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ABSTRACT 16 

Radiocarbon and radiocesium were measured on litter fractions (LF) collected on 17 

November 19th, 2011 at 40 km NW of the FDNPP. The 137Cs concentration is much higher in 18 

the lower fraction LFb at 226,650 ± 170 Bq kg-1 than in the upper fraction LFa at 7290 ± 40 19 

Bq kg-1. From leaf-air 14C comparison, no excess 14C due to the FDNPP accident is detected 20 

in LFa deposited in 2010-2011. A significant 14C difference of 1.4% exists between pine 21 

needles and deciduous leaves in LFb, which may be due either to post-depositional processes 22 

or to a turnover time of 0.5-1yr of stored carbon for deciduous leaves growth. 23 
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1. Introduction 28 

Boiling water reactor (BWR) nuclear power plants, such as the Fukushima Dai-ichi 29 

Nuclear Power Plant (FDNPP), contribute to a release of 14C into the atmosphere in the 30 

gaseous form of 14CO2 during routine operations [1]. The excess 14C is well recorded in 31 

vegetation, such as tree-ring and leaves, in the vicinity of such BWR nuclear plants [2; 3-7]. 32 

Monitoring this excess 14C is of biological significance because of the rapid exchange of the 33 

14CO2 within the terrestrial carbon reservoirs and its long residence time (T=5730 years) [1]. 34 

Significant leakage of radionuclides occurred at the time of the FDNPP accident on 35 

2011, March 11th. Among these radionuclides, post-accidental research has focused on the 36 

gamma-emitting radionuclides [8], and mainly 137Cs. A heavily contaminated area by the 37 

137Cs fallout, ~70% of which is covered by mixed forests, was identified downwind of the 38 

power plant in the prevailing northwestward wind direction in a variety of environments, 39 

including lakes, rivers, agricultural soils and forest ecosystems [9-17]. In contrast, the ß-40 

emitter 14C has been understudied after the FDNPP accident [8], although it has provided 41 

clues on the dispersion patterns of atmospheric 14CO2 release from nuclear fuels reprocessing 42 

plants in Japanese context [18-20] and on the long-term fate of Fukushima–derived 137Cs in 43 

forest soils similar to those found in the Fukushima prefecture from the comparative analyses 44 

of bomb-produced 14C and 137Cs migration in soils [21]. High 14C activities were measured 45 

from tree ring analyses of a Japanese cedar in the local environment (~2 km far from FDNPP), 46 

although revealing a reverse pattern between the early and late wood of year 2011 [4,7]. The 47 

activity of 14C was indeed higher in the late wood than in the early wood, while the seasonal 48 

transition commonly occurs between mid-June and mid-July [7]. The 14C activities decreased 49 

to background levels at 14 km northwest of the FDNPP in the highly contaminated region 50 

while the dispersion pattern of 14C in the southward direction remained unclear [3-5, 7]. A 51 

small enrichment of 14C, linked to a 14C release during the accident, has been noted in the late 52 

wood of the 2011 tree-ring from the Iwaki area located at 50 Km south of the FDNPP [3].  53 

New annual leaves of oaks and beeches are preformed in winter buds before budburst 54 

in spring [22], and the 14C analyses of these leaf species may provide new insights on the 55 

storage of the released 14C from the damaged FDNPP in March 2011 by the vegetation 56 

samples. We report here the results of radiocarbon (14C) analyses of two leaf litter fractions 57 

collected on November 19th, 2011 in a temperate deciduous broad-leaved (mixed) forest 58 

(DBF) in Kawamata Town located at ~45 km downwind of the FDNPP (Fig. 1). The 59 
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Kawamata mixed forest is mainly composed of deciduous trees (oaks and beeches) and 60 

