledge
for more accurate tumor delineation. On the other hand, the
segmentation in CT images was greatly improved by the co-
segmentation strategy. It is mainly because the boundary be-
tween target and background is invisible in CT images, which
was effectively tackled by co-segmentation via incorporating
functional information from PET images.

3) Comparison with the state-of-the-art methods: In this
group of experiments, our proposed co-clustering method was
compared with four mono-modal methods: 1) 3D-LARW [12],
2) the original ECM [53], 3) SECM [24], and 4) FCM-
SW [23]. In addition, it was also compared with two co-
segmentation methods: 5) a statistical method using hid-
den Markov tree model (denoted as HMT) [44], and 6)
M2EDN [47], a CNN-based method implemented via using
PET and CT as multi-channel inputs. For the supervised
M2EDN method, the segmentation results were quantified
by 10-fold cross validation. To train a reliable network in
each iteration, the training data was augmented on-the-fly via
random rotations and small distortions.

The quantitative results of all competing methods are sum-
marized in Table II, from which we can have at least two
observations. First, the co-segmentation methods (i.e., HMT,
M2EDN, and our proposed method) yield overall better perfor-
mance than the mono-modal methods (i.e., 3D-LARW, ECM,
SECM, and FCM-SW), which demonstrates that the combi-
nation of anatomical CT information and functional PET in-
formation is beneficial for more accurate tumor segmentation.
Second, our proposed co-clustering method outperforms the
other two co-segmentation methods (i.e., HMT and M2EDN).
This is mainly due to: 1) Capitalizing on the specific context
term (i.e., (9)) and fusion strategy defined in the framework
of BFT, our proposed method provides an effective way to
improve the delineation of target tumor. 2) The performance
of HMT and M2EDN may be hampered, respectively, by the
difficulty in conjointly defining the distributions of PET and
CT voxels, and the limited number of training samples for the
construction of a deep neural network.

To be more comprehensive, the visual examples obtained
by all competing methods are also presented in Fig. 5 for
comparison. The first column of Fig. 5 presents the axial
slices of four different tumors, where the first row is a slice
corresponds to a large tumor, the second row represents a
relatively small tumor, the third row represents a smaller
tumor, and the last row represents a heterogenous tumor. The
second column to the last column of Fig. 5 compare the
contours delineated by different methods (green line) with
those delineated by clinicians (blue line). We can observe
that the contours delineated by the proposed method (the last
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ECM SECM 3D-LARW FCM-SW Our method Original images HMT M2EDN 

Fig. 5. Contours delineated by different methods (from the second column to the last column) for four different tumor volumes shown in the axial plane.
The first column represents the input images. The contours delineated by the automatic/semi-automatic methods (green lines) are compared with those by
clinicians (blue lines) in the following columns.

TABLE II
QUANTITATIVE RESULTS OBTAINED BY DIFFERENT SEGMENTATION METHODS ON ALL THE 21 SETS OF PET-CT IMAGES. THE DSC, SEN, PPV, HD (IN

VOXEL), AND MSD (IN VOXEL) ARE PRESENTED AS MEAN±STANDARD DEVIATION.

3D-LARW ECM SECM FCM-SW HMT M2EDN Our method
DSC 0.80± 0.08 0.72± 0.14 0.77± 0.13 0.83± 0.09 0.84± 0.04 0.84± 0.07 0.87± 0.04
SEN 0.76± 0.15 0.92± 0.07 0.84± 0.15 0.83± 0.11 0.83± 0.11 0.88± 0.11 0.86± 0.06
PPV 0.88± 0.09 0.63± 0.21 0.78± 0.23 0.88± 0.15 0.87± 0.11 0.83± 0.14 0.88± 0.06
HD 5.48± 5.48 5.96± 4.76 4.99± 3.78 3.98± 3.42 2.78± 1.00 3.58± 2.65 2.42± 1.03

MSD 0.55± 0.53 0.71± 0.69 0.54± 0.35 0.36± 0.29 0.26± 0.07 0.33± 0.19 0.19± 0.08

column) are more consistent with the reference contours.
Furthermore, it is worth mentioning that the segmentation

results presented in this paper are also comparable to previous
PET-CT co-segmentation studies. For example, our method
yields DSC = 0.87 ± 0.04, which is comparable to Song
et al. [33] (DSC = 0.81 ± 0.08), Ju et al. [36] (DSC =
0.84± 0.06), Cui et al. [37] (DSC = 0.87± 0.04), and Salah
et al. [44] (DSC = 0.89 ± 0.13). It potentially implies that
our proposed co-clustering method is a competitive alternative
compared with existing co-segmentation methods.

