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Abstract: In this article, we study a simple Time Delay System (tds), the short-
circuited lossless transmission line. By realizing the Cauer synthesis of the input
impedance, we can put in evidence a special expression of the impulse response of
this system. Furthermore, we illustrate on this example a particular link between
the Cauer synthesis of infinite order systems and the Legendre polynomials.
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1. INTRODUCTION

Two years ago, we started to study the extension
of the Cauer synthesis in order to model dis-
tributed parameter systems. We first use contin-
ued fractions as a complementary tool to reduce
the order of thermal models (Trigeol et al., 2002).
Then, we have study propagative models like elec-
trical transmission lines. These systems sometimes
appear as pure tds. And in this case, it has turned
out that the Cauer representation we were using
can be linked to the Legendre polynomials in the
time domain.

Although the telegrapher’s equation is well-known
in both electrotechnical and telecommunication
domains, we shall remind the physical model it
comes from. Then, we give some classical results
on the equivalent input impedance and the im-
pulse response of a short-cicuited line. Secondly,
we detailled the Cauer synthesis of this infinite
order system and its ladder network representa-
tion. Eventually, the explicit calculation of the
voltages and the currents within the network puts
in evidence the orthogonal polynomials.

2. A SIMPLE TIME-DELAY SYSTEM: THE
LOSSLESS TRANSMISSION LINE

2.1 Input impedance

A transmission line is a distibuted parameter
system. In the lossless case, the variations of the
voltage and the current can be described by a set
of partial differential equations, or pdes,

∂v

∂x
= −l

∂i

∂t
,

∂i

∂x
= −c

∂v

∂t

where l and c are per unit length inductance and
capacitance (figure 1). In this article the line is
assumed to be homogeneous, thus l and c are
constant parameters.

It is convenient to solve this system thanks to
the Laplace transform. However, for the sake of
simplicity, we keep the same notations (v and i)
for the voltage and the current and their trans-
forms. Let s be the Laplace variable. Introduc-
ing the widespread notations for the longitudinal

impedance z = ls and the transversal admittance
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Fig. 1. Elementary segment of a lossless transmis-
sion line.

y = cs 1 , one can rewrite the equations as

dv

dx
= −zi,

di

dx
= −yv.

In the particular case of a short-circuited trans-
mission line of length x, these equations lead to
the input impedance

Z =
v

i
=

√

z

y
tanh

√
zy x =

√

Z

Y
tanh

√
ZY ,

(1)
where Z = zx and Y = yx (figure 2).
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Fig. 2. Input impedance of a short-circuited trans-
mission line.

2.2 Impulse response

Rewriting the equation (1) in form of the Ohm’s
law allows to regard the impedance Z as an
infinite order transfer function.

u = Zi.

From this point of view, the current i is the input
of the process, whereas the voltage v is the output.

To make the transcendal nature of the transfer
function obvious, we can express the hyperbolic
tangent by the mean of the exponential function.

Z =
v

i
=

√

Z

Y

1 − e−2
√

ZY

1 + e−2
√

ZY

1 In the most general case, losses are taken into account by

introducing resistive terms. So the distributed parameters

become z = r + ls and y = g + cs.

Thus, we have the relation

v =

√

Z

Y
i −
√

Z

Y
ie−2

√
ZY − ve−2

√
ZY .

Since the line is lossless, we have
√

ZY =
√

lc xs = τs

and
√

Z

Y
=

√

l

c
= Zc

with (τ, Zc) ∈ R
2. Therefore, back in the time

domain, the exponentials become pure delays.

v(t) = Zci(t) − Zci(t − 2τ) − v(t − 2τ) (2)

In terms of propagation, 2τ is the time spent by
a progressive wave to travel back and forth after
reflection at end of the line. On the other hand,
Zc is usually called the characteristic impedance

of the line.

Assume that i(t) = δ(t) (the Dirac distribution).
The impulse response v(t) is then obtained thanks
to the recurrence equation (2).

v(t) = Zc

(

δ(t) + 2

∞
∑

n=1

(−1)nδ(t − 2nτ)

)

Thus, the impulse response is a serie of Dirac with
alternate weights.