Japanese red pine trees [22] and it is located in the heavily contaminated area by the 137Cs 61 

fallout in the northwestward wind direction from FDNPP [9, 13 and references therein]. The 62 

uppermost fraction (LFa) is composed of mostly entire deciduous leaves of beeches and oaks 63 

and the immediately underlying fraction (LFb) includes fragmented deciduous leaves of the 64 

same species and pine needles. The leaves in LFa are associated to the 2011 leaf fall, which 65 

commonly occurs between October and November [22, 24,25]. 14C was measured on the bulk 66 

litter and on individual leaves and pine needles picked in the lowermost fraction LFb. In 67 

addition to 14C analyses, radiocesium (137Cs, Bq kg-1) concentration was measured on bulk 68 

litter samples. We analyzed the timing of deposition of leaf material in the two litter fractions, 69 

that we discussed considering either a post-depositional disturbance of litter fall deposits or a 70 

turnover time of carbon (C) reserves in the growing vegetation. 71 

 72 

2. Material and Methods  73 

The sampling site of the litter is located close to the Kawamata Town elementary 74 

school (37°60’N; 140°68E; 562m asl) at around 45 km NW downwind of FDNPP (Fig. 1). 75 

Litter deposited on a flat floor parcel of a mixed forest composed of oaks (Quercus aliena), 76 

beeches (Fagus crenata) and Japanese red pines (Pinus densiflora) with a population density 77 

of 2,500 trees/ha [23]. The two samples of litter fall were taken one plot from the surface over 78 

a depth of 4 cm well above the soil. After sampling, the litter fractions have been stored in 79 

hermetically closed plastic bags. Samples have been dried at 40°C. The uppermost fraction of 80 

the litter (LFa) is approximately 1cm thick and contains mostly quasi entire deciduous leaves 81 

and very few pine needles (1% dry weight (d.w.)) (Plate 1). The immediately underlying 3 cm 82 

thick fraction (LFb) includes 27% d.w. pine needles as an average. The size of the deciduous 83 

leaves varies from 0.5 cm to 2-3 cm and the pine needles may have sizes up to 3-4 cm. The 84 

two litter fractions are characterized by macroscopically recognizable material of non-85 

degraded leaves.  86 

Dominant ground level winds from the Weather Station at Iitate (Japanese 87 

Meteorological Agency, RSMC Tokyo, Japan), close to Kawamata Town, are westward in 88 

summer and eastward in winter. At the time of FDNPP accident in March 2011, the eastward 89 

winds dominated (Fig. 1). The amount of annual precipitation was higher in 2010 than in 90 

2011 at Iitate [26]. 91 
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Prior to AMS-14C analyses, the bulk litter samples were first crushed (≤1mm). The 92 

classical Acid-Alkali-Acid (AAA) pre-treatment of routine samples of organic matter was 93 

applied to eliminate potential contamination. Transformation into CO2 was described 94 

elsewhere [27] and was performed at the Gif-LSCE Radiocarbon Laboratory. Graphite targets 95 

were prepared and measured at the French National AMS-ARTEMIS-LMC14 facility [28]. 96 

The % C in litter is obtained from the mass of sample and from laboratory calibration between 97 

pressure of CO2 of burned sample and the mass of carbon. Individual deciduous leaves and 98 

two different pine needles picked into litter LFb were also analyzed. Contiguous samples 99 

were cut on one of the pine needle, one sample including fungi and the other representing 100 

clean leaf. Samples of deciduous leaves were obtained from one single free-fungi leaf and 101 

from several pieces of deciduous leaves including fungi. After the classical AAA pre-102 

treatment, aliquots containing about 1mg of carbon were weighted into tin boats and 103 

processed using the automated graphitization equipment (AGE3) [29]. Measurements were 104 

performed on the MICADAS equipment at the Gif-LSCE Radiocarbon Laboratory [30, 31]. 105 

The 14C/12C activity of the samples is 13C-normalized and expressed as Fraction modern [32, 106 