V. DISCUSSION

1) Effectiveness of textural features: Our proposed method
adopts textural features in addition to intensity-based features
for the characterization of image voxels, and then in an unsu-
pervised way, informative features are automatically selected
to further determine a discriminant feature transformation
for the co-clustering of PET and CT voxels. To evaluate
its effectiveness, we alternatively removed textural features
extracted based on GLSZM and GLCM, and compared the
corresponding segmentation results with those obtained by
using all extracted features. The quantitative comparison in
terms of DSC, SEN, and PPV is shown in Fig. 6. We
can observe that including textural features could effectively
improve the performance of our method, e.g., DSC and PPV

DSC SEN PPV 

0.65 

0.75 

0.85 

0.95 

Without textures 

With textures 

Fig. 6. The quantitative segmentation results (in terms of DSC, SEN, and
PPV) obtained by our proposed method with and without using textural
features, respectively.

were increased, respectively, from 0.83± 0.06 to 0.87± 0.04
and 0.83± 0.15 to 0.88± 0.06 in this group of experiments.

2) Effectiveness of information fusion based on Dempster’s
rule: To further refine the clustering results, the Dempster’s
combination rule (3) was adopted in our method for the
fusion of complementary knowledge from PET and CT images
(i.e. Section III-C4), as well as the fusion of information
from neighboring voxels (i.e. Section III-D). To evaluate the
effectiveness of such fusion strategy, we excluded it from the
proposed method. The corresponding segmentation results are
then summarized in Table III, from which we can find that the
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TABLE III
SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD, DSC AND
HD (IN VOXEL), WITH/WITHOUT THE FUSION PROCEDURE BASED ON

DEMPSTER’S RULE.
without fusion with fusion

DSC 0.86± 0.04 0.87± 0.04
HD 2.62± 1.30 2.42± 1.03

0.003 
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0.85 

0.01 0.1 0.05 0.003 
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9 

𝜂 

𝜆 

0.65 

0.75 

0.83 

0.01 0.1 0.05 

Fig. 7. The DSC, namely the intensity value, as a function of λ and η. The
first and the second column correspond to two tumors with the size of 135.80
mL and 7.60 mL, respectively.

fusion procedure could help to refine the final segmentations.
3) Sensitivity to parameters: As an illustration, we

set γ to 0.001, and orderly chose a η and a λ from
{0.001, . . . , 0.003, 0.07, 0.01, 0.03, . . . , 0.07, 0.1, 0.2} and
{1, . . . , 10}, respectively. Then, the proposed method was
applied to segment a relatively large tumor (volume of 135.80
mL) and a relatively small tumor (volume of 7.60 mL). The
obtained DSCs are summarized in Fig. 7. We can observe that
the obtained DSCs as a function of λ is relatively stable in a
wide range. On the other hand, for the relatively large tumor,
our method had better performance with small η; while, on
the contrary, large η is better for the relatively small tumor.

