
HAL Id: hal-02087529
https://hal.science/hal-02087529v1

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Digital Plane Recognition with Fewer Probes
Tristan Roussillon, Jacques-Olivier Lachaud

To cite this version:
Tristan Roussillon, Jacques-Olivier Lachaud. Digital Plane Recognition with Fewer Probes. 21st
IAPR International Conference on Discrete Geometry for Computer Imagery, Couprie M.; Cousty J.;
Kenmochi Y.; Mustafa N., Mar 2019, Marne-la-Vallée, France. pp.380-393, �10.1007/978-3-030-14085-
4_30�. �hal-02087529�

https://hal.science/hal-02087529v1
https://hal.archives-ouvertes.fr

Digital Plane Recognition With Fewer Probes ?

Tristan Roussillon1 and Jacques-Olivier Lachaud2

1 Université de Lyon, INSA Lyon, LIRIS, UMR CNRS 5205, F-69622, France
tristan.roussillon@liris.cnrs.fr

2 Université Savoie Mont Blanc, LAMA, UMR CNRS 5127, F-73376, France
jacques-olivier.lachaud@univ-smb.fr

Abstract. We present a new plane-probing algorithm, i.e., an algorithm
that computes the normal vector of a digital plane from a starting point
and a predicate “Is a point x in the digital plane?”. This predicate is
used to probe the digital plane as locally as possible and decide on-the-
fly the next points to consider. We show that this algorithm returns the
same vector as another plane-probing algorithm proposed in Lachaud
et al. (J. Math. Imaging Vis., 59, 1, 23–39, 2017), but requires fewer
probes. The theoretical upper bound is indeed lowered from O(ω logω)
to O(ω) calls to the predicate, where ω is the arithmetical thickness
of the digital plane, and far fewer calls are experimentally observed on
average. This reduction is made possible by a study that shows how to
avoid computations that do not contribute to the final solution. In the
context of digital surface analysis, this new algorithm is expected to be
of great interest for normal estimation and shape reconstruction.

Keywords: Digital Plane Recognition · Normal Estimation · Plane-
Probing Algorithm.

1 Introduction

Analyzing the geometry of digital surfaces is a challenging task, since the local
geometry is very poor (only six possible normal directions). A classical approach
is to estimate the geometry by observing a larger neighborhood, whose size is
given rather arbitrarily by the user. However, this approach comes at the cost of
blurring sharp features. The trade-off between a sufficiently large neighborhood
to get a relevant normal direction and a sufficiently small neighborhood to pre-
serve sharp features is hard to find and may vary across the digital shape. Purely
digital methods have thus emerged and try to perform digital surface analysis
without any external parameter.

A natural approach, e.g., [3], consists in computing a set of digital plane
segments (DPSs) that locally fit the digital surface. This strategy has also been
used for surface area estimation [7] or reversible polyhedrization [12]. However,
finding how to scan the digital surface to efficiently recognize DPSs whose size

? This work has been partly funded by CoMeDiC ANR-15-CE40-0006 and PARADIS
ANR-18-CE23-0007-01 research grants.

2 T. Roussillon and J.-O. Lachaud

and shape reveal the local geometry is difficult. There are numerous algorithms
for the recognition of DPSs (to quote a few: [13, 4, 11, 1, 6, 2, 5, 14]). All these
algorithms take a point set as input (possibly in an incremental way), deter-
mine whether this set can be a DPS or not, and if so, provide its geometric
characteristics. But the most difficult part consists in determining which input
points should be taken into account during the recognition process in order to
guarantee that the obtained DPSs are indeed tangent to the digital surface.

Therefore, recently, another category of recognition algorithms have been
developped [8–10]. These algorithms, called plane-probing algorithms in [10], de-
cide on-the-fly where to probe next the digital surface while growing a triangular
facet, which is tangent and separating by construction. The growth direction is
given by both arithmetic and geometric properties.

Two of these algorithms proposed in [10], called H- and R-algorithm, are
local in the sense that the returned triangular facet is guaranteed to stay around
the starting point (but this is not the case for the one proposed in [8]). The
R-algorithm is even more local in the sense that the final triangular facet has
experimentally always acute angles and is less elongated.

In this paper, we present a new plane-probing algorithm that returns the
same triangular facet (and normal vector) as the R-algorithm, but requires fewer
probes. For comparison, the R-algorithm requires O(ω logω) calls to the predi-
cate “Is x in the digital plane?” and the exhibited worst-case example implies
Θ(ω) calls. We present here an improvement that achieves the tight bound of
O(ω) calls. Furthermore, far fewer calls are observed in practice.

