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Abstract 
This paper presents a thorough experimental investigation of erbium-doped aluminium 

nitride thin films prepared by R.F. magnetron sputtering, coupling Scanning 

Transmission Electron Microscopy X-ray-mapping imagery, conventional Transmission 

Electron Microscopy and X-ray diffraction. The study is an attempt of precise 

localisation of the rare earth atoms inside the films and in the hexagonal würtzite unit 

cell. The study shows that AlN:Erx is a solid solution even when x reaches 6 at.%, and 

does not lead to the precipitation of erbium rich phases. The X-ray diffraction 

measurements completed by simulation show that the main location of erbium in the 

AlN würtzite is the metal substitution site on the whole range. They also show that 

octahedral and tetrahedral sites of the würtzite do welcome Er ions over the [1.6-6 %] 

range. The XRD deductions allow some interpretations on the theoretical mechanisms 

of the photoluminescence mechanisms and more specifically on their concentration 

quenching.  
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1. Introduction 
 

Rare earths (RE) activated luminescent materials are largely used in many 

domains as wide as telecom, medical applications, radiation and light detection, data 

recording and can be used to produce luminescent lamps, solid-state lasers or optical 

displays. Lanthanide atoms on their own are not natural emitters for the intra 4f 

energetic transitions are parity forbidden. However, when adequately inserted in a 

semiconductor or some insulators, the trivalent RE ions can be rendered optically 

active. The relaxation of the selection rules due to crystal field effects can lead the ions 

to produce sharp and strong luminescence peaks. Although the wavelength of emission 

does not change when changing the hosting matrix thanks to the electronic protection 

screen formed by the 5s
2
 and 5p

6
 orbitals, the intensity of emission is matrix dependant, 

and is at the source of a lot of research works. One can refer to the two general works by 

Kenyon [1] or by Liu [2] or find some examples in [3] or [4]. 

Among these studies, erbium attracts special attention due to its application field and to 

the high density of works present in the literature. Indeed, the aluminosilicate glasses 

composing optical fibres, need to have sources and amplifiers working at wavelengths 

that are compatible with the window of information transmission which costs least 

possible energy, that is that coincides with the low-loss area of the absorption spectrum. 

The fortunate infra-red emission of erbium at 1.535 m resulting of an electronic 

transition between the 
4
I13/2 and the 

4
I15/2 levels, makes the rare earth compatible for such 

requirements and explains why many studies address the incorporation of erbium in 

different matrices [5],[6],[7],[8],[9]... 

First studied inside glasses, erbium has been incorporated in other materials than the 

ones constituting the fibers. Due to the possibility of easier integration of the emission 

optical sources, silicon and silicon based compounds (c-Si, nc-Si, a-Si, Si-SiOx, SiGe, 

Si3N4, SiC, SiN) take a privilege portion of the works... [10],[11],[12],[13]. Researchers 

also tested and investigated the incorporation or erbium inside various oxides 

[14],[15],[9] or into III-V and II-VI semiconductors (GaN, AlN, ZnS, ZnO). The 

temperature quenching of the optical centres emission is known to be smaller in wide 

band gap semiconductors. This is why, AlN, with its theoretical 6,2 eV band gap, is one 

of the most interesting matrices to study the incorporation of erbium and other rare 

earths emitting in the whole visible spectrum up to the ultra-violet region 

[17],[18],[19],[20],[21],[22],[23].  

The theoretical mechanism of optical emission of the trivalent rare earths ions in 

these matrices is not fully understood. The different authors of the community however 

agree that the localisation of the rare earth inside the solid, notably the symmetry of the 

site and the crystal field strength is a key question to understand the photoluminescence 

mechanism and optimise the emissive properties for technological applications [1], [24], 

[24], [25]. The symmetry of the site actually rules the way the electronic ions levels are 

split and can change completely the excitation-emission optical mechanism, resulting in 

variable intensities of the optical centres emissions. As underlined by Penn in a study on 

the electrical pumping of the GaN:Eu system for laser applications: each incorporation 

site possesses its own excitation mechanism [26]. 

From the point of view of the desired requirements for industrial applications, 

one of the most restricting parameters to increase the intensity is the quantity of ions 

one can incorporate inside the matrix. Many authors show that beyond a threshold 

concentration of the doping element inside the matrix, the emission mechanism loses 

its efficiency; the authors speak of “concentration quenching” [27], [28], [29]… This 

phenomenon is usually interpreted by two different processes: (1) the loss of energy is 
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due to RE
3+

-RE
3+

 electron transfers: the potentially emitter ion (luminescent centre) is 

unexcited and it reduces the lifetime of the emission state limiting so the radiative 

emission ratio or leading to non radiative decay or/and (2) the fall is due to the 

precipitation of erbium rich aggregates, because the limit of solubility of the rare earth 

inside the welcoming material has been reached. 