VI. CONCLUSION

In this study, a novel co-clustering algorithm based on
BFT has been proposed to jointly segment tumors in PET-
CT images. Image voxels have been described not only by
intensities but also by complementary textural features. For
reliable clustering of image voxels in both PET and CT
images, a specific spatial regularization and distance metric
adaptation procedure have been included in the proposed
method. A specific context term has been proposed in the
framework of belief functions to encourage consistent seg-
mentation between the two distinct mono-modalities. To ef-
fectively combine complementary information in PET and
CT images, during the minimization of the constructed cost
function, clustering results in the two mono-modalities have
been iteratively adjusted by fusing them via the Dempster’s
combination rule. The experimental results have shown that the
proposed method performs well compared with existing mono-
modal segmentation methods and co-segmentation methods.
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E. Coche, V. Grégoire, and X. Geets, “Gradient-based delineation of
the primary GTV on FDG-PET in non-small cell lung cancer: a com-
parison with threshold-based approaches, CT and surgical specimens,”
Radiotherapy and Oncology, vol. 98, no. 1, pp. 117–125, 2011.

[17] D. W. Montgomery, A. Amira, and H. Zaidi, “Fully automated segmen-
tation of oncological PET volumes using a combined multiscale and
statistical model,” Medical Physics, vol. 34, no. 2, pp. 722–736, 2007.

[18] M. Hatt, C. C. Le Rest, A. Turzo, C. Roux, and D. Visvikis, “A
fuzzy locally adaptive bayesian segmentation approach for volume
determination in PET,” IEEE Transactions on Medical Imaging, vol. 28,
no. 6, pp. 881–893, 2009.

[19] A.-S. Dewalle-Vignion, N. Betrouni, R. Lopes, D. Huglo, S. Stute, and
M. Vermandel, “A new method for volume segmentation of PET images,
based on possibility theory,” IEEE Transactions on Medical Imaging,
vol. 30, no. 2, pp. 409–423, 2011.

[20] M. S. Sharif, M. Abbod, A. Amira, and H. Zaidi, “Artificial neu-
ral network-based system for PET volume segmentation,” Journal of
Biomedical Imaging, vol. 2010, p. 4, 2010.

[21] B. Berthon, C. Marshall, M. Evans, and E. Spezi, “ATLAAS: An
automatic decision tree-based learning algorithm for advanced image
segmentation in positron emission tomography,” Physics in Medicine &
Biology, vol. 61, no. 13, p. 4855, 2016.

[22] B. Foster, U. Bagci, Z. Xu, B. Dey, B. Luna, W. Bishai, S. Jain,
and D. J. Mollura, “Segmentation of PET images for computer-aided
functional quantification of tuberculosis in small animal models,” IEEE
Transactions on Biomedical Engineering, vol. 61, no. 3, pp. 711–724,
2014.



11

[23] S. Belhassen and H. Zaidi, “A novel fuzzy c-means algorithm for unsu-
pervised heterogeneous tumor quantification in PET,” Medical Physics,
vol. 37, no. 3, pp. 1309–1324, 2010.

[24] B. Lelandais, S. Ruan, T. Denœux, P. Vera, and I. Gardin, “Fusion of
multi-tracer PET images for dose painting,” Medical Image Analysis,
vol. 18, no. 7, pp. 1247–1259, 2014.

[25] J. Lapuyade-Lahorgue, D. Visvikis, O. Pradier, C. Cheze Le Rest,
and M. Hatt, “SPEQTACLE: An automated generalized fuzzy C-means
algorithm for tumor delineation in PET,” Medical Physics, vol. 42,
no. 10, pp. 5720–5734, 2015.

[26] C. Lian, S. Ruan, T. Denoeux, H. Li, and P. Vera, “Spatial evidential
clustering with adaptive distance metric for tumor segmentation in FDG-
PET images,” IEEE Transactions on Biomedical Engineering, vol. 65,
no. 1, pp. 21–30, 2018.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[28] M. Hatt, B. Laurent, A. Ouahabi, H. Fayad, S. Tan, L. Li, W. Lu,
V. Jaouen, C. Tauber, J. Czakon et al., “The first MICCAI challenge on
PET tumor segmentation,” Medical Image Analysis, vol. 44, pp. 177–
195, 2018.

[29] H. Gribben, P. Miller, G. G. Hanna, K. J. Carson, and A. R. Hounsell,
“MAP-MRF segmentation of lung tumours in PET/CT image,” in 2009
IEEE International Symposium on Biomedical Imaging (ISBI). IEEE,
2009, pp. 290–293.