33]. The 14C content of litter material were compared with those of clean air values of 14CO2 107 

as measured at the Schauinsland/Jungfrau stations (SIL) [34,35] and with the stack of 108 

atmospheric 14C data of the Northern Hemisphere Zone 2 (NHZone2) [36] to analyze the 109 

timing of deposition of leaf material in the two litter fractions. 110 

In addition, 13C/12C ratio of the bulk litter was measured using an online continuous 111 

Elementary Analyzer (Flash EA 1112) coupled with an Isotopic Ratio Mass Spectrometer 112 

(Finigan Delta+XP). The results are expressed in 13C per mil (‰) against the international 113 

standard V-PDB (Vienna Pee Dee Belemnite). Uncertainty is defined according to the source 114 

linearity checked for each run based on internal standard. 115 

137Cs activities were determined by gamma spectrometry using coaxial N- and P-type 116 

HPGe detectors (Canberra/Ortec). The samples were first dried at 40 °C for ~48 h and pressed 117 

into 11 mL polyethylene containers (Ø 45mm, h 7mm). 137Cs activities were measured at the 118 

662 keV emission peak. Counting efficiencies and reliability were quantified using certified 119 

International Atomic Energy Agency (IAEA) standards (IAEA-156, IAEA-372) prepared in 120 

the same containers as the samples. All activities were decay-corrected to March 14, 2011, the 121 

date of the main radionuclide fallout deposition [37].  122 

 123 
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3. Results  124 

The carbon content (%) in the bulk litter at ~45% is close to that measured in fresh 125 

leaves and litters [38, 39] (Table 1). The values of δ13C (‰) are similar in the two bulk litter 126 

samples at around -31‰. They are in agreement with the values of litter leaves from 127 

temperate broadleaved forests [40, 41] and these very depleted δ13C values would indicate a 128 

pre-decomposition stage of the leaves [41]. The macro- and microscopic observations show 129 

indeed no visible to moderate signs of degradation of the leaves attesting a recent deposition 130 

of the two litter samples (Plate 1).  131 

The 14C activity is significantly higher in the lower litter fraction LFb at 1.0562 ± 132 

0.0031 than in the uppermost fraction LFa at 1.0446 ± 0.0030 at the 95 % confidence level 133 

using the statistical Chi-square test (Fig. 2; Table 1). No significant statistical difference 134 

exists between the clean leaves and needles and those including fungi. In LFb, the mean value 135 

of 14C in deciduous leaves at one standard deviation is significantly higher at 1.0576 ± 0.0034 136 

than in pine needles at 1.0430 ±0.0027.  137 

The litter fractions have much higher concentrations of 137Cs than background values, 138 

measured at 5.0 ± 1.2 Bq kg-1 in a litter fall collected in 2007 in a Japanese deciduous forest 139 

[11]. The 137Cs concentration is 30 times higher in the litter fraction LFb at 226,650 ± 170 Bq 140 

kg-1 than in the uppermost fraction LFa at 7290 ± 40 Bq kg-1 (Table 1).  141 

 142 

3. Discussion  143 

The seasonal growth patterns of Kawamata forest vegetation are overall mostly similar 144 

among the studied species. Field observations in a northern Japanese DBF indicate that leaves 145 

of beeches and oaks, as those found in the Kawamata litter, appear as a flush in about one or 146 

two weeks between late April and mid-May without late leaf production and they fall between 147 

October and November [22, 24, 25]. Needles of the Japanese red pines elongated rapidly in 148 

June-July and the old needles usually fall between September and November [42]. The 14C of 149 

leaves of evergreen and deciduous trees of same ages do not show significant differences and 150 

they are similar to that of the atmosphere in which they grow [6, 43-45]. Foliar 13C in 151 

terrestrial vegetation vary as a function of vegetation species and of environmental parameters, 152 

such as, among others, light, temperature and water availability. The 13C values are more 153 

negative by about 1 to 4‰ in deciduous leaves than in pine needles [46, 47]. The 14C 154 
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activities of the deciduous leaves and of the pine needles are 13C-corrected for carbon 155 

fractionation due to biological processes and to the analytical 14C procedures. Moreover, a 156 