Another key point for the mechanism is the role of crystallographic defects 

(point defects, or grain boundaries) and their proximity to the emission centres 

[30][23]. 

As a consequence, knowing where the ions are located inside the lattice or 

inside the grains is of very high interest to try to understand the optical emission 

mechanisms.  

 In this work, we present a morphological and structural study of AlN:Er samples 

containing variable erbium contents. Observations were realised both in direct space 

(Transmission Electron Microscopy -TEM- and Scanning Transmission Electron 

Microscopy -STEM- X-ray mapping imagery) and in Fourier space (by X-ray or 

electron diffraction). The erbium doped aluminium nitride films were prepared by 

reactive radio frequency magnetron sputtering at room temperature. The films, 

containing different Er concentrations were earlier studied by steady state 

photoluminescence, photoluminescence excitation spectroscopy and time-resolved 

photoluminescence in a previous work [23]. The anterior work confirmed the classical 

behaviour of concentration quenching of these kinds of samples, by showing the 

existence of an optimal value for the infra-red photoluminescence signal for an erbium 

concentration at 1 at.%. Our goal here was then to try to get information on the precise 

localisation of the erbium cations throughout the samples, or at least suggest stronger 

hypotheses than the ones usually found in the literature on the location of the ions inside 

the aluminium nitride matrix. We also wanted to know if as suggested by some authors 

the concentration quenching in III-V, unlike some other systems, is due to the fact that 

the rare earths reach their solubility limit [31],[32]. 

 

2. Experimental procedure  

The AlN:Er coatings were deposited in a home-made unbalanced reactive radio-

frequency magnetron sputtering system. No intended heating on the substrates was used 

during deposition. A 3 mm thick aluminium target (99.99% purity) with 60 mm in 

diameter was used as the sputtering source, which was fixed on a water cooling copper 

back plate. Erbium was introduced by co-deposition using different specific targets 

containing Er sectors with adequate surface. The target-sample distance is equal to 150 

mm. Substrates used are silicon (1 0 0) with dimensions of 200 mm × 200 mm × 1 mm. 

Prior to deposition, all substrates were ultrasonically rinsed sequentially in acetone, 

ethanol, and deionised water for 10 min. The base pressure of the chamber before 

deposition was 1 × 10
−6

 Pa, and the deposition pressure 0.5 Pa was reached with a 

constant flow of argon and nitrogen gas mixture regulated by mass flow controllers. The 

N2/(Ar + N2) percentage in the gas mixture was set to 50 %. Prior to the film deposition, 

15 min of pre-sputtering using an Ar plasma was performed to clean the target surface. 

The sputtering power Pm was set to 300 W and no thermal annealing treatment was 

performed after deposition. The control of the thickness is achieved by real time optical 

interferometry. Samples thickness is equal to 500 nm. Erbium contents in samples 

varied from 0 to 6 at.%. The erbium concentration was determined by Electron 

Dispersive Spectroscopy of X-rays (EDSX) and by the highly sensitive Rutherford 

Backscattering Spectrometry (RBS) technique. More precision on EDSX chemical 

calibration method could be found in Brien et al [33].  
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The nanostructural evolutions of the coatings were characterised with a CM20 or 

a CM200 PHILIPS transmission electron microscope, both running at an accelerating 

voltage of 200 kV. Most samples were prepared by microcleavage only one sample was 

thinned down by the Focused Ion Beam (FIB) technique.  

The X-ray diffraction measurements have been performed using a Bruker D8-

Discover diffractometer equipped with an Eulerian cradle. All the measurement have 

been performed with the CoK wavelength ( =0.179026 nm) with a point focus of 

1mm. The detection was assured either by a LynxEye Detector covering 3° in 2 for the 

de-texturation analyses. The detexturation measurement is performed by measuring the 

sample at different  angle with a step size of 1° in . The sample is placed on fast 

spinner allowing the sample to rotate perpendicular to the diffusion plan. The 

“detextured” pattern is obtained by summing all the recorded patterns along , after 

having corrected the intensity due to instrumental defocusing effect obtained from a 

textured free AlN sample. 

