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Abstract. We give a simple yet efficient Alternating Direction Method
of Multipliers algorithm for solving sparse-modeling-based detectors [7, 9]
for massive MIMO systems. Our solution relies on a special reformulation
of the associated optimization problem by describing the constraints as a
Cartesian power of the probability simplex. Simulation results show that
the proposed algorithm is as accurate as the best known solvers (interior
point methods), while its complexity remains linear with respect to the
size of the system.
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1 Introduction

Large-scale Multiple-Input Multiple-Output, more commonly known as massive
MIMO are attractive wireless communication systems that utilizes tens to hun-
dreds antennas for transmission and reception. This powerful technology has
emerged as an effective solution to the growing tremendous demand on high
quality wireless communication in a limited radio spectrum. This is because it
can provide high data transmission rates, when applied in a spatial multiplexing
mode (V-BLAST), without needing additional bandwidth allocation. For that,
massive MIMO systems are one of the key enablers for deploying the next gen-
eration cellular systems [11]. However, as a result of requiring a large number of
antennas, the detection task becomes very challenging. Thought the maximum
likelihood (ML) is the optimal detector in the sense that it leads to the smallest
probability of error, it is equivalent to solve an integer least square minimization,
and thus it is extremely expensive from a complexity perspective. Sphere decod-
ing can effectively resolve this problem for small size MIMO systems but not
for large scale ones [10]. As an alternative to the ML optimal approach, many
suboptimal detectors have been proposed and studied in the literature. Those
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techniques range from the simple linear detectors such as zero forcing (ZF) and
minimum mean square error (MMSE) to the more sophisticated semidefinite
relaxation (SDR) based detectors. All these detectors have their floors. The de-
coders which rely on SDR still not so tolerable in terms of complexity while the
performances (in terms of BER) of linear decoders are so poor.
On another front, an emerging detection strategy relying on sparse and re-
dundant representations theory has recently shown promising results [7, 9] and
[6]. Sparse and redundant representations theory is a powerful and emerging
paradigm that is at the core of compressive sensing and it has been successfully
applied to a wide range of signal and image processing problems [5]. As we will
briefly show in section 3, the references above have all adopted the sparse decom-
position approach introduced in [1]. Subsequently, their proposed detectors are
the same from an optimization point of view. On the side of numerical solutions,
the first two papers have suggested interior point (IP) methods while the last one
have employed ADMM after converting the optimization model to Least Abso-
lute Shrinkage and Selection Operator (LASSO) problem. The ADMM technique
[2] is a first order optimization method. It has been extensively applied in a va-
riety of fields thanks to its ability to break down a hard minimization to easier
sub-problems, and separately solves them. Let us return to [6]. It is well known
that the penalized LASSO form requires an additional regularization parameter,
which is, in general, very difficult to determine in advance.
In this work, we propose simple way to solve all those detectors using ADMM.
In order to do that, we describe the constraints set in terms of the standard
(probability) simplex. Based on this new formulation of the detection problem,
our algorithm is derived. The rest of this paper proceeds as follows. In section 2,
we give the system model. We shortly review sparse-modeling-based detectors in
section 3. Our proposed ADMM-based solution is presented in section 4. Section
5 is devoted to simulation results. Finally, we conclude this paper in section 6

Definitions and Notation. The proximity operator of a scaled function as λf(·)
is defined as proxλf (v) = argmin

x∈D

(
f(x) + 1

2λ‖x− v‖22
)
. The orthogonal projec-

tion of a vector v onto a convex closed set D is ΠD(v) = argmin
x∈D

(
1
2‖x− v‖22

)
.

As a widely adopted convention, we use uppercase boldface letters for matrices
and lowercase boldface letters for vectors. The ith standard unit vector of an
Euclidean space Rn is denoted as ei. We denote the d× d identiy matrix by Id
and the all ones vector of length d by 1d. The symbols (·)T and (·)H stand for
the transpose and the Hermitian of a matrix respectively. As usual, we denote
the set of reals by R and the set of complexes by C. <(·) and =(·) are used for
the real part and the imaginary part of a complex number (resp. vector). By the
symbol ⊗, we denote the Kronecker product. For an integer n, J1, nK denotes
the set {1, 2, . . . , n}. We write, (·) � (·) to emphasize that the first object is
greater or equal to the second one component-wise. The indicator function of
closed convex set D is defined as

