SmartML: A Meta Learning-Based Framework for Automated Selection and Hyperparameter Tuning for Machine Learning Algorithms Mohamed Mohamed Maher Zenhom Abdelrahman Maher, Sherif Sakr ## ▶ To cite this version: Mohamed Mohamed Maher Zenhom Abdelrahman Maher, Sherif Sakr. SmartML: A Meta Learning-Based Framework for Automated Selection and Hyperparameter Tuning for Machine Learning Algorithms. EDBT: 22nd International Conference on Extending Database Technology, Mar 2019, Lisbon, Portugal. 10.5441/002/edbt.2019.54. hal-02087414 HAL Id: hal-02087414 https://hal.science/hal-02087414 Submitted on 2 Apr 2019 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # SmartML: A Meta Learning-Based Framework for Automated Selection and Hyperparameter Tuning for Machine Learning Algorithms Mohamed Maher, Sherif Sakr University of Tartu, Estonia {mohamed.abdelrahman,sherif.sakr}@ut.ee #### ABSTRACT Due to the increasing success of machine learning techniques, nowadays, thay have been widely utilized in almost every domain such as financial applications, marketing, recommender systems and user behavior analytics, just to name a few. In practice, the machine learning model creation process is a highly iterative exploratory process. In particular, an effective machine learning modeling process requires solid knowledge and understanding of the different types of machine learning algorithms. In addition, all machine learning algorithms require user-defined inputs to achieve a balance between accuracy and generalizability. This task is referred to as Hyperparameter Tuning. Thus, in practice, data scientists work hard to find the best model or algorithm that meets the specifications of their problem. Such iterative and explorative nature of the modeling process is commonly tedious and time-consuming. We demonstrate SmartML, a meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms. Being meta learning-based, the framework is able to simulate the role of the machine learning expert. In particular, the framework is equipped with a continuously updated knowledge base that stores information about the meta-features of all processed datasets along with the associated performance of the different classifiers and their tuned parameters. Thus, for any new dataset, SmartML automatically extracts its meta features and searches its knowledge base for the best performing algorithm to start its optimization process. In addition, SmartML makes use of the new runs to continuously enrich its knowledge base to improve its performance and robustness for future runs. We will show how our approach outperforms the state-of-the-art techniques in the domain of automated machine learning frameworks. #### 1 INTRODUCTION Machine learning is the field of computer science that focuses on building algorithms that can automatically learn from data and automatically improve its performance without end-user instructions, influence or interference. In general, the effectiveness of machine learning techniques mainly rests on the availability of massive datasets, of that there can be no doubt. The more data that is available, the richer and the more robust the insights and the results that machine learning techniques can produce. Nowadays, © 2019 Copyright held by the owner/author(s). Published in Proceedings of the 22nd International Conference on Extending Database Technology (EDBT), March 26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org. Distribution of this paper is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0. we are witnessing a continuous growth in the size and availability of data in almost every aspects of our daily life. Thus, recently, we have been witnessing many leaps achieved by machine learning in wide range of fields [1, 9]. Consequently, there are growing demand to have increasing number of data scientists with strong knowledge and good experience with the various machine learning algorithms in order to be able to build models that can achieve the target performance and to keep up with exponential growing amounts of data which is produced daily. In practice, the machine learning modeling process is a highly iterative exploratory process. In particular, there is no one-model-fits-all solution, i.e, there is no single model or algorithm which is well-known to achieve the highest accuracy for all data set varieties in a certain application domain. Hence, trying many machine learning algorithms with different parameter configurations is commonly considered an inefficient, tedious, and time consuming process. Therefore, there has been growing interest to automate the machine learning modeling process