 

3. Results 

3.1 TEM investigation 

After the PL characterisation of the samples showing the drop of the infra-red PL signal 

beyond 1 at.% on the 0 - 3.6 % range, we prepared on purpose a sample with 6 at.% of 

erbium in order to push the effects of erbium incorporation inside the würtzite, and 

study it. All the films (with erbium content ranging from 0 to 6 at. %) were sampled by 

microcleavage for quick TEM observation. The crystalline morphologies of the films 

are in these experimental conditions all polycrystalline and made of columnar grains 

whose width is around a few tenths of nanometers. This was extensively studied by the 

team in previously published work and has been presented in references [34], [35] and 

[36]. The adopted morphologies are fully consistent with what could be expected after 

reading the Thornton "Structure Zone Diagram" except that the present films are dense 

and exhibit no porosity. The stability of the crystalline morphology by this deposition 

process when doping the films with Erbium rare earth was presented in references [23] 

and [33]. As elemental X-ray mapping by Scanning Transmission Electron Microscopy 

with an X-ray energy dispersive spectrometer usually allows to get good indications in 

analysing nano-scale features in materials such as fine precipitates and 

interfaces/boundaries, we recorded X-ray mappings on the richest sample in erbium. It 

should be noted in passing that the average oxygen content was found similar for all 

samples within the range 5 - 8 at.%. Fig. 1 shows the four maps for the Al, N, O and Er 

elements using the adequate threshold energies of X-rays (cf. Fig. 1). Unfortunately, the 

spatial resolution on our samples was not high enough. Indeed, the thickness of the 

specimen (film thickness = 500 nm) degraded the spatial resolution of the mapping 

(from an optimal instrumental value of a few nanometers to around 10 nm here) and 

limited the observations. However, the analysis of the erbium map (Fig. 1d) allows to 

conclude that no precipitate of size above 15 nm is present in the 6 % doped AlN:Er 

sample.  

 Based on that, we recorded the electron diffraction patterns of the latter sample 

to try to detect the signature of either erbium itself or a phase rich in erbium. We 

selected a big area to maximise the chance to detect such phases (Fig. 2a). To compare 

the doped sample with the undoped one, the electron diffraction pattern recorded on the 

AlN sample prepared without erbium has been placed nearby (Fig. 2b). One can see that 

the two patterns contain the same amount of rings and that they are localised at the same 

distance from the transmitted spot. To ensure that weak intensity would be revealed 

(corresponding for instance to a small ratio of a new phase), longer exposure times were 
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used on the doped sample and patterns were taken on different bits sampled on the 

specimen, along either cross or top views. The results are univocal. All patterns look 

alike: absolutely no other ring or spot different from the ones of the AlN würtzite could 

be detected on the AlN:Er (6%). As landmarks, reference guide rings using the AlN 

würtzite phase (JCPDS-file Nr 25-1133) and using the most probable pure erbium phase 

(pure erbium most common form is a hexagonal phase: JCPDS-file Nr 2-0930) have 

been drawn on the pattern for comparison. The same result was obtained on the 3.6 % 

erbium content AlN:Er film.  

 To reinforce the conclusion of this result, if it was necessary, one has recorded 

dark field images on different samples by selecting with the smallest aperture of the 

microscope an angular portion of the AlN rings ({0002} and {10 1 1} of the diffraction 

pattern given in Fig. 2b). Special care was taken to make sure that the first AlN ring was 

avoided by judiciously choosing an adequate portion (as exemplified by P in Fig. 2a) of 

the diffraction rings as the AlN diffraction first ring theoretically superimposes to the 

first erbium ring (see theoretical rings in Fig. 2 and respective rings placed after the 

parameters from the JCPDS files). The strategy is here to try to evidence nodules or 

precipitates that would possibly not represented enough volume to produce a recordable 

intensity in diffraction, and that would be present for example at the grain boundaries of 

the columns of aluminium nitride, and would appear by leaving dark contrast at the 

edges of the white columnar grains. These types of images were recorded on 

microcleaved samples (0 %, 3.6 % and 6%) (cf. Fig. 3) and on a FIB thinned sample (1 

%) (cf. Fig. 4). For that purpose, we prepared a specific 100 nm thick AlN:Er film 

doped with 1 at.% of erbium. It was impossible to detect the presence of such 

aggregates on these images, whatever the level of doping and even for the samples 

doped at 6 at.%. If such precipitates exist, their size would be under the spatial 

resolution of the images. The resolution on microcleaved samples can be estimated to 3 

nm (the instrumental Philips CM200 microscope resolution is deteriorated by the 

specimen thickness). This is why a sample was thinned down by using FIB to reach the 

resolution of 0.5 nm. As spotted by the different arrows on the images displayed in Fig. 