ID(z) =
{
0 z ∈ D
+∞ z /∈ D
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2 System Model

We assume that our large-scale MIMO system is constituted of Nt transmit and
Nr receive antennas (uplink scenario). The transmission of the data symbols
x ∈ MNt , whereM is the signaling set, is made through a flat fading channel
modeled as a matrix H ∈ CNr×Nt . The entries of H are assumed to be i.i.d
CSGS random variables of zero mean and unit variance. The received vector
y ∈ CNr is then given by

y = Hx + ν, (1)

where, y ∈ CNr is the received vector and ν represent the AGWN noise at the
receiver, which is their entries are also i.i.d CSGS random variable of zero mean
and a variance equal to σ2. Furthermore, we assume that the receiver knows
perfectly the CSI (Channel Information state) but the emitter does not. The
ML detector requires the solution of the following least square problem under
discrete constraints,

minimize 1
2‖y −Hx‖22

subject to x ∈MNt .
(2)

Some detection approaches work on the real equivalent model to (1) which is

ỹ = H̃x̃ + ν̃, (3)

where, ỹ = [<(y) =(y)]T , x̃ = [<(x) =(x)]T and

H̃ =

[
<(H) −=(H)
=(H) <(H)

]
.

Note that x̃ ∈ P2Nt , where, P is the equivalent PAM to the original (generally)
QAM constellation.

3 Review on sparse-modeling-based massive MIMO
detection

For the sake of completeness, we present in this section a brief review on the
sparse-modeling-based massive MIMO detection strategy. The sparse decompo-
sition in [1, 7] exploits the finteness propriety of the modulation set in the way
that we shortly explain hereafter. Let m = [m1, . . . ,mL]

T , then any symbol
mi ∈M can be written as

mi = mTei,

Clearly, ei is sparse since it has only one nonzero entry. Extending this to the
transmitted signal x gives

x = (INt ⊗mT︸ ︷︷ ︸
D

)s, (4)

where, s ∈ RLNt and D ∈ CNt×LNt is the dictionary.
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One drawback of this transform is its ultimate dependency on the modulation
being used and thus, its dimension may be burden for higher order alphabets
[9]. A solution to this issue has been given in [9], where it has been proposed
to apply the previous transform after converting rectangular L-QAM to BPSK
constellation using the technique of [4]. Leveraging these representations for (2)
and relaxing the hard constraint give the following minimization problem [7, 9]

minimize 1
2‖y −Φs‖22

subject to Bs = 1
s � 0.

(5)

The minimization (5) represents what we refer to as sparse-modeling-based
detectors. Here, Φ = DH or Φ = WD′H depending of the transform be-
ing used. The matrix W mapping L-QAM symbols to BPSK ones [4], where
D′ = I ⊗ [−1,+1]. The matrix B = I ⊗ 1T , where, again, the dimensions are
determined with respect to the chosen decomposition. Therefore, to keep our
derivations general, we assume, in the rest of this paper, that our sparse repre-
sentation vector s ∈ RpN , where N is the size of the equivalent data vector to
be sparsely represented and p is the dimension of the associated standard unit
vector. For the sparse decomposition used in [6], it is exactly that of [1, 7] applied
to the PAM equivalent constellation (to QAM) when the real model (3) is used,
and its LASSO formulation has been demonstrated to be equivalent to (5) [7, 9].
At the end of this section, we want to mention that the minimization in (5) is
convex and straightforward separable (in objective and constraints), and hence
many ADMM solutions are possible and they are guaranteed to converge.

4 Proposed ADMM solution

We denote by A+ the feasible set (5), i.e.,

A+ =
{
s ∈ RpN | Bs = 1N , s � 0pN

}
.