In sec. 2, we give an overview of our new algorithm. In sec. 3 and sec. 4, we
go into details and show how to avoid computations that do not contribute to
the final solution. Some experimental results are discussed in sec. 5.

2 A New Plane-Probing Algorithm

We keep definitions and notations introduced in [10]. We wish to extract the
parameters of a standard digital plane P, defined as the set

P = {x ∈ Z3 | 0 ≤ x ·N < ω},

where N ∈ N3 is the normal vector whose components (a, b, c) are such that 0 <
a ≤ b ≤ c, gcd (a, b, c) = 1 and ω := (1, 1, 1) ·N is the thickness. Our approach
can be straightforwardly extended to digital plane with arbitrary intercept and
with a normal vector in any orthant (see [10]).

As in [9, 10], we propose an algorithm that, given a predicate P (x) :=“Is
x ∈ P ?” and a starting point p at the base of a reentrant corner of P, computes
the normal vector of a piece of digital plane surrounding p. Moreover, if p is a
lower leaning point, i.e., p ·N = 0, the algorithm extracts the exact normal N of
P and a basis of P, that is a pair of vectors that forms a basis of the 2D lattice
{x ∈ Z3 | x ·N = 0}. This basis is returned as three upper leaning points of P,
i.e., points x such that x ·N = ω − 1.

Digital Plane Recognition With Fewer Probes 3

•
p

e0

e1

e2

◦
q

•
v00

•
v01

•
v02

Initialization Given a starting point p ∈ P, the algorithm

places an initial triplet of points T(0) := (v
(0)
k)k ∈{0,1,2}

such that ∀k,v(0)
k := p+ek+ek+1, where (e0, e1, e2) is the

canonical basis of R3, and ”∀k” stands for “∀k ∈ Z/3Z”
for clarity. The algorithm requires T(0) ⊂ P which is the
case when p is the base of a reentrant corner (see inset
figure). We also denote by q the point p + (1, 1, 1), which is not in P.

Evolution At each step i ∈ Z≥0, the triangle T(i) represents the current approx-
imation of the plane P. The algorithm updates one vertex of T(i) per iteration,
while q does not move and stays above the triangle. The new vertex x? in
T(i+1) \T(i), is a point both in P and in a specific neighborhood N (i) yet to be
defined, such that the circumsphere of T(i) ∪ {x?} does not include any point
x ∈ (N (i)∩P) in its interior. Denoting by Σ the set of permutations over {0,1,2},
we introduce the following notations (illustrated in fig. 1) in order to define N (i):

∀k, m(i)
k := q − v

(i)
k (1)

∀σ ∈ Σ,y(i)
σ := v

(i)
σ(0) + m

(i)
σ(1) (2)

∀σ ∈ Σ,∀λ ∈ Z≥0,R(i)
σ [λ] := y(i)

σ + λm
(i)
σ(2) (3)

∀σ ∈ Σ,R(i)
σ := (R(i)

σ [λ])λ∈Z≥0
(4)

q

v0
m0

v1
m1

v2

m2

y(0,1,2)

y(0,2,1)

y(1,0,2)

y(1,2,0)

y(2,0,1)
y(2,1,0)

R(0,1,2)

R(0,2,1)

R(1,0,2)

R(1,2,0)

R(2,0,1)

R(2,1,0)

Fig. 1: The triangle conv(T(i)) is depicted in grey. The H-neighborhood N (i)
H :=

(y
(i)
σ)σ∈Σ is depicted with red disks, whereas rays (R(i)

σ)σ∈Σ are depicted with
green squares and include the H-neighborhood (iteration number dropped).

4 T. Roussillon and J.-O. Lachaud

At step i, the six points N (i)
H := (y

(i)
σ)σ∈Σ forms an hexagon, called H-

neighborhood, while the six rays N (i)
R := (R(i)

σ)σ∈Σ forms the R-neighborhood. In
[10], the H-(resp. R-)algorithm uses the H-(resp. R-)neighborhood (see fig. 2 for
an illustration of the running of the two algorithms). While the update procedure
of the H-algorithm is trivial and constant-time, since x? is one of the six points
of the H-neighborhood, the update procedure of the R-algorithm computes a
candidate point for each ray having a non-empty intersection with P, before
choosing one of them as x?. This strategy is not optimal since a candidate point
belonging to a ray may not be chosen finally.

(a) H]0 (b) H]1 (c) H]2 (d) H]3 (e) H]4 (f) H]5

(g) R]0 (h) R]1 (i) R]2 (j) R]3 (k) R]4 (l) R]5, H]6

Fig. 2: The H and R algorithms are applied on a digital plane of normal vector
N(9, 2, 3). Images (a) to (f) and (l) show the six iterations of the H-algorithm,
whereas images (g) to (l) show the five iterations of the R-algorithm. In each
image, the current triangle is depicted in blue, whereas the neighborhood is
depicted in red – disks (resp. circles) for points lying inside (resp. outside) the
digital plane. Note that, in this example, the output of the two algorithms only
differ at step]4.