4 the columnar grains exhibit straight edges. 

So, TEM investigation (either STEM-EDSX, electron diffraction or dark field 

imaging) did not allow to detect any presence of erbium precipitates (at least not under 

0.5 nm for the 1 % doped film and not under 3 nm for the 6 % doped AlN:Er film), and 

this even when the AlN:Er samples were containing 6 at.% of erbium. If erbium did not 

feed any nucleates of any phase, one can suppose the doping atoms entered the würtzite 

lattice. Electron diffraction is not the ideal technique to get accurate measurements on 

lattice parameters. We have investigated the Fourier space by X-ray diffraction.  

  

3.2 X-ray diffraction investigation 

As many AlN films prepared by magnetron sputtering, the aluminium nitride 

films doped with erbium and prepared for this study are polycrystalline and textured. In 

order to get a precise pattern of the AlN film,  X-ray patterns at different tilt 

angle) have been recorded as explained in the experimental paragraph. Fig. 5 displays 

the intensity variation of XRD pattern versus the 2 Bragg angle and the tilt angle  of 

the AlN:Erx sample (x =1 at.%). All diffraction peaks of AlN hexagonal structure are 

observed with the sequence (10 1 0), (0002), (10 1 1), (10 1 2) (11 2 0) and (10 1 3). 

Moreover we should notice here that no deviation of the peak position is observed with 

the orientation of the film. This indicates that here the film is not under stress due to the 

substrate interaction. The evolution of the intensities versus  angle of the diffraction 
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Bragg peaks indicates a texture of the film. These observations have been done for all 

the samples ranging from 0 to 6 at.% of erbium.  

In order to gain a greater insight into the structural properties of these films; know if 

precipitated phases could be recorded, or follow the evolution of the cell parameter: 

cumulated X-ray patterns were recorded as a function of erbium content (presented in 

Fig. 6). These patterns were obtained by summing all the patterns obtained versus  

angle. As the sample is mounted in a fast spinner, the result is a “detexturized” pattern, 

with the proper intensities ratio between the diffraction peaks. As shown in Fig. 6, these 

patterns only exhibit the peaks of AlN würtzite type, plus the silicon peaks coming from 

first harmonic of the (004) silicon peaks of the substrate. No erbium rich phase could be 

traced here, even inside the AlN:Er films doped with 6 at.% of erbium. The unit cell 

parameters a and c of the hexagonal unit cell were achieved by using EVA software and 

for good precision of results, were made by taking account of the diffraction peaks at 

highest angle region (not shown in Fig.5 or 6) for each sample. Fig. 7 displays the graph 

of the obtained values as a function of the erbium content measured in the films. These 

two plots (Fig. 7) show that the evolution of the lattice parameter a is linear and follows 

a Vegard’s law whereas the c lattice shows a step-like at 1% and follows a linear 

increase from 1.6%. So, the XRD investigation performed here by detexturation on the 

samples from 0 to 6 at.% of erbium in the AlN films proves that the rare earths are 

incorporated in the matrix and that they participate to the lattice even at 6%. This result 

is consistent with the TEM results presented above. These results demonstrate that 

AlN:Erx is a solid solution on the entire studied range x = 0 – 6%. No crystallographic 

saturation like the one observed by Chen et al. in [37] in the Er doped GaN lattice 

occurs here. The rare earth erbium atom entirely participates to the crystallographic 

lattice, and does progressively expand the würtzite lattice due to its radius larger than 

the Al one (covalent radii: 157 pm for Er, 130 pm for Al). The point of 1% doping 

appears special as it appears out of the linear law. This point will be discussed further.  

By pushing the exploitation of the XRD results, one can also observe that all 

diffractograms exhibit the same number of peaks from 0 to 6%, proving this way that 

the crystallographic space group is invariant despite the introduction of an extra atom in 

the lattice. This is the proof that the doping rare earth atom adopts a crystallographic 

position respecting it: as a consequence a crystallographic insertion on sites, do not 

respecting the symmetry of the group P63mc has to be excluded. Now the assumptions 

on the erbium position have to consider 1/ the relative sizes of the atoms and the steric 

effect and 2/ the relative electronic affinity of atoms. To this regard the metal 

substitution site is the most probable. It is what is generally observed by channelling 

experiments when the rare earths are implanted on AlN and GaN films grown by MBE 

[37] or HVPE [38] or when co-deposited in AlN and GaN films grown by 

MOCVD[39][40] and is also consistent with the different available theoretical 

calculations performed on those systems (crystal field based [41],[39] or electron-

phonon coupling based [42]). However, crystallographically speaking, tetrahedral and 

octahedral sites of the hexagonal lattice also have to be envisaged.  