1‰ change in 13C results in a difference of the 14C/12C activity of 0.002 that is very much 157 

lower than the measured 14C difference of 1.4% between the deciduous leaves and pine 158 

needles in LFb. The 14C discrepancy between deciduous leaves and needles in LFb cannot be 159 

due to seasonal variations of atmospheric 14C, nor to plant specific differences.  160 

To analyze such a 14C difference, we compared the 14C activity of the Kawamata 161 

samples to that of the SIL clean air during the growth season of leaves (May-June) [34, 35], 162 

which is very similar to that of NHZone 2 [36] (Fig.  2a). The 14C of the deciduous leaves in 163 

LFa are compatible with the atmospheric 14C of year 2011, but also of year 2010, and the 164 

deciduous leaves in LFa overlay the older deciduous leaves in LFb mainly deposited between 165 

2007 and 2009 (Fig.  2). LFb may contain a part of fallen leaves in 2010. This contamination 166 

cannot however exceed 5% as estimated from mixing equations using the very similar values 167 

of atmospheric 14C between 2007 and 2009 (Fig. 2) and those of year 2010 and from the 168 

comparison of these estimates with the 14C of the clean leaf in LFb (supplementary material, 169 

Fig. S1). The pine needles in LFb would have grown during one or two years and fallen down 170 

either in 2010 or 2011. They have the same ages than those of the deciduous leaves in LFa, 171 

although sampled below, and they are significantly younger than the deciduous leaves though 172 

mixed in the same fraction LFb. Extending the seasonal age calibration of the 14C of leaf 173 

material from April to September does not change significantly the timing of leaf deposits 174 

(Supplementary material, Fig. S2).  175 

 176 

3.1 Disturbance of the leaf fall deposits  177 

The 14C discrepancy between the deciduous leaves and pine needles in LFb may be 178 

due to a vertical transfer and mixing of pine needles from the uppermost fraction LFa to the 179 

immediately underlying fraction LFb. The litter fractions were however sampled on a flat 180 

forest parcel. The 14C of the bulk litter LFa and LFb are significantly different as well as the 181 

14C of deciduous leaves in LFa and in LFb (Fig. 2). Moreover, although the number of 182 

analyses is small, very similar values of 14C are measured in two different pine needles picked 183 

into two different subsamples of LFb and they significantly differ from those of deciduous 184 

leaves (Table 1; Fig. 2). A vertical mixing of pine needles between the two litter fractions is 185 

very unlikely without having at the same time a mixing of deciduous leaves. 186 
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Pine needles may seasonally fall down immediately before the deciduous leaves in 187 

LFa and they would have been mixed with the lowermost fraction while sampling LFb (Fig. 188 

3). Needle longevity on shoots of Pinus densiflora may vary between ~1 and ~3 years 189 

depending on the more or less polluted environments in which they grow [42]. The pine 190 

needles in LFb may have lifetimes of 1 or 2 years, consistent with field observations (Fig. 2). 191 

A fall of the 2yr old pine needles (2010-2011) prior to that of the deciduous leaves in 2011 in 192 

LFa would have covered the deciduous leaves of year 2010 which are not observed below in 193 

LFb (Fig. 3, case a). A fall of the 1yr old pine needles (2010) prior to the deciduous leaves fall 194 

in 2010 and no fall of pine needles in 2011 in LFa (Fig. 3, case b) conflicts with the measured 195 