On the contrary, in this paper, we propose to only probe the H-neighborhood
and one ray to determine triangle T(i+1). In addition, we may probe fewer points
onto the ray. We call this new algorithm R1 since it tests at most one ray

Digital Plane Recognition With Fewer Probes 5

per iteration. It can be coarsely described as repetitive calls to the function
UpdateTriangle (see algorithm 1).

Algorithm 1: R1-algorithm: it extracts a triplet of upper leaning points
by probing the H-neighborhood and one ray.

Input: The predicate P (x) “Is x ∈ P ?”, the exterior point q and
triangle T(0)

Output: A triangle T(n)

i← 0;

while N (i)
H ∩P 6= ∅ do

T(i+1) ← UpdateTriangle(P,T(i), q) ;
i← i+ 1;

return T(i)

Table 1: Function UpdateTriangle(P,T, q), with T = (v0,v1,v2). After all
cases, the triangle T is returned.
|NH ∩P| NH ∩P Output

0 () algorithm termination

1 (yσ) vσ(0) ← vσ(0) + mσ(1)

2
(yσ,yσ′) with

σ(0) 6= σ′(0), σ(1) = σ′(1)
if yσ′ ≤T yσ then σ ← σ′;
vσ(0) ← vσ(0) + mσ(1)

2
(yσ,yσ′) with

σ(0) = σ′(0), σ(1) 6= σ′(1)

if mσ(1) ≥mσ′(1) then (τ, τ ′)← (σ, σ′);
else (τ, τ ′)← (σ′, σ);
(π, α)← ClosestAmongPointAndRay(P,T, q, τ ′, τ)
vπ(0) ← vπ(0) + mπ(1) + αmπ(2)

3
(yσ,yσ′ ,yσ′′) with

σ(0) = σ′(0), σ(0) 6= σ′′(0),
σ(1) 6= σ′(1)

if mσ(1) ≥mσ′(1) then (τ, τ ′)← (σ, σ′);
else (τ, τ ′)← (σ′, σ);
if yσ′′ ≤T yτ ′ then τ ′ ← σ′′ ;
(π, α)← ClosestAmongPointAndRay(P,T, q, τ ′, τ)
vπ(0) ← vπ(0) + mπ(1) + αmπ(2)

else Error, P is not a plane.

Function UpdateTriangle is detailed in tab. 1 and performs a case analysis
on the cardinal and the composition of the H-neighborhood.

Order induced by circumspheres to T: Let I+ be the half-plane delimited by T
and containing q. We claim that the ball C(T, z) circumscribing T and some
z ∈ I+, induces a total pre-order on I+ through the inclusion relation. Indeed,
if z′ ∈ I+, whenever z′ ∈ C(T, z), then (C(T, z′) ∩ I+) ⊂ (C(T, z) ∩ I+).
Clearly, this relation is reflexive, transitive and connex. We shall say that z′ is
closer to T than z and we write z′ ≤T z. We can use this relation because the
R-neighborhood is included in I+.

6 T. Roussillon and J.-O. Lachaud

Correctness: To prove that R1-algorithm extracts the normal vector of P when
starting from a lower leaning point p, it is enough to show that UpdateTri-
angle outputs in all cases the same triangle T as in the R-algorithm, i.e., it
updates a vertex of T by a point x? inNR∩P such that ∀x ∈ (NR∩P),x? ≤T x.
In the next sections, we show that it does so, by appropriate calls to function
ClosestAmongPointAndRay, which is detailed in algorithm 4.

3 Local Configuration

Informally, function UpdateTriangle updates T as follows:

|NH ∩P| = 0: the algorithm stops,
|NH ∩P| = 1: the algorithm updates the associated vertex of T with this point,
|NH ∩P| = 2, the two points are linked to distinct vertices of T: the al-

gorithm picks the closest according to ≤T and updates the associated vertex,
|NH ∩P| = 2, the two points are linked to the same vertex of T: the al-

gorithm determines which ray originating from these points may possibly
contain the target point, then picks the closest according to ≤T and updates
the associated vertex,

|NH ∩P| = 3, two of the points are linked to the same vertex of T: the
algorithm determines which ray originating from these points may possibly
contain the target point, then picks the closest according to ≤T and updates
the associated vertex.