So to support this reasoning, we have simulated the evolution of the diffraction 

peaks intensities of the AlNEr würtzite structure by calculating the structure factor F
2
 of 

the three main peaks as a function of the erbium content and assuming 100% of erbium 

atoms located on different crystallographic positions (we performed the calculation 

neglecting the effect of oxygen presence on diffracted intensities as 1/ oxygen diffusion 

factor is very close to the one of nitrogen and 2/ oxygen atoms are expected to occupy 

nitrogen sites). This calculation has been performed using the software FullProf [39]. 

Three different localisations have been calculated: 
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- The first localisation is in substitution of the Al atom i.e. at the Wyckoff 

position 2b (1/3,2/3,z=0.38).  

- The second localisation is the tetrahedral site which corresponds to the position 

in between the aluminium and the nitrogen i.e. at the Wyckoff position 2b 

(1/3,2/3,z=0.69). 

 -The last position is the octahedral site which corresponds to the 2a Wyckoff 

position (0,0,z=¼). 

The comparison of the F
2
 structure factor simulation calculation and the 

experimental intensities of the X-ray peaks are presented in Fig. 8. They are presented 

on a graph displaying the experimental ratios  𝑅ℎ𝑘𝑙
𝑒𝑥𝑝

 = Ihkl / I100 and the theoretical ratios 

 𝑅ℎ𝑘𝑙
𝑡ℎ  = Fhkl

2
 / F100

2
 for hkl = 0 0 2 and 1 0 1 as a function of erbium content for the three 

postulates. Normalisation of the ratios was chosen to be done by dividing by the most 

intense peak of the würtzite 1 0 0. The intensities Ihkl are the integrated surfaces of the 

corresponding XRD peaks.  

The confrontation of the data is done by comparing the evolution of curves 

drawn by the points (i.e. the slopes) as it allows to overcome the absence of correction 

of some experimental parameters being sources of implicit systemic differences 

between the experimental records. The point 1% is discarded from the interpolation 

because of two reasons: 1/ an extra-dilatation of c lattice cell parameter is observed 

pushing the 1% point out of the Vegards'law and 2/ the ratios of XRD peaks  𝑅002
𝑒𝑥𝑝

 (1%) 

and 𝑅101
𝑒𝑥𝑝

 (1%) are also out of the linear trends. This singularity allows suspecting a 

different crystallographic behavior. It will be discussed further.  

The evolution of experimental XRD peaks ratios as a function of the doping 

content is the best approached by the theoretical curve assuming a substitution of 

Aluminium by Erbium. Indeed slopes coefficients of the linear interpolating laws are 

( �̇�101
𝑒𝑥𝑝 =  +0.07;  �̇�002

𝑒𝑥𝑝 = −0.01) as they are (�̇�101
𝑡ℎ = +0.04;  �̇�002

𝑡ℎ = +0.01) for the 

substitution hypothesis, ( �̇�101
𝑡ℎ = −0.12;  �̇�002

𝑡ℎ = −0.04 ) for the tetrahedral one and 

finally (�̇�101
𝑡ℎ = +0.29;  �̇�002

𝑡ℎ = +0.07 ) for the octahedral hypothesis. However it is not 

sufficient. A strict comparison of the values leads to the conclusion that one needs to 

involve the two other types of sites. A combination of Al substitution and only one of 

the two other sites would not account for the positive and negative slopes of �̇�101
𝑒𝑥𝑝

 and 

 �̇�002
𝑒𝑥𝑝

 respectively. Erbium would then mainly adopt a distribution on Al 2b sites and 

the remaining Er atoms, i.e. a very small amount, on both the octahedral and tetrahedral 

sites.  

