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Statistical Modeling of Keystroke Dynamics Samples
For the Generation of Synthetic Datasets

Denis Migdal, Christophe Rosenberger

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract

Biometrics is an emerging technology more and more present in our daily life. However,
building biometric systems requires a large amount of data that may be difficult to collect.
Collecting such sensitive data is also very time consuming and constrained, s.a. GDPR
legislation in Europe. In the case of keystroke dynamics, most existing databases have
less than 200 users. For these reasons, it is crucial for this biometric modality to be able
to generate a significant and realistic synthetic dataset of keystroke dynamics samples.
We propose in this paper an original approach for the generation of synthetic keystroke
data given samples from known users as a first step towards the generation of synthetic
datasets. Experimental results show the capability of the proposed statistical model to
generate realistic samples from existing datasets in the literature.

Keywords: Keystroke dynamics, Statistical modelling, Synthetic dataset, Data
Analysis

1. Introduction

Keystroke dynamics (KD) [1] is a behavioral biometric modality that allows the au-
thentication of individuals through their way of typing a password or a free text on a
keyboard. It is a biometric modality which has the advantage of not requiring additional
sensor than the keyboard. Many applications concerning keystroke dynamics are possi-
ble such as logical access control, behavior monitoring, soft biometrics (i.e. profiling the
user) or emotion analysis. This biometric modality also allows the continuous authenti-
cation of users through time [2, 3].

User authentication with keystroke dynamics is generally done in real time (i.e., on-
line) in a real world system. Scientists working on keystroke dynamics do not analyze
the performance of their system in an online way (i.e, by asking users to authenticate
themselves in real time and to impersonate other users). Indeed, they work in an of-
fline context by using samples previously collected by other researchers, and stored in a
benchmark dataset. A complete list of available keystroke dynamics datasets has been
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made in [4, 5]. As it can be seen, most of datasets have less than 200 individuals and
few samples are available for each user. The collection of such datasets is very time
consuming, this is the main reason why there is not more very large datasets like for the
face modality [6]. This is a crucial problem for the research in this area.

In this paper, our objective is to model real KD data in order to be able generate
very large synthetic KD datasets. This approach has been used for the digital fingerprint
modality with the SFINGE software [7] as their collection and distribution are regulated
in many countries. We believe the KD model could help the research community to
create a new dataset of higher quality than the existing ones. We think this work is
important, because it is known that KD studies are not fair as (i) acquisition protocols
are different between studies [8]; (ii) there is not always a comparative study [9] when
authors propose new algorithms; and (iii) there are not always a valuable statistical eval-
uation [9]. Our work contributes to solve these problems. We show in this paper that is
possible to statistically model the KD of users from any existing datasets.

The paper is organized as follows. Section 2 is dedicated to provide some background
information on Keystroke dynamics and existing studies for this biometric modality. We
present in section 3 the definitions and the components of the analysis process of existing
KD datasets. Section 4 is dedicated to the proposed KD generative model. We show its
capability to generate similar synthetic keystroke dynamics data from real ones. Last,
section 5 concludes this work and gives some perspectives.

This invited article supports and improves the results of the original ”Analysis of
Keystroke Dynamics For the Generation of Synthetic Datasets” [10].

2. Background

In this section, we provide some background information for the use of keystroke
dynamics for authenticating users.

2.1. Keystroke dynamics principle

As any biometric authentication solution, a keystroke dynamic system (KDS) is com-
posed of two main modules: the enrollment and the verification modules. Each user
must enroll himself/herself in the KDS in order to compute its biometric reference given
multiple samples (i.e., several inputs of the password) acquired during the enrollment
step. For each input, a sequence of timing information is captured (i.e., time when each
key is pressed or released) from which some features are extracted (i.e., latencies and
durations) and used to learn the model which characterizes each user. During a verifi-
cation request, the claimant types his/her password. The system extracts the features
and compares them to the biometric reference of the claimant. If the obtained distance
is below a certain threshold, the user is accepted, otherwise he/she is rejected.

First works on KD have been done in the eighties [11], although the idea of using
a keyboard to automatically identify individuals has first been presented in 1975 [12].
In the preliminary report of Gaines et al. [11], seven secretaries typed several para-
graphs of text and researchers showed that it is possible to differentiate users with their
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typing patterns. Since then, several studies have been done, allowing to decrease the
quantity of information needed to build the biometric reference, while improving the
performances [13, 14, 15, 16, 8]. However, most studies are not comparable because they
use different datasets or protocols [8, 9].