Even if there are exactly six points in NH by definition, there are fewer points
in NH ∩P:

Lemma 1. There are no more than three points in NH ∩ P. In addition, they
are consecutive when counter-clockwise ordered around q.

For the proof, we introduce the edge vectors defined as dk := vk+1 − vk for
all k ∈ {0, 1, 2}.

Proof. Since NH = {q ± dk}k ∈{0,1,2} and q /∈ P, it is clear that q − dk and
q + dk cannot be both in P by linearity, which means that there are no more
than three points in NH ∩P.

For the second part, it is enough to see that for any k, q−dk+1 is necessarily
in P by linearity if both q + dk and q + dk+2 are in P. ut

Lemma 1 shows that all possible cardinalities are taken into account in
function UpdateTriangle. Now, we explain why we can only probe the H-
neighborhood and one ray at each step. To do so, we use the following lemma:

Lemma 2 ([10], Lemma 7). For any permutation σ ∈ Σ, if there is a point
x of ray Rσ that is not in P, then no point further than x on the ray is in P.

Due to Lemma 2, if the starting point of a ray is not in P, then no other
ray point has to be considered, which explains the first two lines of tab. 1. The
following result explains the third line:

Digital Plane Recognition With Fewer Probes 7

Lemma 3. For any k, let Rσ and Rσ′ be two distinct rays such that σ(0) =
σ′(0). If the starting point of one ray is not in P, then only the starting point of
the other ray may be in P among all the points of Rσ ∪Rσ′ .

Proof. The key point is to notice that the two rays cross at a point vσ(0) +
mσ(1) + mσ(2) (because σ′(1) = σ(2) and σ′(2) = σ(1), see fig. 1). Due to
lemma 2, we conclude that if the starting point of a ray, let us say Rσ, is not in
P, then neither the crossing point, nor any further point in Rσ′ (and obviously
in Rσ) is in P. ut

In other words, only one point, instead of two rays, has to be considered in
this case. If only two such points belong to NH ∩ P, it is enough to determine
which one is the closest according to ≤T, hence the third line of tab. 1. The
following result provides the rationale for the fourth and fifth lines:

Lemma 4. Let Rσ and Rσ′ be two distinct rays such that σ(0) = σ′(0) and
such that yσ,yσ′ ∈ P. If mσ(1) ≥mσ′(1) (resp. mσ(1) ≤mσ′(1)), a closest point
x? according to ≤T, among all the points of Rσ∪Rσ′ , belongs to Rσ∪yσ′ (resp.
Rσ′ ∪ yσ).

The proof of lemma 4 requires this result in the case of an acute angle:

Lemma 5. Let Rσ and Rσ′ be two distinct rays such that σ(0) = σ′(0) and
such that yσ,yσ′ ∈ P. If mσ(1) ·mσ′(1) ≥ 0, a closest point x? according to ≤T,
among all the points of Rσ ∪Rσ′ , is either yσ or yσ′ .

Proof. Let us focus on Rσ because the same is true for Rσ′ . To show that either
yσ or yσ′ is closer than any point of Rσ, let us consider the parallelogram whose
first diagonal links vσ(0) to a ray point Rσ[λ], with λ ∈ Z>0, and the second one
links vσ(0) + mσ(1) = yσ to Rσ[λ] −mσ(1) = vσ(0) + λmσ(2). We prove below
that the first diagonal is always strictly longer than the second one, which means
that a sphere passing by vσ(0) and Rσ[λ] contains either yσ or vσ(0) + λmσ(2),
i.e., yσ ≤T Rσ[λ] or yσ′ = vσ(0) + mσ(2) ≤T vσ(0) + λmσ(2) ≤T Rσ[λ].

Indeed, we have:

(mσ(1) + λmσ(2))
2 − (−mσ(1) + λmσ(2))

2 =

4λ(mσ(1) ·mσ(2)) > 0,

because λ > 0 and mσ(1) ·mσ(2) = mσ(1) ·mσ′(1) ≥ 0 by hypothesis.

Proof (lemma 4). The proof is divided into two cases. If mσ(1) ·mσ′(1) ≥ 0, x?

is the starting point of Rσ or Rσ′ by lemma 5.
Otherwise, mσ(1) ·mσ′(1) < 0 and we have:

−max{m2
σ(1),m

2
σ′(1)} <mσ(1) ·mσ′(1) < 0,

which is equivalent to

0 <mσ(1) ·mσ′(1) + max{m2
σ(1),m

2
σ′(1)} < max{m2

σ(1),m
2
σ′(1)}.