Since the vector s is a concatenation of N unit vectors i of length p, we can
regard the set A+as the N -Cartesian power of the unit simplex ∆p of dimension
p. So, we can write

A+ = ∆N
p , (6)

where, ∆p =
{
s ∈ Rp | 1T s = 1, s � 0p

}
. For the simplicity of notation, we omit

hereafter the subscript p. Using (6), we can rewrite (5) as follows

minimize 1
2‖y −Φs‖22

subject to si ∈ ∆, ∀i ∈ J1, NK. (7)

In order to apply ADMM for solving (7), we need first to write it in a split form
as follows

minimize 1
2‖y −Φs‖22 +

Nt∑
i=1

I∆(zi)

subject to s = z,
(8)
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where, z =
[
zT1 , . . . , z

T
N

]T ∈ RpN is a slack variable. The ADMM method solves
a convex optimization problem such as (8) in three steps. The first two steps are
an alternated minimization of the augmented Lagrangian associated with the
problem of interest with respect to the primal variables s then z (respectively z
then s ). The last step is an updating of the dual variable w. For our problem
(8), its augmented Lagrangian reads

Lρ (s, z,w) =
1

2
‖y −Φs‖22 +

Nt∑
i=1

I∆(zi) + wT (s− z) +
ρ

2
‖s− z‖22 (9)

By simple algebraic manipulations, we can put (9) in the so-called scaled form
as follows

Lρ (s, z,u) =
1

2
‖y −Φs‖22 +

Nt∑
i=1

I∆(zi) +
ρ

2
‖s− z + u‖22 −

ρ

2
‖u‖22, (10)

where, u = w
ρ . Note that the last term in (10) does not affect the optimization

with respect to both s and z and thus it will be omitted.

s-update. Updating s requires the optimization of the following problem

sk+1 = argmin
s

1

2
‖y −Φs‖22 +

ρ

2
‖s− zk + uk‖22. (11)

This is a smooth quadratic convex problem and it solution can be easily obtained
by seeking the value of s for which the gradient vanishes. Subsequently, the
solution is given by

sk+1 =

(
1

2

[(
ΦHΦ

)
+
(
ΦHΦ

)T ]
+ ρI

)−1 (
<
(
ΦHy

)
+ ρ

(
zk − uk

))
. (12)

It worth mentioning that, for the derivation of the gradient, we have used the fact
that our optimization variable s is real. That is to say, that for a complex-valued
function h of a real variable α, we simply define its derivative as

dh(α)

dα
=
d<(h(α))

dα
+ 

d=(h(α))
dα

.

Note that the matrix to be inverted is constant in throughout all the process.
So, its inverse is needed to be determined only once.

z-update. The problem to solve in this step is given by

zk+1 = argmin
z1,...,zN

N∑
i=1

I∆(zi) +
ρ

2
‖sk + uk − z‖22 (13)
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Algorithm 1 Proposed ADMM based algorithm
Input: s0 ∈ RN , z0 ∈ RN ,u0 ∈ RN , ρ > 0
1: preprocessig:

2: Ψ←
(

1
2

[(
ΦHΦ

)
+
(
ΦHΦ

)T ]
+ ρI

)−1

%% save matrix inverse

3: ỹ← <
{
ΦHy

}
%% save matrix multiplication

4: k ← 0
5: repeat
6: sk+1 ← Ψ

[
ỹ + ρ

(
zk − uk

)]
7: for i← 1, N do
8: zk+1

i ← Π∆
(
uki + sk+1

i

)
9: end for
10: uk+1 = uk + sk+1 − zk+1

11: k ← k + 1
12: until a halting criterion is met
13: x̃← DsK %% back to the x domain
14: x̂← Ω(x̃) %% hard slicing
Output: x̂

Since the minimization (13) defines the proximity operator of a separable func-
tion, we can use the separability property of the proximity operator [12, p. 129]
to write

zk+1 =

 proxI∆(s1 + u1)
...

proxI∆(sN + uN )

 . (14)

Furthermore, the proximity of an indicator function of any set is nothing but
the orthogonal projection on the same set. Therefore, (14) becomes

zk+1 =

 Π∆(s1 + u1)
...

Π∆(sN + uN )

 . (15)

All we need now, is to determine how to perform the orthogonal projection
onto the standard simplex. Clearly, the Euclidean projection onto a simplex is a
convex optimization problem as any orthogonal projection onto any convex set.
Although, there is no closed-form solution to this problem, one can still get it
in different simple ways. One well known iterative method is presented in [12, p.
182]. A simpler, reasonably fast and easy-to-implement algorithm is derived in
[3]. This algorithm is our choice to perform the z-update step.

u-update For the completeness of the algorithm, we recall that the scaled dual
variable u updates as follows

uk+1 = uk + sk+1 − zk+1. (16)

We summarize our proposed solution in algorithm 1. The derived algorithm
is simple and it alternates between an updating of a regularized least square
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solution (s-update) and a series of projections onto the standard probability
simplex (z-update).