[30] J. Wojak, E. D. Angelini, and I. Bloch, “Joint variational segmentation
of CT-PET data for tumoral lesions,” in 2010 IEEE International
Symposium on Biomedical Imaging (ISBI). IEEE, 2010, pp. 217–220.

[31] W. Mu, Z. Chen, W. Shen, F. Yang, Y. Liang, R. Dai, N. Wu, and J. Tian,
“A segmentation algorithm for quantitative analysis of heterogeneous
tumors of the cervix with 18 F-FDG PET/CT,” IEEE Transactions on
Biomedical Engineering, vol. 62, no. 10, pp. 2465–2479, 2015.

[32] D. Han, J. Bayouth, Q. Song, A. Taurani, M. Sonka, J. Buatti, and
X. Wu, “Globally optimal tumor segmentation in PET-CT images: a
graph-based co-segmentation method,” in International Conference on
Information Processing in Medical Imaging (IPMI). Springer, 2011,
pp. 245–256.

[33] Q. Song, J. Bai, D. Han, S. Bhatia, W. Sun, W. Rockey, J. E. Bayouth,
J. M. Buatti, and X. Wu, “Optimal co-segmentation of tumor in PET-
CT images with context information,” IEEE Transactions on Medical
Imaging, vol. 32, no. 9, pp. 1685–1697, 2013.

[34] U. Bagci, J. K. Udupa, N. Mendhiratta, B. Foster, Z. Xu, J. Yao, X. Chen,
and D. J. Mollura, “Joint segmentation of anatomical and functional
images: Applications in quantification of lesions from PET, PET-CT,
MRI-PET, and MRI-PET-CT images,” Medical Image Analysis, vol. 17,
no. 8, pp. 929–945, 2013.

[35] Z. Xu, U. Bagci, J. K. Udupa, and D. J. Mollura, “Fuzzy connectedness
image co-segmentation for hybrid PET/MRI and PET/CT Scans,” in
Computational Methods for Molecular Imaging. Springer, 2015, pp.
15–24.

[36] W. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva, and X. Chen, “Random
walk and graph cut for co-segmentation of lung tumor on PET-CT
images,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp.
5854–5867, 2015.

[37] H. Cui, X. Wang, J. Zhou, S. Eberl, Y. Yin, D. Feng, and M. Fulham,
“Topology polymorphism graph for lung tumor segmentation in PET-CT
images,” Physics in Medicine & Biology, vol. 60, no. 12, pp. 4893–4914,
2015.

[38] L.-K. Soh and C. Tsatsoulis, “Texture analysis of SAR sea ice imagery
using gray level co-occurrence matrices,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 37, no. 2, pp. 780–795, 1999.

[39] J. Zhang, J. Liang, and H. Zhao, “Local energy pattern for texture classi-
fication using self-adaptive quantization thresholds,” IEEE Transactions
on Image Processing, vol. 22, no. 1, pp. 31–42, 2013.

[40] G. Thibault, J. Angulo, and F. Meyer, “Advanced statistical matrices
for texture characterization: application to cell classification,” IEEE
Transactions on Biomedical Engineering, vol. 61, no. 3, pp. 630–637,
2014.

[41] I. El Naqa, D. Yang, A. Apte, D. Khullar, S. Mutic, J. Zheng, J. D.
Bradley, P. Grigsby, and J. O. Deasy, “Concurrent multimodality image
segmentation by active contours for radiotherapy treatment planning,”
Medical Physics, vol. 34, no. 12, pp. 4738–4749, 2007.

[42] H. Yu, C. Caldwell, K. Mah, and D. Mozeg, “Coregistered FDG
PET/CT-based textural characterization of head and neck cancer for
radiation treatment planning,” IEEE Transactions on Medical Imaging,
vol. 28, no. 3, pp. 374–383, 2009.

[43] D. Markel, C. Caldwell, H. Alasti, H. Soliman, Y. Ung, J. Lee,
and A. Sun, “Automatic segmentation of lung carcinoma using 3D
texture features in 18-FDG PET/CT,” International Journal of Molecular
Imaging, vol. 2013, 2013.