8 T. Roussillon and J.-O. Lachaud

Let us assume w.l.o.g. that mσ(1) ≥mσ′(1) so that mσ(1) ·(mσ(1)+mσ′(1)) ≥
0. Let us consider the following linear transform: m̃σ(1) := mσ(1) and m̃σ′(1) :=
mσ(1) + mσ′(1). Since m̃σ(1) · m̃σ′(1) ≥ 0, due to lemma 5, vσ(0) + m̃σ(1) or
vσ(0)+m̃σ′(1) is closer according to ≤T, than any point vσ(0)+m̃σ′(1)+λm̃σ(1),
with λ ∈ Z>0. In other words, a closest point x? cannot belong to {Rσ′ [λ+1], λ ∈
Z>0} ⊂ Rσ′\yσ′ , because either vσ(0)+m̃σ(1) = Rσ[0] or vσ(0)+m̃σ′(1) = Rσ[1],
are closer according to ≤T. ut

According to lemma 4, it is enough to call the function ClosestAmong-
PointAndRay on an appropriate point and on an appropriate ray (lines 4 and
5 of tab. 1). The body of the function is given in the next section.

4 One point and one ray Rσ

It is well known that the implicit equation of the sphere can be written as a
determinant (e.g., see MathWorld). More precisely, the algebraic distance of x′

to the circumsphere of T∪{x} is given by the following 5×5 matrix determinant:

δT(x,x′) :=

∣∣∣∣∣∣
v0 v1 v2 x x′

v0
2 v1

2 v2
2 x2 x′

2

1 1 1 1 1

∣∣∣∣∣∣ .
Note that δT(x,x′) ≤ 0 ⇔ x′ ≤T x means that x′ is inside or on the

circumsphere of T ∪ {x}.
From now on, we assume w.l.o.g. that σ(0) = 0, σ(1) = 1, σ(2) = 2 so that

we can take v0 as the origin. In order to shorten notations, we set y := x− v0,
y′ := x′ − v0 and using dk = vk+1 − vk = mk −mk+1 for all k, we have:

δ0T(y,y′) := δT(v0 + y,v0 + y′) =

∣∣∣∣ d0 −d2 y y′

d0
2 d2

2 y2 y′
2

∣∣∣∣ . (5)

Let us denote by [z, z′, z′′] the 3 × 3 matrix composed of columns z, z′, z′′.
We give below a formula for δ0T(z, z′ + αz′′) for any z, z′, z′′ ∈ R3 using the
cofactor expansion of the determinant (5):

δ0T(z, z′ + αz′′) = −d0
2 det [−d2, z, z

′ + αz′′] + d2
2 det [d0, z, z

′ + αz′′]

− z2 det [d0,−d2, z
′ + αz′′] + (z′ + αz′′)2 det [d0,−d2, z].

Since the determinant is multilinear, the following identity can be obtained:

δ0T(z, z′ + αz′′) = δ0T(z, z′) + αδ0T(z, z′′)

+
(
α2(z′′

2
) + α

(
− z′′

2
+ 2z′ · z′′

))
det [d0,−d2, z]. (6)

We now use (6) in order to find an implementation of algorithm 2 and algo-
rithm 3 in constant time, which are used in algorithm 4.

Digital Plane Recognition With Fewer Probes 9

SphereRayIntersection In order to implement algorithm 2, we consider the
circumsphere of T ∪ {v0 + z}, where z ∈ {m2,d0 + m2,−d2 + m1}, and its
intersection with the ray points v0 + m1 + λm2, λ ∈ Z≥0.

First, det [d0,−d2, z] = 1 for all z ∈ {m2,d0 + m2,−d2 + m1}, because
the determinant is multilinear and det [m0,m1,m2] = 1 [10, Lemma 3]. Conse-
quently, replacing z′ with m1, z′′ with m2 and α with λ in (6), we get:

δ0T(z,m1 +λm2) = λ2(m2
2) +λ

(
2z ·m1−m2

2 + δ0T(z,m2)
)

+ δ0T(z,m1). (7)

The ray points v0 +m1 +λm2 are in the circumsphere of T∪{v0 +z} if and
only if δ0T(z,m1 + λm2) ≤ 0. Since δ0T(z,m1 + λm2) is a quadratic function in
λ, there are either zero or two (possibly equal) real roots λ1 ≤ λ2. In the first
case, there is no intersection between the circumsphere of T∪ {v0 + z} and the
ray, whereas in the second case, the ray points such that λ ∈ [λ1;λ2] ∩ Z≥0, lie
in the circumsphere of T ∪ {v0 + z} and are closer than z according to ≤T.

In algorithm 2, we check the sign of the discriminant and either return an
empty list if it is strictly negative or return the (possibly empty) range of ray
points as the list of the (possibly equal) lower and upper bounds.