3. EQUIVALENT LADDER NETWORK

3.1 Cauer synthesis of the line impedance

We have previously discussed the generalization of
the Cauer synthesis to infinite order systems, and
shown its efficiency as a method to obtain reduced
order systems (Soulier and Lagonotte, 2002). The
synthesis basically consists in the continued frac-
tion expansion of the impedance (Cauer, 1926).
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This expression shows that Z can be seen as
the equivalent impedance of a infinite network
of discrete elements (figure 3). In other words,
we have obtained a lumped parameter system
equivalent to the initial distributed parameter
system without any approximation.

3.2 Recurrence relations in the ladder network

The ladder structure on the figure 3 allows to
express some useful relations between the volt-
ages and the currents inside the network. For
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Fig. 3. Ladder network obtained by the Cauer
synthesis.

convenience, we introduce two more notations:
the residual voltages rv

n = v −
∑n

k=1
vk and the

residual currents ri
n = i −

∑n

k=1
ik. Provided the

series converge, the Kirchhoff’s laws imply

v =
∞
∑

n=1

vn i =
∞
∑

n=1

in, (3)

then
lim

n→∞
ri
n = lim

n→∞
rv
n = 0.

Moreover, assuming that rv
0 = v and ri

0 = i. We
can write the following recurrence relations (in the
frequential domain) for all n ≥ 1.



































in =
rv
n−1

Zn

ri
n = ri

n−1 − in

vn =
ri
n

Yn

rv
n = rv

n−1 − vn

To translate these relations back into time-
domain, we just have to notice that in the lossless
case, 1

Zn

and 1

Yn

represent pure integrators.

1
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=
(4n − 3)
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1

s
,

1
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=
(4n − 1)

cx

1

s
.

Therefore, the recurrence relations result in


































in(t) =
4n − 3

lx

∫ t

0

rv
n−1(u)du

ri
n(t) = ri

n−1(t) − in(t)

vn(t) =
4n − 1

cx

∫ t

0

ri
n(u)du

rv
n(t) = rv

n−1(t) − vn(t)

4. IMPULSE RESPONSE DECOMPOSITION

4.1 Reduced equations

In order to make the demonstration more read-
able, we shall use reduced equations. The perti-
nent variable changes are

ṽn =
√

cx vn r̃v
n =

√
cx rv

n t̃ =
t

τ

ĩn =
√

lx in r̃i
n =

√
lx ri

n ũ =
u

τ
.

Let ĩ = δ(t̃), the impulse response now is

ṽ(t̃) = δ(t̃) + 2
∞
∑

n=1

(−1)nδ(t̃ − 2n). (4)

While the recurrence relations lead to a reduced
system where the electrical constants do not ap-
pear anymore







































ĩn(t̃) = (4n − 3)

∫ t̃

0

r̃v
n−1(ũ)dũ

r̃i
n(t̃) = r̃i

n−1(t̃) − ĩn(t̃)

ṽn(t̃) = (4n − 1)

∫ t̃

0

r̃i
n(ũ)dũ

r̃v
n(t̃) = r̃v

n−1(t̃) − ṽn(t̃)

One step further is achieved by another variable
change hiding the voltages and the currents. So
the two parts of the recurrence equations can be
merged into one.

a2n = ṽn ra
2n = r̃v

n

a2n−1 = ĩn ra
2n−1 = r̃i

n



















ra
−1 = ĩ, ra

0 = ṽ

an(t̃) = (2n − 1)

∫ t̃

0

ra
n−1(ũ)dũ, for n ≥ 1

ra
n(t̃) = ra

n−2(t̃) − an(t̃), for n ≥ 1
(5)

4.2 Legendre polynomial form

We shall express the newly defined an – thus the
voltages and the currents inside the network – in
form of Legendre polynomials. More precisely, we
shall demonstrate the following property.

Theorem 1. Let an be the reduced voltages and
currents in the ladder network with an impulse
input. Then,

∀t̃ ∈ [0, 2[, an(t̃) = (−1)n+1(2n− 1)Pn−1(t̃− 1),
(6)

with Pn being the orthogonal Legendre polynomi-
als.

