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The contact between a cylindrical flat indenter and a highly prestressed membrane is considered. The behavior is totally controlled by the assumed constant surface tension. The analytical solution is developed to describe the shape of the surface as a function of the applied force as well as the strain energy. A Griffith/JKR type energy analysis makes then possible to approach the adhesion measurement.

Introduction

Many authors mention the stiffening effect of surface tension in smallscale indentation [START_REF] Long | Two-dimensional hertzian contact problem with surface tension[END_REF], [START_REF] Long | Effects of surface tension on axisymmetric hertzian contact problem[END_REF]. It is shown that this effect appears all the more as the material is compliant. The effect of surface tension should also be considered for the analysis of experimental adhesion measurement results [START_REF] Style | Surface tension and contact with soft elastic solids[END_REF], [START_REF] Xu | Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate[END_REF], [START_REF] Gao | Mechanics of adhesive contact at the nanoscale: The effect of surface stress[END_REF], [START_REF] Hui | Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion[END_REF], [START_REF] Long | Contact problems at micro/nano scale with surface tension[END_REF]. At the "Mesomechanics" congress of 2007, analytical and numerical results were provided for the analysis of the elastic stiffness of the material in the case of spherical indentors in the presence of surface tension [START_REF] Fond | Extension of the Hertz Model for Accounting to Surface Tension in Nanoindentation Tests of Soft Materials[END_REF]. In 2010, analytical and numerical results were presented concerning spherical, conical and flat indentors and adhesion in the presence of surface tension [START_REF] Fond | Indentation, élasticité et tension de surface[END_REF].

The first case to consider is the case of the flat punch1 . Indeed, in the problem of the indentation of an elastic medium, when the contact area is established and no longer changes, a discharge shows the linearity of the elasticity according to the formula established by Boussinesq F = 8aµδ, where F is the reaction force of the medium on the indenter, a the contact area, µ the shear modulus of the material and δ the depth of indentation of the flat punch [START_REF] Boussinesq | Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques[END_REF]. It is therefore analyzed here the equivalent of the problem of the indentation of an elastic media in the case of a highly prestressed membrane. The intermediate situations for which the indentation reaction force is sensitive simultaneously to the elasticity of the solid medium and to the deformation energy of the surface can then be analyzed. Fig. 1 illustrates the considered cases for which the tension remains constant whatever the deformation of the surface. This is typically the case of a soap film for which the surface tension is constant as long as the radius of curvature is not nanoscopic [START_REF] Fisher | Determination of the capillary pressure in menisci of molecular dimension[END_REF]. In the case of an elastic stretching membrane2 , elastic3 linear or not, if it is strongly stretched. Under such asumptions the tension changes very little under the effect of the deformation of the surface. This point will be analyzed below.

The film or the highly prestressed membrane will be called membrane. We will denote by γ the tension in this initially assumed plane membrane. Only a deformation out of the plane, i. e. an surface inclination, can make appear a force perpendicular to this plane. The geometries will all be axisymmetric, including the desadhesion surfaces. a will denotes the radius of the flat indenter, i. e., the contact radius for this indenter geometry.

Analytical calculation of the deformation of a prestressed membrane

The equilibrium is calculated from the local angle of inclination of the membrane. The geometry is axisymmetric and a quasi-static situation and the absence of gravity are assumed. The tension is assumed to be constant in the membrane.

Membrane equilibrium

Let's isolate a disk of radius ρ. Whatever ρ the F force must be balanced so that the angle β(ρ) can be easily calculated.

F = 2πγρsin(β(ρ)) = 2πγasin(β(a)) ⇒ sin(β(ρ)) = a ρ sin(β(a)) (1)
where β(a) is the angle of inclination of the membrane at the external side of the punch 4 .
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Figure 2: Analytical calculation: the equilibrium is calculated from the inclination angle of the membrane. The geometry is axisymmetric.

Off-plane displacement of the membrane

It is easy to calculate the difference of displacement between two near rays. (2) where sin(β(a)) = F 2πγa . It is obvious that the maximum force that can be reached is F max = 2πγa for β(a) = 90 deg. Fig. 4 shows the evolution of the force with the indentation depth. As expected, the displacement δ max corresponding to F max = 2πγa increases indefinitely with the length D, i. e. δ → ∞ when D → ∞. Hence, the rigidity of the membrane depends on the length D.