Algorithm 2: SphereRayIntersection(T, q, σ′, σ)

Input: the base triangle T, the exterior point q, a point yσ′ , a ray Rσ
Output: either empty () or the bounds (λ1, λ2) ∈ Z2

≥0 of the greatest
interval of points {Rσ[λ], λ1 ≤ λ ≤ λ2, λ ∈ Z≥0}, such that
yσ′ ≤T Rσ[λ]

(z,m2,m1)←
(
yσ′ − vσ(0), q − vσ(2), q − vσ(1)

)
;

(a, b, c)←
(
m2

2,−m2
2 + 2z ·m1 + δ0T(z,m2), δ0T(z,m1)

)
;

d← b2 − 4ac;
if d ≥ 0 then

(λ1, λ2)←
(
d(−b−

√
d)/(2a)e, b(−b+

√
d)/(2a)c

)
;

if λ1 ≤ λ2 and 0 ≤ λ2 then return (max(0, λ1), λ2);

return ()

ClosestOnRay In order to implement algorithm 3, we consider the family of
spheres passing by the vertices of T and a ray point v0 + m1 + λm2, for any
λ ∈ Z≥0. Given a sphere, we want to check whether the next ray point, i.e.,
v0 + m1 + (λ+ 1)m2, is located inside it or not.

Replacing both z, z′ with m1 + λm2, z′′ with m2, α with 1 in (6), we get:

δ0T(m1 + λm2,m1 + (λ+ 1)m2) = δ0T(m1 + λm2,m2)

+ 2(m1 + λm2) ·m2 det [d0,−d2,m1 + λm2].

Using (7) (with z = m2) and det [d0,−d2,m1 + λm2] = λ + 1 (again from
[10, Lemma 3]), this expression can be simplified into:

δ0T(m1 + λm2,m1 + (λ+ 1)m2) =

λ2(m2
2) + λ(3m2

2) + 2(m1 ·m2) + δ0T(m1,m2). (8)

10 T. Roussillon and J.-O. Lachaud

Clearly the determinant δ0T(m1 +λm2,m1 +(λ+1)m2) is a quadratic func-
tion in λ, whose minimum is reached at λ = −3/2. It is therefore monotoni-
cally increasing over [0;∞). Let λ? be the smallest integer λ ∈ Z≥0 such that
δ0T(m1 + λm2,m1 + (λ + 1)m2) > 0. By definition, δ0T(m1 + λ?m2,m1 +
(λ? + 1)m2) > 0, which means that the sphere passing by the vertices of T and
v0 + m1 + λ?m2 contains neither v0 + m1 + (λ? + 1)m2 nor the following ray
points by transitivity, because δ0T(m1 + λm2,m1 + (λ+ 1)m2) > 0 also for all
λ ≥ λ?. In other words, ∀λ ≥ λ?,v0 + m1 + λ?m2 ≤T v0 + m1 + λm2. In
addition, if λ? ≥ 1, δ0T(m1 + (λ? − 1)m2,m1 + λ?m2) ≤ 0, which is equivalent
to δ0T(m1 + λ?m2,m1 + (λ?− 1)m2) > 0. This means that ∀λ ∈ 0, . . . , λ?,v0 +
m1 + λ?m2 ≤T v0 + m1 + λm2. As a consequence, λ? provides the closest ray
point. Algorithm 3 just computes λ? and returns the corresponding ray point.

Algorithm 3: ClosestOnRay(T, q, σ). Searches for the closest point ac-
cording to ≤T on ray Rσ.

Input: the base triangle T, the exterior point q, a ray Rσ
Output: the smallest λ ∈ Z≥0 such that Rσ[λ] ≤T Rσ[λ+ 1]
(m1,m2)←

(
q − vσ(1), q − vσ(2)

)
;

(a, b, c)←
(
m2

2, 3m2
2, 2m1 ·m2 + δ0T(m1,m2)

)
;

d← b2 − 4ac;
if d < 0 then return 0;

λ? ← d(−b+
√
d)/(2a)e;

return max(0, λ?)

ClosestAmongPointAndRay Once the ray that can hold a candidate point
on P has been identified, it remains to determine whether the closest point to
the current triangle T (according to ≤T) lies on the ray or is another point y
of the H-neighborhood. Algorithm 4 performs this operation with the following
steps. First it calls algorithm 2 to find if there may be an interval of points on
the ray that are closer than y. If it is the case, it checks if at least one belongs
to P. If this is the case it calls algorithm 3 to determine the one that is closest.
If it belongs to P, we are done. Otherwise, we have to find the closest point on
the ray that belongs to P by a call to algorithm 5. This routine simply performs
an exponential march followed by a binary search.