137Cs concentration which is 30 times lower in LFa than in LFb. At the time of the FDNPP 196 

accident in March 2011, 137Cs deposited directly on the forest floor due to the absence of 197 

leaves on trees and directly on the 2010 litter fall and preceding fall, which were therefore 198 

highly contaminated.  199 

The 14C discrepancy between the pine needles and the deciduous leaves in LFb may be 200 

relevant to disturbance of forest litter deposit, admitting either the lack of the 2010 deciduous 201 

leaves fall, or a quasi-complete leaching of the137Cs fallout on the 2010 leaf fall deposit at our 202 

sampling site, eight months after the FDNPP accident.  203 

 204 

3.2 The carbon paths during deciduous leaf growth 205 

Leaf buds that develop in winter and expanding leaves, such as those of oaks and 206 

beeches in the Japanese DBF [22], would grow from carbon (C) reserves stored in previous 207 

years [48]. Using an inadvertent huge spike of 14C release near a Californian temperate 208 

deciduous oak forest and numerical modeling, Gaudinski et al. [2009] estimated that the mean 209 

age of the stored C used for leaf-bud and leaf growth of oak and red maple tree species was 210 

about 0.5 to 1 year.  211 

We estimated the 14C values of the deciduous leaves when accounting for a turnover 212 

time of stored carbon reserves during the growth season and their use for deciduous leaves 213 

growth during the following year using:  214 

𝐴

A0
= 𝑒𝑥𝑝 (−

𝑡

𝜏
) 215 
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with t the duration of the growth season and the turnover time in days, and A/Ao the 216 

ratio of the atmospheric 14C activity during the considered years. 217 

The contribution of the stored carbon during the preceding year in newly formed 218 

leaves would be 51% (70%) with a turnover time  of 0.5 year (1year). From a simple mixing 219 

equation using the SIL atmospheric 14C in years 2010 and 2009 at 1.0477 ± 0.0028 and 220 

1.05427 ± 0.0022 respectively [34, 35] and the proportion given above 51% (70%) of carbon 221 

reserves from year 2009 and 49% (30%) of atmospheric 14C from year 2010, then the 14C 222 

values of the deciduous leaves growing in year 2010 would be estimated at 1.0510 ± 0.0025 223 

(1.0524 ±0.0025). Those values are compatible with the mean 14C value of the deciduous 224 

leaves in LFb at 1.0576 ± 0.0034 at the 95% confidence level. Consequently, the deciduous 225 

leaves in LFb may have grown and fallen in year 2010, and they would have a higher 14C 226 

value than the contemporaneously living pine needles. Similarly, the 14C value of the 227 

deciduous leaves in LFa at 1.04459 ± 0.00296 is compatible with the estimated value at 228 

1.0471± 0.0028 for leaf growth and fall in 2011 with the use of 51% stored C during year 229 

2010. Extending the growth season from April to September does not change significantly 230 

such values. 231 

The timing of the litter fractions at our site of sampling and the 14C discrepancy 232 

between the pine needles and deciduous leaves in the lower litter sample LFb are well 233 

explained when accounting for a turnover time of carbon for deciduous leaves growth (Fig. 3, 234 

case c). Fraction LFa would result from deciduous leaf fall in 2011 and fraction LFb from 235 

those of year 2010 and previous years. The pine needles in LFb would have fallen down 236 

either contemporaneously with the deciduous leaves in 2010 and mixed with older leaves, or 237 

immediately before the deciduous leaves in 2011 and inadvertently mixed with the lower 238 

fraction. No excess 14C due to the FDNPP accident is detected in the preformed deciduous 239 

leaves of oak and beeches in winter buds, that is in agreement with the 14C value of cedar 240 

tree-ring in the nearby site of Yamakiya [3].  241 

 242 

4. Conclusion 243 

14C analyses were performed on leaf material of two contiguous litter fractions LFa 244 

and LFb deposited in the Kawamata Town mixed forest and collected on November 19th, 245 

2011. Compared with the atmospheric 14C records, they revealed that deciduous leaves of oak 246 
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and beeches deposited in 2010 and 2011 in the uppermost fraction LFa and between 2007 and 247 