This can be consistent with the following crystallographic interpretation. One 

can imagine the rare earth is in pure substitution on the Al site until 1% (c increases by 

0.4%) and that over, the lattice cannot put up with more expansion; more introduction 

of the big atom makes the rare earth to  be located in the insertion lattice sites 

(octahedral and tetrahedral) which are now bigger due to the 1% point expansion: the 

lattice does not expand in the first place as the free space is filled (c/c (1.7%) = 0.4%); 

and further introduction of Er could then continue to fill the insertion sites on the 1.7 – 

6% range pushing progressively the lattice parameter c according the Vegard's law.  

The crystallographic considerations deducted here so far however bring elements 

to interpret the photoluminescence mechanisms of this system. The first point to take in 

account is the absence of extra erbium rich precipitated phases. Er
3+

-Er
3+

 interactions 

inside non optically active precipitates as put forward in some others works can then not 

be invoked here to justify the concentration quenching.  

The XRD data presented here seem to show that until 1% the ions occupy 

exclusively the Al site (C3v symmetry) which is an optimal crystallographic 
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environment for efficient PL. Above this value, the centres that were active at 1% are 

hindered as PL efficiency drops.  

Such an observation implies that (1) the Er ions located in insertion locations are 

not optically active and that (2) the extra erbium ions are detrimental to the optical 

production of the optically active centres located on the Al sites. Such effect could be 

explained by Er
3+ 

- Er
3+

 interactions (like co-operative up-conversion, energy migration 

or cross-relaxation) which are indeed known to occur when close enough, that leads to 

non-radiative decay. 

As XRD data showed that the lanthanide ions are disseminated throughout the 

volume of the grains all over the [0 - 6%] range, an average statistical physical distance 

between Er
3+

 ions can be calculated for the 1 % doped nitride assuming the ions 

distribution throughout cells is purely homogeneous and random in the volume. The 

calculation can either be done by taking the density of AlN, (d = 3.28) or deducing it 

from crystallo-chemical considerations taking the number of atoms in a lattice and its 

theoretical volume. The distance obtained is 10 Å, that is 2 c or around 3 a (one recalls 

the cell parameters: aAlN = 3.11 Å and cAlN = 4.98 Å). So, the crystal statistically 

possesses then one lanthanide every two cells along c, whereas every three cells along a. 

Beyond 1 % the supplementary ions start to fill the insertion sites randomly, 

diminishing in parallel the average distance between 2 Er ions. So PL efficiency seems 

to be hindered by a too high density of centres. Under an average distance of d0 = 10 Å 

between Er
3+

 ions, the incorporation itself or the crystallographic perturbations (vacancy 

type defects) going with it would be close enough to modify the radiative emission from 

the RE shell transitions. The filling of an octahedral or tetrahedral site may be 

accompanied by the creation of vacancies. The second atomic shell of erbium ions 

located in insertion sites should also present oxygen atoms. It is not straightforward to 

deduce further. The situation is complex. Both aluminium or nitrogen vacancy type 

defects (or larger) can change the local structure around RE atoms, and could then affect 

the transition probability modifying the way the emission rate of the intra-4f shell 

transitions from RE ions. On the other way, oxygen presence is also known to have a 

great influence on the optical mechanisms. The drop is also fed by the increase of the 

probability of occurrence of adjacent sites (metallic one and insertion ones) which is 

real above 1.7%.  

The theoretical calculation of luminescence efficiency of activator ions as a 

function of the activator concentration; recognising that only activator ions not having 

other activators on the adjacent site are capable of luminescence and assuming a random 

distribution; has already been achieved on other luminescent systems (Mn in ZnF2) [40]. 

This theoretical curve reflects quite the shape of the experimental curve of integrated 

photoluminescence as a function of the erbium content that could be measured on the 

present samples (published in [23]). Indeed, in both cases the curves increase until a 

maximum; which is followed by a drop. So, a random distribution throughout the grains 

appears to be sufficient to account for the presence of a maximum in the 

photoluminescence efficiency and for the concentration quenching.  

Another hypothesis that could be stated at this stage, would not consider the only 

distance criteria between Er sites as being sufficient to promote loss of energy by Er
3+

 - 

Er
3+

 interactions, but would take account of the nature of the symmetry of the new Er 

ions, and would take for responsible the degeneracy of levels of higher symmetry 

(symmetries of octahedral and tetrahedral sites are superior to the one of the metallic 

site in würtzite). 

Another hypothesis that could be stated at this stage, would not consider the only 

distance criteria between Er sites as being sufficient to promote loss of energy by Er3+- 
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Er–Er3+ interactions, but would take account for of the nature of the symmetry of the 

new Er ions, and would take be responsible for responsiblethe degeneracy of levels of 

higher symmetry (symmetries of octahedral and tetrahedral sites are superior to the one 

of on the metallic site in würtzite). 