5 Complexity Analysis and Experimental Results

Upper bound on the number of calls to predicate Given the previous functions
that are used to update the triangle at each step, we can prove:

Theorem 1. The number of calls to predicate P (x) := “Is x in P” in R1-
algorithm (algorithm 1) is upper bounded by O(ω).

Proof. Let A(i) := v
(i)
0 ·N + v

(i)
1 ·N + v

(i)
2 ·N be the height of the current

triangle. Let us denote λ(i) the integer related to the update of a vertex at

iteration i, i.e., ∃π ∈ Σ,v(i+1)
π(0) ← v

(i)
π(0) + m

(i)
π(1) + λ(i)m

(i)
π(2).

Digital Plane Recognition With Fewer Probes 11

Algorithm 4: ClosestAmongPointAndRay(P,T, q, σ′, σ)

Input: the predicate P , the base triangle T, the exterior point q, a candidate
point yσ′ with P (yσ′), a ray Rσ with P (yσ)

Output: A couple (τ, α), such that τ ∈ {σ, σ′}, α ∈ Z≥0 and P (Rτ [α])
L← SphereRayIntersection(T, q,yσ′ , σ);
if L 6= ∅ then

α1, α2 ← L;
if P (Rσ[α1]) then

α← ClosestOnRay(T, q, σ);
if α1 ≤ α ≤ α2 then

if P (Rσ[α]) then return (σ, α);
else return (σ,FindLast(P,T, q, σ, α1));

return (σ′, 0)

Algorithm 5: FindLast(P,T, q, σ, α1) Use exponential march then bi-
nary search to find the last point in Rσ that is in P.

Input: the predicate P , the base triangle T, the exterior point q, a ray Rσ, an
integer α1 with P (Rσ[α1])

Output: the integer λ such that P (Rσ[λ]) and ¬P (Rσ[λ+ 1])
J ← 1;
while P (Rσ[α1 + J]) do J ← 2J ;
λ1 ← α1 + bJ/2c; λ2 ← α1 + J ;
while λ2 6= λ1 + 1 do

λ←
⌊
λ1+λ2

2

⌋
;

if P (Rσ[λ]) then λ1 ← λ;
else λ2 ← λ;

return λ1

Since ∀k,m(i)
k ·N ≥ 1 [10, Lemma 5] then A(i+1) −A(i) ≥ 1 + λ(i). Noticing

that A(0) ≥ 2ω, A(n) ≤ 3ω − 3 [10, Theorem 2], suming over all iterations gives

ω − 3 ≥ A(n) −A(0) ≥
n−1∑
i=0

(1 + λ(i)). (9)

If we look now at the number B(i) of calls to P at iteration i, we must count the
6 calls for determining the H-neighborhood, 2 more possible calls in Closes-
tAmongPointAndRay, and possibly 2 log2 J calls in FindLast. But α1 +
J/2 ≤ λ(i), thus 2 log2 J ≤ 2 log2(1 + λ(i)). We get straightforwardly that
B(i) ≤ 8 + 2 log2(1 + λ(i)). Recalling that x ≥ log2(1 + x) and suming the
B(i), we derive from (9) that

ω − 3 ≥
n−1∑
i=0

(1 + λ(i)) ≥ 1

8

n−1∑
i=0

(8 + 8 log2(1 + λ(i))) ≥ 1

8

n−1∑
i=0

B(i). (10)

12 T. Roussillon and J.-O. Lachaud

Noticing that
∑n−1
i=0 B

(i) is the total number of calls to P concludes. ut

It is worthy to note that the R1-algorithm performs also O(ω) arithmetic,
square root and rounding operations.

Furthermore, plane-probing algorithms are run in this work on a digital plane,
i.e., an infinite point set. However, since they are local and stop after a finite
number of steps (theorem 1), there is some finite subsets for which processing
the whole digital plane or only one of such subsets would be equivalent. Charac-
terizing these subsets and bounding their size or diameter is not easy and may
involve geometrical arguments based on the empty-circumsphere criterion. Then
it will be possible to express the time complexity of plane-probing algorithms
relatively to this bound, but it is still an open question.

n Bi
∑n−1
i=0 B

i

alg. avg. avg. max. avg.

H 24.84 6.00 6 149.01

R 17.59 14.49 25 254.95

R1 17.32 7.06 14 122.36

Experimental evaluation We ran all three al-
gorithms (H, R and R1) on planes whose nor-
mal vector is ranging from (1,1,1) to (200, 200,
200). There are 6578833 vectors with relatively
prime components in this range. Results are
reported in the inset table. For the number of
steps, i.e., n, and the total number of calls to
predicate P , i.e.,

∑
iB

i, we computed the av-
erage over the 6578833 runs. However, for the number of calls to P at step i,
i.e., Bi, we computed the average and maximum over all steps and runs.