2009 in the underlying fraction LFb. No excess 14C due to the FDNPP is detected in the fallen 248 

leaves in LFa. The presence of pine needles of younger ages than those of the associated 249 

deciduous leaves in the lowermost fraction LFb may be explained by post-depositional 250 

processes such as either a lack of the 2010 deciduous leaves deposit if LFa is uniquely 251 

composed of the 2011 deciduous leaf fall or a quasi-complete leaching of the 137Cs fallout on 252 

the 2010 leaf fall deposit at our site of sampling in November 2011 if LFa is composed of 253 

deciduous leaf fall of year 2010 and 2011. The ~30 times higher 137Cs concentration in the 254 

lower litter fraction LFb compared to that found in the upper fraction LFa is in agreement 255 

with these two assumptions, as the 137Cs fallout from the FDNPP accident in March occurred 256 

before the canopy extension associated with the growth of the deciduous leaves. 257 

Alternately, deciduous leaves of oak and beeches preformed in winter buds would 258 

partly grow from stored carbon reserves during the preceding year. The previously published 259 

values of 14C of fresh leaves of deciduous trees and pine needles [6, 43-45] are also 260 

compatible within the uncertainties with the atmospheric 14C of the preceding year. A 261 

turnover time of carbon of 0.5-1yr, consistent with previous observations [48], may be 262 

estimated from the values of 14C of leaf material deposited in the Kawamata Town mixed 263 

forest. Estimating the turnover time of carbon in vegetation is likely more complex owing to 264 

the different paths of non-structural carbon in trees [49]. Further 14C analyses of leaf material 265 

in different stands in broadleaved forest would help in discriminating the causes of the 266 

observed 14C discrepancy among different species.  267 
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Table Captions 421 

Table 1: Sample references and types, AMS 14C Lab codes, and results of carbon C in %, 13C 422 

in ‰, fraction modern 14C (F14C), ∆14C in ‰ and 137Cs in Bq kg-1. Uncertainties are at 423 

one sigma ().  424 

Plates 425 

Plate 1: Microscope Photographs of the leaves accumulated in litter layer L (A-C) and layer F 426 

(D-F) showing no visible sign of degradation of the leaves. The scales (white bar) are 427 

1cm in A, B and D; 0.5 cm in E; 30µm in C and 50µm in F. On image F, minerals are, 428 

magnetite, hematite and feldpars. 429 

 430 

Fig.  Captions  431 

Fig. 1: Locations (A) of the Fukushima prefecture and (B) of the Kawamata Town 432 

(37.602482; 140.677049; 562m asl) and the other sites cited in the text in northeast Japan.  433 

Fig. 2: Seasonal age calibration of litter material and probability (in %) at the 95% confidence 434 

level as a function of time (in years). Calibration and probabilities were obtained using 435 

Chi-square tests between the values of 14C (Fraction modern, F14C) of the litter material 436 

and those of the seasonal (May-June) atmospheric 14C at the Schauinsland/Jungfrau 437 

stations (SIL) [34, 35] (green triangles). P0.05 ≤5% were not taken into account. Values of 438 

F14C are also reported for the stack of atmospheric 14C data (May-June) of the Northern 439 

Hemisphere Zone 2 (NHZone2) [36] (blue circles) and for the annual tree-ring record at 440 

Yamakiya, nearby Kawamata Town (violin diamonds) [4]. Colors on the probability 441 

diagrams referred to those of the time intervals (rectangles) of 14C calibration of the litter 442 

fractions LFa and LFb (A,B), of the mean 14C of deciduous leaves (DL) and pine needles 443 

(PN) in LFb (C,D), and of individual deciduous leaves (red and rose) and pine needles 444 

(dark, medium and light green) in LFb (E,F).  445 

Fig. 3: Schematic description of the litter fall deposition LFa and LFb showing the results of 446 

the 137Cs concentration, of the time interval of calibrated 14C of deciduous leaves (DL) 447 

and pine needles (PN) and of F14C. The three cases (a, b and c) are discussed in the text. 448 

 449 
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Litter Sample Sample Lab n° C  13C  F14C  137Cs 

Fraction Ref.* type [chemistry/measurement]  %  [‰] (±1) Bq kg-1 

 