as it has been acknowledged that data scientists do not scale¹. Therefore, recently, several frameworks have been designed to support automating the machine learning modeling process. For example Auto-Weka [8] is an automation framework for algorithm selection and hyper-parameter optimization which is based on Bayesian optimization using sequential model-based algorithm configuration (SMAC) and treestructured parzen estimator (TPE). Auto-Sklearn [3] is a framework that has been implemented on top of the popular python scikit-learn machine learning package that automatically considers the past performance on similar datasets for its automation decision. Other tools include Google Vizier which is based on grid or random search [5] and TPOT which is based on genetic programming [10]. In this demonstration, we present SmartML, a meta learning-based framework for automated selection and hyperparameter tuning for machine learning algorithms (using 15 classifiers). In our framework, the meta-learning feature is emulating the role of the domain expert in the field of machine learning [4, 11]. In particular, we exploit the knowledge and experience from previous runs by storing a set of data meta-features along with their performance. In addition, our knowledge base is continuously updated after running each task over SmartML which contributes to improving framework performance over the time. Our meta-learning mechanism is mainly used for the algorithm selection process in order to reduce the parameter-tuning search space which is conducted using SMAC Bayesian optimization [7]. This is different from other tools [3, 8] which https://hbr.org/2015/05/data-scientists-dont-scale | | ${\bf SmartML}$ | Auto-Weka | AutoSklearn | TPOT | |------------------------|----------------------------|-----------------------|------------------------|-------------------------| | Language | R | Java | Python | Python | | API | Yes | No | No | Yes | | Optimization Procedure | Bayesian Optimization | Bayesian Optimization | Bayesian Optimization | Genetic Programming, | | | (SMAC) | (SMAC and TPE) | (SMAC) | and Pareto Optimization | | Number of Algorithms | 15 classifiers | 27 classifiers | 15 classifiers | 15 classifiers | | | on top of R | on top of WEKA | on top of scikit learn | on top of scikit learn | | Support Ensembling | Yes | Yes | Yes | No | | Use Meta-Learning | Yes | No | Yes | No | | | (incrementally updated KB) | | (Static) | | | Feature preprocessing | Yes | Yes | Yes | No | | Model Interpretability | Yes | No | No | No | Table 1: Comparison between State-of-the-art Automated Machine Learning Frameworks deal with algorithm selection as one of the parameters to be tuned. SmartML can be used as a package in R language, one of the most popular languages in the data science domain, or as a Web application². It is also designed to be programming language agnostic so that it can be embedded in any programming language using its available REST APIs. Table 1 shows a feature comparison between our framework and other state-of-the-art frameworks. In our demonstration, we will show that SmartML can outperform other tools especially at small running time budgets by reaching better parameter configurations faster. In addition, SmartML has the advantage that its performance can be continuously improved over time by running more tasks which makes SmartML smarter by getting more experience based on the growing knowledge base. ## 2 SMARTML ARCHITECTURE Figure 1 illustrates the framework architecture of SmartML. In the *input definition* phase, the user uploads the dataset, choose the required options for features selection and preprocessing, specify which features of the dataset should be included in the modeling process, specify the target column which represents the classes of labels of the instances in the dataset and specify the time budget constraint for the framework for conducting the hyper-parameter tuning process. SmartML accepts csv and arff (attribute relation file format developed with the Weka machine learning software) file formats. In the preprocessing phase, SmartML starts by performing the feature preprocessing operations specified by the selected features. Table 2 lists the feature preprocessing operations supported by the SmartML framework. In this phase, the dataset is randomly split into training and validation partitions where the former is used in algorithm selection and hyper-parameter tuning while the later is used for evaluating the selected configurations during parameter tuning. In addition, a list of 25 meta-features are extracted from the training split describing the dataset