2.2. Keystroke Dynamics Systems

As the number of collected samples during the enrollment step is low, many Keystroke
Dynamics Systems are based on a distance. We aim at computing a distance between
two templates KA and KB . In this paper, we use 4 distance functions.

• Blesha [17]: We suppose that the template KA is associated by µ the average value
of biometric samples:

STAT1 =
(KB − µ)

t
(KB − µ)

||KB ||.||µ||
(1)

• Hocquet [18]: We suppose that the template KA is associated by µ and σ the
average value of biometric samples and the standard deviation.

STAT2 = 1− 1

n

n∑
i=1

e
− |KB(i)−µi|

σi (2)

• Monrose [19]: The function is given as follows:

STAT3 =

√√√√ n∑
i=1

(KB(i)−KA(i))2 (3)

• BioHashing: This algorithm is a template protection scheme [20] where the biomet-
ric template is projected given a secret key and is quantized to generate a binary
code (called BioCode). The comparison is realized with the Hamming distance.
We apply this protection scheme and compare the templates in the transformed
domain.

In the scope of this paper, the BioHashing and Monrose distances between a template
(sample) and a set of templates (references) are computed as the minimal distance of the
sample with each template in the reference gallery. Moreover, the log function is applied
to each of the Monrose distances.

2.3. Datasets

There exist many keystroke dynamics datasets [4]. We decided in this work to focus
on fixed text datasets (i.e. where users typed the same passphrase). Datasets have been
cleaned to remove incoherent data, e.g. entries in which the user did not type the asked
text. This corresponds to 13% of entries in GREYC W, and less than 3 entries for other
datasets.

Then, we selected datasets with less than an arbitrary number of elements (i.e. users,
and entries per users). We used both 23 and 45 as arbitrary values in this paper. 23 en-
ables to split sets into 5 classes while respecting the Cochran rule, i.e. 80% of the classes
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having at least 5 elements [21]. 45 enables to split sets into 9 classes of 5 elements, know-
ing that 46 is the maximal value that do not discard the GREYC W2 dataset. In order
to get comparable sets, the minimal number of elements is also their maximal number of
elements: only the first 23, or 45 elements are used.

From the existing fixed-text datasets, only 3 matched our criteria. From these 3
datasets, we build 4 datasets composed of a fixed text Keystrokes for each user (one
having 2 fixed Text, 2 datasets are thus created). Table 1 gives the used datasets in
this work. Table 2 and Figure 1 give, for each datasets and each Keystroke Dynamics
System, the Equal Error Rate and the ROC curve.

Name Text # of users (23) # of users (45) Source
GREYC K greyc laboratory 120 104 [22]
GREYC W1 laboratoire greyc 79 62 [23]
GREYC W2 sésame 66 46 [23]

CMU .tie5Roanl 51 51 [24]

Table 1: Description of used datasets.

Distance CMU GREYC K GREYC W1 GREYC W2
BioHashing 0.307 0.220 0.201 0.237

Blesha 0.360 0.315 0.303 0.284
Hocquet 0.183 0.146 0.107 0.212
Monrose 0.343 0.281 0.255 0.233

Table 2: Equal Error Rate of used datasets with 45 entries per users.

Note that the times in each dataset have been acquired in different ways. In particular,
GREYC K used C# programming DateTime which has a resolution of 10.0144ms 1,
which explains χ2’s poor results on this dataset. Indeed, some sets of durations have
only 8 distinct values which is, when using 45 as the number of elements, less than the
number of classes.

2.4. Related works

The generation of synthetic keystroke samples has already been discussed in [25, 26]
where authors generated synthetic keystrokes from known users in order to test the ro-
bustness of a SVM classifier (used as matching algorithm). Only the uniform and the
normal laws have been considered, with the laws parameters directly computed from the
mean and standard deviation of the real durations. Authors wanted to generate synthetic
keystroke dynamics samples as a naive attack to test the robustness of their presented
model.

Keystrokes durations have been analyzed in [27] where authors aim at assisting the
detection of synthetic keystroke samples, by detecting aberrant duration. Authors found

1https://manski.net/2014/07/high-resolution-clock-in-csharp/#datetime
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Figure 1: ROC curves for the used datasets with 45 entries per users.

out that some durations follow a Zipf’s or/and a Benford’s(/power) law on the CMU
dataset using the Maximum Likelihood Estimator fitness algorithm to estimate the laws
parameters. However, these findings do not enable the synthetic generation of keystroke
samples as durations are not separated by users and digraphs, and thus cannot generate
a duration for a given user and digraph.