5 Computer Experiments

In this section, we assess the performances of our algorithm, in terms of i)
the quality of solution that it provides, ii) the BER, specially for the under-
determined scenario when the number of receive antennas is less than the num-
ber transmitters and iii) the runtime needed for the algorithm to execute. We
Fellow the system model described in (2). The simulations have been conducted
using a workstation with Xeon(R) E5−2630 v3 CPU and 8 GB of RAM. All the
algorithms are implemented using Matlab. We should mention that due to space
limitation, we only present the results corresponding to the flat fading channel
mode. The extension to the selective channel environment is not difficult [7].

0 5 10 15 20 25 30

10-4

10-3

10-2

10-1

100

Fig. 1. BER performance comparison between the proposed ADMM and interior point
solution for two different massive MIMO transmissions scenarios

First, we evaluate the proposed algorithm in terms of the reconstruction quality.
To do that, we compare the solution of our algorithm with that of the highly
precise interior point (IP) method, for two instances of (5), i.e., for a QPSK
64 × 64 MIMO system and a 16−QAM 32 × 32 one. We employed cvx [8], a
Matlab toolbox for modeling and solving convex optimization problems relying
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Fig. 2. BER performance comparison of the proposed ADMM solution versus MMSE
and SDR-rbr for two overloaded mssive MIMO systems using QPSK signaling

on IP methods. The same hard slicing techique is used to round the solutions of
both algorithms to the signaling set. The obtained results are depicted in Fig.
1, where we can see that our algorithm produces exactly the same quality of
solutions as the IP method for the two MIMO settings that we have considered
and this remains true for the whole SNR range.
In order to get some insight about the performances of the sparse-modeling-
based detectors and in particular our proposed algorithm, we compare it to
one of the high-performance SDR based detectors, (SDR-rbr), for QPSK and
BPSK constellations [13]. We use the code provided by the authors, available at
http://www.ee.cuhk.edu.hk/~wkma/mimo/rbr.html. The comparison is made
for two under-determined (overloaded) massive MIMO systems scenarios using
QPSK signaling. The results of this comparison are given in Fig. 2. It is clear that
the SDR-rbr decoder outperforms our detector for both configurations 64 × 58
and 64×48. One important thing to notice here, is that the gap of performances
between the two algorithms decreases (64×48 case) as the system becomes more
overloaded. This confirms that the sparse-modeling-based detection approach is
more suitable for the under-determined case [7, 9]. Finally, we compare the run
time of our algorithm with respect to one of the most low-complexity detectors,
MMSE, and one of the cheapest SDR based detectors, SDR-br. THe results
are shown in Fig. 3 We have used QPSK modulation for a variety of antennas
number. The average runtime was obtained for 250 independent simulations
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Fig. 3. Runtime of the proposed ADMM algorithm, SDR-rbr and MMSE for a variety
of antennas number at SNR = 15 dB

at 15 dB. We notice that the complexity of our algorithm is in between the
complexity of MMSE and that of the SDR-rbr. The ratio between our algorithm
and the SDR-rbr one is roughly 10 in the favor of our method, and so it is when
compared to the MMSE decoder in the favor of the latter. Furthermore, as an
interesting remark, the proposed algorithm scales linearly with the dimension
of the system. We should point out that, for all the results presented above,
we have used a standard stopping criterion [2] for our algorithm without any
acceleration technique. We believe, however, that a modification of the halting
criterion of the proposed algorithm such as an early termination, i.e., running
the algorithm for a prefixed number of iterations and / or an incorporation of an
acceleration scheme like using a variable step (ρ) [2], will help in further reducing
the runtime of the proposed algorithm.

6 Conclusion

We have proposed a simple and fairly fast algorithm for solving the sparse-
modeling-based detectors. We have shown, by simulations, that the proposed
algorithm achieves the accuracy level as the IP methods with a lower complexity.
Our solution is based on the ADMM framework after reformulating (in terms
of the probability simplex) the optimization problem modeling the underlined
detection strategy. Future work includes a further detailed study on the different
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parameters of ADMM (step size, stopping criterion), and a comparison with
other possible ADMM implementations. As another interesting directions, we
will evaluate the robustness of our solution to multi-cell interference and the
multiple access scenarios.
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