characteristics. Examples of these features include number of instances, number of classes, skewness and kurtosis of numerical features, and symbols of categorical features. Currently, SmartML supports 15 different classifiers (Table 3). In the *algorithm selection* phase, the meta features of the input dataset at hand, which is extracted during the preprocessing phase, are compared with the meta features of the datasets that are stored in the knowledge base in order to identify the similar datasets, using a nearest neighbor approach. The dataset similarity detection process follows a weighted mechanism between two different factors. The first factors is the Euclidean distance between the meta-features of the dataset at hand and meta-features of all datasets stored in the knowledge base. The second factor is the magnitude of the best performing algorithms on the similar dataset. For example, it may be better to select the top n top performing algorithms on a single very similar dataset than selecting the first outperforming algorithm for n similar datasets. We use the retrieved results of the best performing algorithms on similar dataset(s) to nominate the candidate algorithms for the dataset at hand. In the hyper-parameter tuning phase, SmartML attempts to tune the selected classifiers hyper-parameters for achieving the best performance. In particular, the knowledge base contains information about the best parameter configurations for each algorithm on each dataset. The configurations of the nominated best performing algorithms are used to initialize the hyper-parameter tuning process for the selected algorithms. The time budget constraint specified by the end user represents the time used in hyper parameter tuning of the selected classifiers. In particular, this budget is divided among all the selected algorithms according to the number of hyper-parameters to tune in each algorithm (Table 3). SmartML applies the SMAC technique for hyperparameter optimization [7]. In particular, SMAC attempts to draw the relation between the algorithm performance and a given set of hyper-parameters by estimating the predictive mean and variance of their performance along the trees of the random forest model. The main advantage of using SMAC is its robustness by having the ability to discard low performance parameter configurations quickly after the evaluation on low number of folds of the dataset [7]. Finally, the results obtained from the hyper-parameter tuning process of the different nominated algorithms are compared with each other to recommend the best performing algorithm to the end user. In addition, a weighted ensembling [2] output of the top performing algorithms can be recommended to the end user based on their choice. In addition, we have integrated the Interpretable Machine Learning (iml) package³ in order to explain for the user the most important features that have been used by the $[\]overline{^2{\rm https://bigdata.cs.ut.ee/smartml/index.html}}$ $^{^3 \}rm https://cran.r-project.org/web/packages/iml/index.html$ Figure 1: SmartML: Framework Architecture | center | subtract mean from values | | | |------------|---|--|--| | scale | divide values by standard deviation | | | | range | values normalization | | | | zv | remove attributes with zero variance | | | | boxcox | apply box-cox transform to non-zero positive values | | | | yeojohnson | apply Yeo-Johnson transform to all values | | | | pca | transform data to the principal components | | | | ica | transform data to their independent components | | | Table 2: Integrated Feature Preprocessing Algorithms | Classification | Categorical | Numerical | Package | |----------------|-------------|------------|--------------| | Algorithm | parameters | parameters | | | SVM | 1 | 4 | e1071 | | NaiveBayes | 0 | 2 | klaR | | KNN | 0 | 1 | FNN | | Bagging | 0 | 5 | ipred | | part | 1 | 2 | RWeka | | J48 | 1 | 2 | RWeka | | RandomForest | 0 | 3 | randomForest | | c50 | 3 | 2 | C50 | | rpart | 0 | 4 | rpart | | LDA | 1 | 1 | MASS | | PLSDA | 1 | 1 | caret | | LMT | 0 | 1 | RWeka | | RDA | 0 | 2 | klaR | | NeuralNet | 0 | 1 | nnet | | DeepBoost | 1 | 4 | deepboost | Table 3: Integrated Classifier Algorithms selected model for directing its prediction process [6]. The interactive interface of our system has been designed using the Shiny R Package⁴. | Dataset | # Att. | # Classes | # Instances | Auto-Weka | $\mathbf{SmartML}$ | |--------------|--------|-----------|-------------|-----------|--------------------| | | | | | Accuracy | Accuracy | | abalone | 9 | 2 | 8192 | 25.14 | 27.13 | | amazon | 10000 | 49 | 1500 | 57.56 | 58.89 | | cifar10small | 