PROOF. We proceed by mathematical induc-
tion. Let’s begin by proving the property for n = 1
and n = 2. This is simply achieved by using the
relations (5), the impulse response (4) and the fact
that t̃ is limited to the interval [0, 2[.

a1(t̃) =

∫ t̃

0

ra
0 (ũ)dũ =

∫ t̃

0

ṽ(ũ)dũ

=

∫ t̃

0

(

δ(ũ) + 2

∞
∑

n=1

(−1)nδ(ũ − 2n)

)

dũ

= U(t̃) + 2

∞
∑

n=1

(−1)nU(t̃ − 2n).

(7)



With U being the Heaviside function, a1 = 1 for
all t̃ ∈ [0, 2[.

In the same manner, we determine a2 by integra-
tion

a2(t̃) = 3

∫ t̃

0

(ra
−1(ũ) − a1(ũ))dũ

= 3

∫ t̃

0

(δ(ũ) − a1(ũ))dũ

=











3(4k + 1 − t̃) pour t̃ ∈ [4k, 4k + 2[,

3(t̃ − 4k − 3) pour t̃ ∈ [4k + 2, 4k + 4[

k ∈ N

(8)

Thus, a2(t̃) = 3(1− t̃) for t̃ limited to [0, 2[.

Since P0(x) = 1 and P1(x) = x, the property is
true up to n = 2. Let’s go on with the induction
step. Assume that the relation (6) is true for any
integer lower or equal to n (induction hypothesis).
Then,

an+1(t̃) = (2n + 1)

∫ t̃

0

ra
n(ũ)dũ

= (2n + 1)

∫ t̃

0

(ra
n−2(ũ) − an(ũ))dũ

=
2n + 1

2n − 3
an−1(t̃) −

∫ t̃

0

an(ũ)dũ

Because of the induction hypothesis, the relation
(6) holds for n and n − 1. Thus we can rewrite
an+1 with Legendre polynomials.

an+1(t̃) = (−1)n(2n + 1)Pn−2(t̃ − 1)

− (−1)n+1(2n + 1)(2n − 1)

∫ t̃

0

Pn−1(ũ − 1)dũ

Let’s notice the following property for the leg-
endre polynomials, resulting from the Rodrigues’
formula (see for example (Sansone, 1959), p.178).

P ′
n+1(x) − P ′

n−1(x) = (2n + 1)Pn(x)

And because of the fact that Pn+1(−1) =
Pn−1(−1) (= ±1, according to n) the above for-
mula is integrated into

(2n+1)

∫ t̃

0

Pn(ũ−1)dũ = Pn+1(t̃−1)−Pn−1(t̃−1)

Eventually,

an+1(t̃) = (−1)n+2(2n + 1)
(

Pn−2(t̃ − 1) + (2n − 1)

∫ t̃

0

Pn−1(ũ − 1)dũ

)

= (−1)n+2(2n + 1)
(

Pn−2(t̃ − 1) + Pn(t̃ − 1) − Pn−2(t̃ − 1)
)

= (−1)n+2(2n + 1)Pn(t̃ − 1).

So the relation holds for all n ≥ 1.

4.3 Periodicity

We need to extend the results found on an(t̃)
within the interval t̃ ∈ [0, 2[ to the whole semi
axis t̃ ≥ 0. To achieve this goal, we have to show
the following properties about the symmetry and
the periodicity of an.

Theorem 2. Let an be the reduced voltages and
currents in the ladder network with an impulse
input. Then,

(i) ∀t̃ ≥ 0, an(t̃ + 2) = −an(t̃) (symmetry),
(ii) ∀t̃ ≥ 0, an(t̃ + 4) = an(t̃) (periodicity).

PROOF. Once again, we carry out a mathemat-
ical induction. The previously found expressions
(7) and (8) of a1 and a2 immediatly show the
property (i) for n = 1 and n = 2.

Let’s assume that the relation (i) is true up to
n ≥ 2. We have to deal with two cases according
to the parity of n. If n is even, let n = 2p, p ∈ N.
Then,

an+1(t̃ + 2) = a2p+1(t̃ + 2)

= (4p + 1)

∫ t̃+2

0

ra
2p(ũ)dũ

= (4p + 1)

∫ t̃+2

0

(

ra
0 (ũ) −

p
∑

k=1

a2k(ũ)

)

dũ

= (4p + 1)
(

∫ t̃+2

0

ra
0 (ũ)dũ −

p
∑

k=1

∫ t̃+2

0

a2k(ũ)dũ

)

One the one hand, let’s notice that

∫ t̃+2

0

ra
0 (ũ)dũ = a1(t̃ + 2) = −a1(t̃)

= −
∫ t̃

0

ra
0 (ũ)dũ

On the other hand, since the an are Legendre
polynomials times a constant coefficient, one can
write (due to the orthogonality):

∫ 2

0

a1(ũ)dũ = 2, and

∫ 2

0

an(ũ)dũ = 0, if n 6= 1.