4 

Conclusion 

TEM and XRD analyses were performed on Er doped sputtered AlN samples with 

variable erbium content [0 – 6 at. %]. [0–6 at.%]. The absence of extra phases on dark 

field, STEM images or electron and X diffraction data on the whole range proves the 

incorporation of the rare earth inside the AlN würtzite. Erbium is shown to be a full part 

of the AlN hexagonal unit cell; it expands the lattice progressively and proportionally to 

its quantity: AlNErx is a solid solution until x = 6atomic %  at.% whose lattice 

parameters follow aVegard’s law. The solubility limit has then not been reached even at 

6atomic %. at.%. 

From the theoretical calculations of XRD intensities, one deduces that the lanthanide 

atom mainly occupies the regular substitutional metallic atom in the nitride and that 

from a certain amount (1.7 %) (1.7%) and part of it also fills the insertion sites of the 

hexagonal lattice (octahedral and tetrahedral sites). The rare earth ions adopt a random 

volume distribution inside AlN grains. The phase can then be written Al1-

x1−xNOzErxEry. 

From these deductions, a discussion was made to deepen the understanding of the 

photoluminescence concentration quenching measured on these samples in previously 

published works. This study brings theproof that the limit of solubility (or presence of 

extra erbium rich phases) is not the limit to efficient photoluminescence in this 

kind these kinds of samples and cannot be taken responsible for the concentration 

quenching effect. 

The issue of the physical mechanism ruling the PL quenching was discussed and some 

assumptions are made. The work still leaves us to further debates debate on whether the 

concentration of PL quenching is related to Er3+- Er–Er3+ interactions that occur either 

because the Er3+- Er–Er3+ distances are under a threshold or because of the degeneracy 

of the erbium levels of the octahedral and tetrahedral sites due to higher symmetry than 

the metallic site or due to oxygen electronegativity effect on erbium orbitals. The 

distance considerations lead to an optimum distance of 10 Å as the ideal distance 

between two Er3+ ions to optimize optimise the photoluminescence mechanism. 

The role of site environment chosen by the erbium ions in the PL mechanism still has to 

be pushed. At that stage a dedicated vacancy and/or spectroscopic studies on these 

samples would indeed be very fruitful to deepen the comprehension of the optical 

mechanisms. The authors envisage completing the study by performing spectroscopy 

targeting the edge energy of the rare earth. 

 

 

Conclusion 

TEM and XRD analyses were performed on Er doped sputtered AlN samples 

with variable erbium content [0 – 6 at. %]. The absence of extra phases on dark field, 

STEM images or electron and X diffraction data on the whole range proves the 

incorporation of the rare earth inside the AlN würtzite. Erbium is shown to be a full part 

of the AlN hexagonal unit cell; it expands the lattice progressively and proportionally to 

its quantity: AlNErx is a solid solution until x = 6 at.% whose lattice parameters follow a 

Vegard's law. The solubility limit has then not been reached even at 6 at.%. 
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From the theoretical calculations of XRD intensities, one deduces that the 

lanthanide atom mainly occupies the regular substitutional metallic atom in the nitride 

and that from a certain amount (1.7 %) part of it also fills the insertion sites of the 

hexagonal lattice (octahedral and tetrahedral sites). The rare earth ions adopt a random 

volume distribution inside AlN grains. The phase can then be written Al1-xNOzErxEry.  

From these deductions, a discussion was made to deepen the understanding of 

the photoluminescence concentration quenching measured on these samples in 

previously published works. This study brings the proof that the limit of solubility (or 

presence of extra erbium rich phases) is not the limit to efficient photoluminescence in 

this kind of samples and cannot be taken responsible for the concentration quenching 

effect.  

The issue of the physical mechanism ruling the PL quenching was discussed and 

some assumptions are made. The work still leaves to further debates whether the 

concentration PL quenching is related to Er
3+

 - Er
3+

 interactions that occur either 

because the Er
3+

 - Er
3+

 distances are under a threshold or because of the degeneracy of 

the erbium levels of the octahedral and tetrahedral sites due to higher symmetry than the 

metallic site or due to oxygen electronegativity effect on erbium orbitals. The distance 

considerations lead to an optimum distance of 10 Å as the ideal distance between two 

Er
3+

 ions to optimize the photoluminescence mechanism.  