∂δ ∂ρ = tan(β(ρ)) tan(β(ρ)) = sin(β(ρ)) 1 -(sin(β(ρ))) 2

Solution for small indentation depths

The beginning of the indentation means small values of depth of the flat punch, i.e. δ << a, even δ < a. Since sin(β(a)) = F/2πaγ, when sin(β(a)) << 1 it comes:

δ(D) ≈ F 2πγ log(D/a) (3) 
So F is almost proportional to δ at the beginning of the load. Fig. 5 allows to know the accuracy that one can expect from the approximation given by the eq. 3.
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Figure 5: Error in estimating the force when using the approximate formula for small angles. Flat punch, surface tension γ = 1J/m 2 , a = 1m and D = 3a, 10a, 100a, 1000a.

Solution at maximum force

When sin(β(a)) = 1, i. e. F = 2πaγ, it comes:

δ max a = [log( (D/a) 2 -1 + D a ) -log(2)] (4) 
δ max ≈ a log(D/a) (5) 
The error is about 10% for D/a = 2.3, about 1% for D/a = 7 and about 0.1% for D/a = 20.

Deformation energy

The work done by the Laplace tension in a surface change is proportional to this surface change 5 . The potential of the inner forces E int is therefore E int = γS current , where S is the surface of the membrane that is initially S initial = π(D 2 -a 2 ). Since the potential of the internal forces is defined to a constant, one will choose more conveniently E int = γ∆S where ∆S = S current -S initial . As it is supposed to be no dissipation, the conservation of energy 6 imposes that the work done by the external forces is equal to the variation of the potential of the internal forces.

E ext = δ actuel 0 F (δ)dδ = γ∆S (6)
5 creation of new surface at the membrane interface -external environment 6 first principle of thermodynamics 6

From the local inclination of angle β(ρ) we can easily calculate the surface of a tore between ρ and ρ + dρ which is equal to ds = 2πρdρ/cos(β(ρ)) and then integrate.

S actuelle = D a 2πρ dρ cos(β(ρ)) = D a 2πρdρ 1 -( a ρ sin(β(a))) 2 = 2πa 2 a/D 1 x 2 dx x 2 -(sin(β(a))) 2 = πa 2 |(sin(β(a))) 2 log(2 x 2 -(sin(β(a))) 2 + 2x) + x x 2 -(sin(β(a))) 2 | D/a 1
Thus it comes:

S actuelle = πa 2 [(sin(β(a))) 2 log( D 2 a 2 -(sin(β(a))) 2 + D a ) -log(cos(β(a)) + 1) + D a D 2 a 2 -(sin(β(a))) 2 -cos(β(a))
] and further:

∆S = E int γ = πa 2 [(sin(β(a))) 2 log( D 2 a 2 -(sin(β(a))) 2 + D a ) -log(cos(β(a)) + 1) + D a D 2 a 2 -(sin(β(a))) 2 -cos(β(a)) - D 2 a 2 + 1] (7)
Since the mechanical behavior is quasi-linear for small indentation depth values, let's test the approximation

E int ≈ 1 2 F δ, i. e. E int ≈ F 2 4πγ log( D a ) and E int ≈ πγδ 2 log( D a )
, by using eq. 3.

∆S ≈ F 2 4π log( D a ) ou ∆S ≈ πδ 2 log( D a ) . (8) 
Fig. 6 shows that these approximations give relatively good results, especially the one obtained from δ. The Fig. 7 shows the precision that one can expect depending on whether is choosen δ or F and confirms that, for a better precision of the approximate values for large inclinations of the membrane, one will prefer base the approximation on δ. 