Then, we deduce from the induction hypothesis
that

∫ t̃+2

0

a2k(ũ)dũ

=

∫ 2

0

a2k(ũ)dũ +

∫ t̃

0

a2k( ˜u + 2)dũ

=

∫ t̃

0

−a2k(ũ)dũ

And eventually,



an+1(t̃ + 2) = (4p + 1)
(

−
∫ t̃

0

ra
0 (ũ)dũ −

p
∑

k=1

∫ t̃

0

−a2k(ũ)dũ

)

= −(4p + 1)
∫ t̃+2

0

(

ra
0 (ũ) −

p
∑

k=1

a2k(ũ)

)

dũ

= −a2p+1(t̃) = −an+1(t̃)

In the odd case, we can carry out a similar process.
Let n = 2p + 1,

an+1(t̃ + 2) = a2p+2(t̃ + 2) = (4p + 3)
(

∫ t̃+2

0

ra
−1(ũ)dũ −

p
∑

k=0

∫ t̃+2

0

a2k+1(ũ)dũ

)

One the one hand, since ra
−1(ũ) = δ(ũ), we have

∫ t̃+2

0

ra
−1(ũ)dũ = 1.

And on the other hand, if k > 0,

∫ t̃+2

0

a2k+1(ũ)dũ

=

∫ 2

0

a2k+1(ũ)dũ +

∫ t̃

0

a2k+1( ˜u + 2)dũ

= −
∫ t̃

0

a2k+1(ũ)dũ

And if k = 0,

∫ t̃+2

0

a1(ũ)dũ

=

∫ 2

0

a1(ũ)dũ +

∫ t̃

0

a1( ˜u + 2)dũ

= 2 −
∫ t̃

0

a1(ũ)dũ

Eventually,

p
∑

k=0

∫ t̃+2

0

a2k+1(ũ)dũ

= 2 −
p
∑

k=0

∫ t̃

0

a2k+1(ũ)dũ,

thus,

an+1(t̃ + 2)

= (4p + 3)

(

−1 +

p
∑

k=0

∫ t̃

0

a2k+1(ũ)dũ

)

= −(4p + 3)
(

∫ t̃

0

ra
−1(ũ)dũ −

p
∑

k=0

∫ t̃

0

a2k+1(ũ)dũ

)

= −a2p+2(t̃) = −an+1(t̃)

The property (i) is proven, and (ii) directly results
from (i).

Therefore, it appears that the series (3) represent
a decomposition on the orthogonal basis of the
Legendre polynomials. The first terms of these
series are plotted on the figure 4 along with their
partial sums on the figures 5 and 6. This makes it
possible to observe the convergence in the sense

of distributions.
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Fig. 4. The first components of the expansion of
the input ĩ and the corresponding impulse
response ṽ.

0 1 2 3 4 5 6
−1

0

1

0 1 2 3 4 5 6
−10

0

10

0 1 2 3 4 5 6
−20

0

20

0 1 2 3 4 5 6
−50

0

50

∑

2

n=1
ĩn
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ĩn
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ṽn

∑

4

n=1
ṽn
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5. CONCLUSION

The Cauer synthesis has proven to be particularly
efficient in system modeling and in order reduc-
tion. This is due to its link with the Padé ap-
proximants and the rapid convergence of certain
continued fractions.

Now, we just found the remarkable fact that for a
simple propagative time-delay system, the Cauer
synthesis is equivalent to representing signals with
orthogonals polynomials. Thus, the coefficients
of the continued fraction can be seen as the
Fourier coefficients of the Legendre transform of
the signals. In spite of some known connexions
between the Padé approximants and the Legendre
polynomials (Brezinski and Iseghem, 1983), such a
physical representation of the Legendre transform
of a delay transfer function seems to never have
been use.

We hope this can lead to new approximate models
of propagative systems and new simulation or
identification methods.
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