The role of site environment chosen by the erbium ions in the PL mechanism 

still has to be pushed. At that stage a dedicated vacancy and/or spectroscopic studies on 

these samples would indeed be very fruitful to deepen the comprehension of the optical 

mechanisms. The authors envisage completing the study by performing spectroscopy 

targeting the edge energy of the rare earth. 
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Figure captions 

 

Fig. 1. X-ray microanalytical mapping on a cross section AlN:Er doped with 6 at.% of 

erbium using the energy values of a/ Al, b/ N, c/ O and d/ Er. Magnetron R.F. deposited 

films were prepared by using a working pressure of 0.5 Pa and a power of 300W. No 

coarsening of erbium rich phase can be evidenced here.  

 

Fig. 2. TEM diffraction patterns obtained a/ on the microcleaved AlN:Er film with 6 

at.% of erbium b/ on the microcleaved non doped AlN film. Lattice constants found in 

the reference database JCPDS files were used to draw the theoretical signatures of AlN 

würztite (green rings: JCPDS file Nr 2-0930) and most probable pure erbium phases 

(red rings: JCPDS file Nr 2-0930). P = Exemple of selected area to build images of Fig. 

3 and Fig. 4. 

 

Fig. 3. TEM Dark Field images recorded by using the {0002} and {10 1 1} rings of 

würtzite on cross sections of microcleaved samples a/ AlN:Er Erbium content = 6 %, b/ 

AlN:Er Erbium content = 3.6 % and c/ AlN films. As indicated by arrows, no 

precipitation of any kind can be evidenced at the grain boundaries of the columnar 

grains. 

 

Fig. 4. TEM Dark Field images recorded by using the {0002} and {10 1 1} rings of 

aluminium nitride on cross sections of FIB thinned down on the AlN:Er sample 

(Erbium content = 1 %). No nodules can be evidenced at the grain boundaries of the 

columnar grains (arrows).  

 

Fig. 5. XRD patterns of the 1 % AlN:Er sample using the Euler Circle diffractometer. 

Intensity is plot versus the tilt angle and the Bragg angle 2. Each diagram recorded 

with a step of 5° along  are shown from 0 (bottom) to 75° (top). The three vertical lines 

are guides for the eye corresponding to the three Bragg Peaks (100), (002) and (101).  

 

Fig. 6. Cumulated X-ray patterns showing the entire reciprocal space of AlN:Er films as 

a function of the erbium content. 

 

Fig. 7. Unit cell parameters a and c obtained from the detextured patterns versus the 

erbium content. Experimental error bars are included in the point markers.  

 

Fig. 8. Experimental (a) and theoretical (b) to (d) ratios  𝑅ℎ𝑘𝑙
𝑒𝑥𝑝 𝑜𝑟 𝑡ℎ

 of the main XRD 

peaks of the AlN cell as a function of erbium content. For experimental data: 

 𝑅002
𝑒𝑥𝑝

 = I002 / I100,  𝑅101
𝑒𝑥𝑝

 = I101 / I100 and for theoretical   𝑅002
𝑡ℎ  = F002

2
 / 

F100
2
,  𝑅101

𝑡ℎ  = F101
2
 / F100

2
. 100% of Er atoms are supposed to: - (b) substitute to the 

aluminium atom - (c) occupy tetrahedral sites - (d) occupy octahedral sites. 
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Table 1. Theoretical intensities of structure factor F
2
 of AlN:Er würtzite cell as a 

function of the crystallographic localisation of the rare earth inside the cell and versus 

the erbium content.  

 

 

100% of Er atoms 

substitute Al atoms 

100% of Er atoms are 

on the tetrahedral site 

100% of Er atoms are 

on the octahedral site 

 

(1/3,2/3,z=0) 

  

(1/3,2/3,z=0.62) 

 

(0,0,z=¼) 

  Er % I100 I002 I101 

 

I100 I002 I101 

 

I100 I002 I101 

 0,0 1000 622 957 

 

1000 622 957 

 

1000 622 957 

 1,0 1054 662 1056 

 

1069 604 834 

 

870 573 957 

 1,7 1093 692 1132 

 

1118 592 753 

 

784 541 957 

 2,8 1156 740 1253 

 

1198 576 634 

 

659 492 957 

 3,6 1203 776 1346 

 

1257 566 555 

 

574 459 957 

 6,0 1349 890 1650 

 

1445 546 354 

 

356 367 957 
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Fig. 4. 
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Fig 5  
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Fig. 7.  
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Fig. 8.  
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