Adhesion energy

General solution

The desadhesion of a surface is usually treated with the tools of fracture mechanics [START_REF] Anderson | Fundamentals and Applications[END_REF], in particular the JKR [START_REF] Johnson | Surface energy and the contact of elastic solids[END_REF] and DMT [START_REF] Derjaguin | Effect of contact deformations on the adhesion of particles[END_REF] models. The energy release rate for the creation of a new surface is given by:

G = - ∂E ext ∂A - ∂E int ∂A - ∂E dis ∂A - ∂E cin ∂A ( 9 
)
where A is the area of adhesion in our case 7 , E ext the work done by external forces, E int the free energy of the system, E dis the energy dissipated in the volume and E kin the kinetic energy [START_REF] Fond | Cours sur la ruptrure, la fatigue et l'endommagement[END_REF]. In the quasi-static case, i. e. E cin ≈ 0, and if energy dissipates only in the adhesion area variation, i. e. E dis ≈ 0, the equation 9 becomes:

G = - ∂E ext ∂A - ∂E int ∂A (10) 
One has to make an assumption concerning the form of the surface increment A. Considering that the separation is done axisymmetrically is a strong hypothesis 8 but it has the advantage of preserving axisymmetry. It will therefore be considered, see Fig. 8, that the new area deduces 9 a free surface 7 the fracture surface increases in fracture mechanics 8 but classically made like the JKR and DMT models 9 inverse reasoning equivalent to the desadhesion, as if the punch was growing simulating a adhered surface, this in order to avoid sign inversions to comment growing tore 2πda so that ∂A ∂a = -2πa.

G = - ∂E ext ∂a ∂a ∂A - ∂E int ∂a ∂a ∂A = 1 2πa ( ∂E ext ∂a + ∂E int ∂a ) (11) 
The expressions of the derivatives with respect to a, ∂ ∂a , of the analytical solutions obtained previously are cumbersome and will not appear here. Analyzes of experimental results most often favor constant force or constant displacement. The energy balance in the first case is written:

G = 1 2πa ( ∂E ext ∂a | F + ∂E int ∂a | F ) (12) 
and in the second case is written:

G = 1 2πa ∂E int ∂a | δ (13)
since in this last case there is no work done by external forces during the increase of surface separation 10 .

Approximate solution

From eq. 13 and 8 comes for D, δ and γ being constant:

G ≈ γ 2πa ∂ ∂a πδ 2 log( D a ) | δ = γδ 2 2a 2 (log(D/a)) 2 (14)
Fig. 10 gives a comparison of the exact solution of the eq. 13 to the approximate solution given by the eq. 14. It turns out that for δ/a < 1 the approximate solution provides a very suitable result with an error typically lower than 1% on the energy release rate since D/a > 5.

Stretch variation in the case of a highly prestressed membrane

In the case of a highly prestressed membrane, it must be verified that the tension initially imposed varies little. The equivalent flat surface supplement corresponding to the surface increase given by the eq. 7 must correspond to 2πD∆D where: Assuming that there is no slip under the flat punch, only the portion of the membrane between a and D elongates, hence the expression of the average strain ∆D D-a = ∆S 2πD(D-a) . If there is slippage, the average strain is all over the membrane, including the part under the indenter, and the average strain expression becomes ∆D D = ∆S 2πD 2 . This last expression is less critical than that without slip when one seeks to check the low sensitivity of the prestress to the deformation. Fig. 15 shows that for D/a > 3 and β(a) < 89 deg the deformation never exceeds 2 10 -1 . These values will be compared to the prestressing stretch of the numerical simulations11 . Recall Fig. 1 showing the tension t as a function of the stretch e. We now know that de/e 0 < 2 10 -1 10 +4 so that we can consider that dt/t 0 < 2 10 -5 << 1 is a second order term and that prestress t is actually almost constant as assumed.

∆D = ∆S 2πD ( 

Discussion

All the analytic integrals presented here have been verified by numerical integrations. The solution obtained is bilateral, i. e. valid in tension or compression. Sliding considerations of the membrane under the indenter do not change the results presented here.

For a conic indenter the results provided here are directly exploitable [START_REF] Fond | Indentation, élasticité et tension de surface[END_REF]. It suffices to limit the angle β(a) to the half opening angle of the cone, i. e. β(a) < α/2. The maximum force reached will be F max = 2πaγsin(α/2), a being always the contact area radius. The corresponding exact displacement will be provided by the eq. 2 and its approximation by δ cone max ≈ a sin(α/2)log(D/a).

The case of the spherical indenter requires special attention since the contact radius a, the radius of the indenter and the maximum angle leading to an increase in the contact radius are linked. This has already been discussed in the appendix [START_REF] Fond | Extension of the Hertz Model for Accounting to Surface Tension in Nanoindentation Tests of Soft Materials[END_REF].