LFa FKV-046A-1 upper litter bulk GifA15936/SacA44607 45.8 -30.63 ± 0.15 1.0446 ± 0.0030 7290 ± 40 

LFb FKV-046B-1 lower litter bulk GifA15938/SacA44609 43.3 -31.62 ± 0.15 1.0562 ± 0.0031 226,650 ± 170 

       

LFb FKV-046B-1&2 leave & fungi GIFA17276/ECHo 1714   1.0600 ± 0.0031 

LFb FKV-046B-1 clean leave GIFA17277/ECHo 1715   1.0551 ± 0.0029 

     average 1.0576 ± 0.0034 

       

LFb FKV-046B-1 pine needle 1 & fungi GIFA17274/ECHo 1717   1.0401 ± 0.0033 

LFb FKV-046B-2 pine needle 2 & fungi GIFA17361/ECHo 1863   1.0453 ± 0.0030 

LFb FKV-046B-2 clean pine needle 2 GIFA17360/ECHo 1862   1.0437 ± 0.0028 

     average 1.0430 ± 0.0027 
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Text S1. Contamination of the deciduous leaves in litter fraction LFb by younger deciduous 

leaves. 

We calculated the effect of contamination (in %) on the time interval of deposition of 

the litter fraction LFb using 5%, 10% and 15% of leaves from the upper fraction of year 2010. 

The time interval of age calibration was calculated using the seasonal SIL atmospheric 14C in 

2010 and the mean value of the May-June SIL atmospheric 14C between 2007 and 2009, 

which are very similar (Figure 2). The time interval and probability of calibrated 14C values 

with a 5% contamination of LFb deciduous leaves by those of year 2010 exactly mirror that of 

the clean deciduous leaves in LFb at the 95% confidence level. The 10% and 15% 

contamination obviously enlarge the calibrated age intervals of the LFb deciduous leaves with 

a greater probability of the young ages (Fig. S1). 
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Fig. S1: Probability (P0.05) of the calibrated age intervals of the clean deciduous leaf in LFb 

compared to those of deciduous leaves growing and falling between 2007 and 2009 mixed 

with 5%, 10% and 15% of deciduous leaves of year 2010. The calculation is based on Chi-

square tests between the mean seasonal (May-August) SIL atmospheric 14C between 2007 and 

2009 and that of year 2010 [34, 35]. 

 

Text S2. The April-September age calibration of 14C values of leaf material deposited at 

Kawamata Town mixed forest  

The May-August age calibration of 14C values of leaf material, using the May-August 

atmospheric 14C of the clean air 14CO2 at the Schauinsland/Jungfrau stations (SIL) [34, 35], 

indicate that the deciduous leaves in LFa and LFb deposited between 2010 and 2011 and 

between 2007 and 2009, respectively. Extending the seasonal age calibration to April-

September does not change significantly the timing of leaf deposit in the litter fractions, and 

the pine needles and deciduous leaves in LFb have incompatible ages (Fig. S2). 
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Figure S1: April September
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Fig. S2: Seasonal age calibration of litter material and probability (in %) at the 95% confidence level as a function of time (in years). Calibration 

and probabilities were obtained using Chi-square tests between the values of 14C (Fraction modern, F14C) of the litter material and those of the 

seasonal (April-September) atmospheric 14C at the Schauinsland/Jungfrau stations (SIL) [34, 35] (green triangles). P0.05 ≤5% were not taken into 

account. Values of F14C are also reported for the stack of atmospheric 14C data (May-June) of the Northern Hemisphere Zone 2 (NHZone2) [36] 

(blue circles) and for the annual tree-ring record at Yamakiya (violin diamonds) [4]. Colors on the probability diagrams referred to those of the 

time intervals (rectangles) of 14C calibration of the litter fractions LFa and LFb (A,B), of the mean 14C of deciduous leaves (DL) and pine needles 

(PN) in LFb (C,D), and of individual deciduous leaves (red and rose) and pine needles (dark, medium and light green) in LFb (E,F).  

 