First, the number of steps is 70% lower on average for the R- and R1-
algorithms than for theH-algorithm. Note that the number of steps is not exactly
the same for R and R1, because the arbitrary choice of a closest point in case
of several closest co-spheric points is not the same. All three algorithms have
however the same worst case: there are indeed always n = 2r−1 steps for planes
with normal N(1, r, r).

Second, the number of calls to P at each step is exactly 6 for the H-algorithm,
close to 14 on average for the R-algorithm, but between 6 and 8 in most cases for
the R1-algorithm – a greater number of calls happens only occasionally, when
function FindLast is called in algorithm 4.

The total number of calls to P is the lowest on average for the R1-algorithm,
which is a good trade-off between the number of steps and the number of calls
at each step. On small-size vectors, i.e., ranging from (1,1,1) to (200, 200, 200),
the R1-algorithm is approximately twice faster than the R-algorithm, because
the total number of calls to P is close to 122 on average for the R1-algorithm
while it is close to 255 for the R-algorithm.

alg.\k 10 20 30

R 18.50 25.39 36.33

R1 6.80 6.20 6.11

For larger vectors, we can observe that the num-
ber of calls to P per step is still constant on average
for the R1-algorithm, but may be arbitrary large for
the R-algorithm. Indeed, on digital planes of normal
N(1, Fk, Fk+1), where Fk is the k-th term of the Fi-
bonacci sequence, the average number of predicate calls at each step increases
as k increases for R, while it remains close to 6 for R1 (see inset table).

Digital Plane Recognition With Fewer Probes 13

6 Conlusion and Perspectives

We have presented a new plane-probing algorithm that outperforms both in
theory and practice the state-of-the-art R-algorithm. It avoids computations
that do not contribute to the final solution and performs fewer calls to the
predicate “Is x ∈ P?”: between 6 and 8 calls most of the time at each step and
O(ω) calls in total. This algorithm is expected to be an efficient tool for digital
surface analysis.

It remains to understand why these algorithms perform so much better on
average than the worst-case bound O(ω). Therefore, we will investigate in the
future their link with multi-dimensional continued fractions and dynamic number
theory.

References

1. Buzer, L.: A linear incremental algorithm for naive and standard digital lines and
planes recognition. Graphical Models 65(1-3), 61–76 (2003)

2. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm
for digital plane recognition. In: Discrete Geometry for Computer Imagery, LNCS,
vol. 4992, pp. 346–357. Springer (2008)

3. Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3d
digital objects. In: Int. Workshop Combinatorial Image Analysis. LNCS, vol. 6636,
pp. 132–143. Springer Berlin / Heidelberg (2011)

4. Debled-Rennesson, I., Reveillès, J.: An incremental algorithm for digital plane
recognition. In: Discrete Geometry for Computer Imagery. pp. 194–205 (1994)

5. Fernique, T.: Generation and recognition of digital planes using multi-dimensional
continued fractions. Pattern Recognition 42(10), 2229–2238 (2009)

6. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane
recognition algorithm. Discrete Applied Mathematics 151(1), 169–183 (2005)

7. Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area
estimation. In: Visual Form, LNCS, vol. 2059, pp. 356–366. Springer (2001)

8. Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to
compute the normal vector of a digital plane. Journal of Theoretical Computer
Science (TCS) 624, 73–88 (2016)

9. Lachaud, J.O., Provençal, X., Roussillon, T.: Computation of the normal vector
to a digital plane by sampling signicant points. In: Proc. Discrete Geometry for
Computer Imagery. pp. 194–205 (2016)

10. Lachaud, J.O., Provençal, X., Roussillon, T.: Two Plane-Probing Algorithms for
the Computation of the Normal Vector to a Digital Plane. Journal of Mathematical
Imaging and Vision 59(1), 23 – 39 (2017)

11. Mesmoudi, M.M.: A Simplified Recognition Algorithm of Digital Planes Pieces. In:
Discrete Geometry for Computer Imagery. pp. 404–416 (2002)

12. Sivignon, I., Dupont, F., Chassery, J.M.: Decomposition of a three-dimensional
discrete object surface into discrete plane pieces. Algorithmica 38(1), 25–43 (2004)

13. Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Transactions
on Pattern Analysis and Machine Intelligence 16(6), 647–652 (1994)

14. Veelaert, P.: Fast Combinatorial Algorithm for Tightly Separating Hyperplanes.
In: Int. Workshop Combinatorial Image Analysis. pp. 31–44 (2012)