Concerning the microscopic indentation of soft 12 material, the surface tension can play a considerable role. One might have thought of trying to superimpose the analytical solution of Boussinesq for the elastic mass to that provided here by a prestressed membrane, but this latter depends on the D size of the membrane. When the two effects interact, elasticity and surface tension, it will be necessary to find the weighting of each of the two contributions to the reaction force of the material on the indenter. This weighting approach could naturally be done via the D parameter. In this case, D will be seen as the influence length of the surface tension effect. Numerical results will validate or not this possibility of cumulation with weighting depending on the length D.

Conclusion

The analytical results for the indentation of a highly prestressed membrane are provided as well as approximate solutions and their area of validity. These results are essential to properly validate the finite element calculations in the extreme case of the indentation of a medium where the surface tension is preponderant. It is shown that the behavior is almost linear for relatively low indentation depths. It is also shown that the rigidity of the structure constituted by a highly prestressed membrane depends on its size D. predict that in first approximation F = 2πγδ log(D/a) , which corresponds to a pressure p null induce by the material under the membrane. Moreover, the solution of Boussinesq [START_REF] Boussinesq | Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques[END_REF] predicts, in the absence of surface tension and for a semi-infinte medium, that F = 2a E 1-nu 2 δ. The It is remarkable that the difference in the prediction of the finite element numerical model with respect to Boussinesq solution is even greater when the Poisson's ratio is small. Indeed, for K = µ, i. e. ν = 0.125, H = D = 200a one obtains +8% of deviation. The agreement of numerical and analytical results is all the better as ν approaches 0.513 . 
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 1 Figure1: On the left, surface tension type soap film, constant with the curvature as it is not nanoscopic. On the right, stretched film in bi-traction: for a strong stretch, the tension changes very little as the stretching changes very little.
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 3 Figure 3: Membrane shape for β(a) = 14, 32, 57 and 89 degrees. Comparison with the approximate solution at small angles. Flat punch, surface tension γ = 1J/m 2 , a = 1m and D = 10a.
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 4 Figure 4: Reaction force of the membrane vs indentation depth. Comparison with the approximate solution at small angles. Flat punch, surface tension γ = 1J/m 2 , a = 1m et D = 3a, 10a, 100a, 1000a.
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 678 Figure6: Surface variation as a function of indentation depth and comparison with approximations from δ and from F following eq. 8.
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 9 Figure 9: Quasi-static ideal conditions of constant force, left, and constant displacement, right.
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 10 Figure10: Energy released rate according to the indentation depth and comparison with the approximate solution given by the eq. 14. The four rightmost curves correspond to the right ordinate axis.
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 11 Figure 11: Elongation according to the depth of penetration. The lines with symbols correspond to the ordinate axis on the right.
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 12 Figure A.12: Accuracy of the proposed approximations, for δ, F , ∆S(δ), ∆S(F ) and G(δ) depending on the angle β(a) at the base of the flat punch.

  Fig. B.14 shows the ability of finite element calculations to retieve conveniently the values obtaines analytically in extreme cases for which only the elasticity of the material is sensitive or for which only the surface tension is sensitive, for a compilation of results for a ∈ [10 -6 m; 10 -8 m], γ = 3 10 -2 N/m, D ∈ [5a; 200a], H = D and µ ∈ [1P a; 10 +9 P a]. For H = D = 200a one obtains +3% deviation from the prediction of the analytical model of Boussinesq and +0.2% compared to the prediction of the present model of membrane.
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 13 Figure B.13: Examples of spatial discretization for the finite element model. At the top D = 20a and H = 20a, 3595 nodes and 1750 elements. Bottom D = 200a and H = 200, 9814 nodes and 4829 elements.

  Figure B.14: Finite element numerical model capability to reproduce extreme cases for compressible media such as K = 8 3 µ = E. Arrows indicate that values decrease as D increases.

this may not be intuitive since it usually indented with spheres or cones

rubber, elastomer, etc. 

elasticity means herein the absence of dissipation during the mechanical deformation

this will be of the order of 10 4 for a virtual material of course

recall that for so-called 'quasi-incompressible' materials, i. e. presenting a ratio µ K << 1 so ν ≈ 0.5, one gets F ≈ 8aµδ

Appendix A. Approximations accuracy

Given the current experimentally expected accuracies for mechanical measurements at the microscopic scale, it will not always be necessary to be bur-