[44] H. Hanzouli-Ben Salah, J. Lapuyade-Lahorgue, J. Bert, D. Benoit,
P. Lambin, A. Baardwijk, E. Monfrini, W. Pieczynski, D. Visvikis, and
M. Hatt, “A framework based on hidden Markov trees for multimodal
PET/CT image co-segmentation,” Medical Physics, vol. 44, no. 11, pp.
5835–5848, 2017.

[45] J. Lapuyade-Lahorgue, J.-H. Xue, and S. Ruan, “Segmenting multi-
source images using hidden Markov fields with copula-based multivari-
ate statistical distributions.” IEEE Transactions on Image Processing,
vol. 26, no. 27, pp. 3187–3195, 2017.

[46] K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane,
D. K. Menon, D. Rueckert, and B. Glocker, “Efficient multi-scale 3D
CNN with fully connected CRF for accurate brain lesion segmentation,”
Medical Image Analysis, vol. 36, pp. 61–78, 2017.

[47] C. Lian, J. Zhang, M. Liu, X. Zong, S.-C. Hung, W. Lin, and D. Shen,
“Multi-channel multi-scale fully convolutional network for 3D perivas-
cular spaces segmentation in 7T MR images,” Medical Image Analysis,
vol. 46, pp. 106–117, 2018.

[48] G. Shafer, A mathematical theory of evidence. Princeton University
Press, 1976, vol. 1.

[49] X. Li, A. Dick, C. Shen, Z. Zhang, A. van den Hengel, and H. Wang,
“Visual tracking with spatio-temporal Dempster–Shafer information
fusion,” IEEE Transactions on Image Processing, vol. 22, no. 8, pp.
3028–3040, 2013.

[50] Z. Liu, G. Li, G. Mercier, Y. He, and Q. Pan, “Change detection in
heterogenous remote sensing images via homogeneous pixel transfor-
mation,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp.
1822–1834, 2018.

[51] W. Pieczynski and D. Benboudjema, “Multisensor triplet Markov fields
and theory of evidence,” Image and Vision Computing, vol. 24, no. 1,
pp. 61–69, 2006.

[52] M. E. Y. Boudaren, L. An, and W. Pieczynski, “Unsupervised segmen-
tation of SAR images using Gaussian mixture-hidden evidential Markov
fields,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 12,
pp. 1865–1869, 2016.

[53] M.-H. Masson and T. Denœux, “ECM: An evidential version of the fuzzy
c-means algorithm,” Pattern Recognition, vol. 41, no. 4, pp. 1384–1397,
2008.

[54] N. Makni, N. Betrouni, and O. Colot, “Introducing spatial neighbour-
hood in evidential c-means for segmentation of multi-source images:
application to prostate multi-parametric MRI,” Information Fusion,
vol. 19, pp. 61–72, 2014.

[55] Z. Liu, Q. Pan, J. Dezert, J.-W. Han, and Y. He, “Classifier fusion with
contextual reliability evaluation,” IEEE Transactions on Cybernetics,
vol. 48, no. 5, pp. 1605–1618, 2018.

[56] Y. Bi, J. Guan, and D. Bell, “The combination of multiple classifiers
using an evidential reasoning approach,” Artificial Intelligence, vol. 172,
no. 15, pp. 1731–1751, 2008.

[57] L. Jiao, T. Denoeux, and Q. Pan, “A hybrid belief rule-based classifi-
cation system based on uncertain training data and expert knowledge,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46,
no. 12, pp. 1711–1723, 2016.

[58] F. Li, S. Li, and T. Denœux, “k-CEVCLUS: Constrained evidential
clustering of large dissimilarity data,” Knowledge-Based Systems, 2017.

[59] Z.-G. Liu, Q. Pan, J. Dezert, and A. Martin, “Combination of classifiers
with optimal weight based on evidential reasoning,” IEEE Transactions
on Fuzzy Systems, 2017.

[60] A.-L. Jousselme, D. Grenier, and É. Bossé, “A new distance between
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