3072 | 10 | 20000 | 30.25 | 37.02 | | gisette | 5000 | 2 | 2800 | 93.71 | 96.48 | | madelon | 500 | 2 | 2600 | 55.64 | 73.84 | | mnist Basic | 784 | 10 | 62000 | 89.72 | 94.91 | | semeion | 256 | 10 | 1593 | 89.32 | 94.13 | | yeast | 8 | 10 | 1484 | 51.80 | 66.23 | | Occupancy | 5 | 2 | 20560 | 93.99 | 95.55 | | kin8nm | 8 | 2 | 8192 | 93.99 | 96.42 | Table 4: Performance Comparison: SmartML VS Auto-Weka # 3 DEMO SCENARIO SmartML is available both as a Web application as well as RESTful APIs⁵. In this demonstration⁶, we will present to the audience the workflow of the SmartML framework (Figure 1). In particular, we will show that how our approach can help non-expert machine learning users to effectively identify the machine learning algorithms and their associated hyperparameter settings that can achieve optimal or near-optimal accuracy for their datasets with little effort. We start by introducing to the audience the challenges we tackle, the main goal and the functionalities of our framework. Then, we take the audience through the automated algorithm selection and hyper-parameter tuning process for sample datasets. We start by showing different features which is provided for the end-user (Figure 2). For example, the user can upload either a dataset file or a direct URL for the dataset. In addition, the user can choose either to perform both algorithm selection and hyper-parameter ⁴https://shiny.rstudio.com/ $^{^5\}mathrm{The}$ source code of the $\mathtt{SmartML}$ framework is available on <code>https:</code> //github.com/DataSystemsGroupUT/Auto-Machine-Learning $^6\mathrm{A}$ demonstration screencast is available on https://www.youtube. com/watch?v=m5sbV1P8oqU&feature=youtu.be Figure 2: Screenshot: Configuring an experiment for a dataset Figure 3: Screenshot: Sample experiment output from SmartML tuning or only algorithm selection. In the later case, it is possible to upload only the dataset meta-features file instead of the whole dataset. The user will be also able to configure different options such as whether any kind of feature preprocessing is needed or not, whether model interpretability is needed or not and specify the time budget for hyper-parameter tuning. Then, we will take the audience through the different phases of the framework until returning the final results (Figure 1). Table 4 shows the performance comparison between SmartML and Auto-Weka⁷ using 10 datasets where a time budget of 10 minutes has been allocated for each dataset in each framework. In our experiments, we have bootstrapped the knowledge base of SmartML using 50 datasets from various sources including OpenM1⁸, UCI repository⁹ and Kaggle¹⁰. The results show that, using this relatively very small knowledge base, the accuracy results of SmartML ¹⁰Kaggle:https://www.kaggle.com/ outperform the results of Auto-Weka for all the datasets. As a part of our demonstration, we will provide the audience with the live chance to compare the performance of SmartML with Auto-Weka and other related frameworks using various datasets. # ACKNOWLEDGMENT This work is funded by the European Regional Development Funds via the Mobilitas Plus programme (grant MOBTT75) #### REFERENCES - Rahul C Deo. 2015. Machine learning in medicine. Circulation 132, 20 (2015), 1920–1930. - [2] Thomas G Dietterich. 2000. Ensemble methods in machine learning. In *International workshop on multiple classifier sys*tems. - [3] Matthias Feurer et al. 2015. Efficient and Robust Automated Machine Learning. In NIPS. - [4] Matthias Feurer et al. 2015. Initializing Bayesian Hyperparameter Optimization via Meta-learning. In AAAI. - [5] Daniel Golovin et al. 2017. Google Vizier: A Service for Black-Box Optimization. In KDD. [6] Riccardo Guidotti et al. 2018. A survey of methods for explain- - ing black box models. ACM CSUR 51, 5 (2018). [7] Frank Hutter et al. 2011. Sequential Model-based Optimization - for General Algorithm Configuration. In *LION*. [8] Lars Kotthoff et al. 2017. Auto-WEKA 2.0: Automatic Model - Selection and Hyperparameter Optimization in WEKA. J. Mach. Learn. Res. 18, 1 (2017). [9] Sendhil Mullainathan and Jann Spiess. 2017. Machine learning: an applied econometric approach. Journal of Economic - Perspectives 31, 2 (2017). [10] Randal S. Olson and Jason H. Moore. 2016. TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning. In Proceedings of the Workshop on Automatic Machine Learning. - [11] Matthias Reif et al. 2012. Meta-learning for Evolutionary Parameter Optimization of Classifiers. Mach. Learn. 87, 3 (2012). ⁷https://www.cs.ubc.ca/labs/beta/Projects/autoweka/ ⁸https://www.openml.org/ ⁹http://archive.ics.uci.edu/ml/index.php