In this paper, we aim at generating synthetic keystrokes as a way to replace real
keystrokes in KD studies. With this approach, we consider 19 laws to find out that
the distribution durations follow a gumbel law more than a normal one. We also show
that laws parameters computations from the mean and standard deviation give poor
results, and the use of a fitness function is required. Moreover, we are interested in the
consistency of the duration between them, to generate keystroke samples as real as it
can be.
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3. Analysis of real KD datasets

In this section, we analyze the features from KD samples in existing datasets. We
first define the formalism we consider in this study.

3.1. Formalism

We define many terms to build the proposed analysis method:

• Digraph: D = [C0, C1], array of two characters.

• DigraphTime: DTD = [d0, d1, d2, d3, d4, d5], as shown in Figure 3, is an array of
6 durations from 4 times corresponding to the pressure (P) and release (R) times
of each character of a Digraph D. A DigraphTime DTD is defined as partially con-
sistent if the following equations are verified, consistent if the following equations
and inequalities are verified, and inconsistent otherwise:
• d0 = d2 − d4;

• d0 = d1 − d3;

• d1 = d2 − d5;

• d3 = d4 − d5;

• d0 ≥ 0

• d1 ≥ 0

• d5 ≥ 0

• Text: Tn = {Di}i∈J0,nJ, an array of n Digraphs Di. A text Tn is said consistent if
∀i ∈K0, nJ, Di−1[1] = Di[0].

• Keystroke dynamics: K = [{DTi}i∈J0,nJ, Tn], an array of n DigraphTime DTi
associated to the Digraph Tn[i]. Keystroke is said consistent (or partially con-
sistent) if Tn, and all DTi are consistent (or partially consistent), and if ∀i ∈
K0, nJ, DTi−1[5] = DTi[0].

Figure 2: KD Generative model

Figure 3: DigraphTime

We propose in this paper a generative keystroke dynamics model. We explain its
different components (see also Figures 2 and 3):
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• DigraphGen: DGD() = DT , generates a DigraphTime for a given Digraph.

• User: U(Tn) = K, generates a keystroke dynamics sample from a given Text. A
User is composed of a set of DigraphGen.

• DigraphGen2: DG2
D() = DGD, generates a DigraphGen for a given Digraph.

• UserGen: UG() = U , generates a User. A UserGen is composed of a set of
DigraphGen2.

• DigraphGen3: DG3(D) = DG2
D, generates a DigraphGen2 for a given digraph.

3.2. Statistical modelling

As previously seen, generating a keystroke dynamics template from a given text Tn
consists in generating an array of DigraphTime, i.e. generating 6 ∗ n durations. To
be able to generate a keystroke dynamics sample similar to that one user could type,
these 6 ∗n durations have to be transformed into a set of assumed independent variables
which laws and parameters can then be estimated for a user. We need then to randomly
generate durations associated to a given user. In the scope of this paper, only the linear
(in)dependency of variables is considered.

3.2.1. Variables (in)dependency

Linearly correlated variables can be transformed into a set of non-linearly correlated
variables, through PCA (Principal component analysis), first introduced by Pearson in
1901 [28]. However, we show that durations are not strongly correlated between them,
and thus, in the scope of this article, we assume them to be independent. Even if
the usage of PCA is irrelevant in such a case, its first step enables the computation of
the inter-correlations of two variables by the computation of a correlation matrix. In
a correlation matrix C = {Ci,j}{i,j}∈J0,nJ2 , Ci,j is the linear correlation between the
variables i and j.

Reminder: A correlation matrix C = {Ci,j}{i,j}∈J0,nJ2 , with Ci,j the linear correlation
between the variables i and j, is computed as follows:

1. Given a matrix M = {Mk}k∈J0,KJ of K entries Mk = {Mk,i}i∈J0,nJ, with Mk,i the
realization of the variable i for the entry k.

2. M̄ = {Mk,i−µi
σi

}i∈J0,nJ,k∈J0,KJ where µi is the mean of {Mk,i}k∈J0,KJ, and σi, its
standard deviation.

3. C = 1/K ∗ M̄T ∗ M̄

To qualify presence of specific correlations between two variables i, j inside m subsets
of entries, m correlations matrix Cl, l ∈ J0,mJ are computed from such subsets. Each
element Ci,j of the final correlation matrix C is then computed as the mean of each Cli,j
: Ci,j = 1

mΣm−1l=0 Cli,j . If each subset corresponds to, e.g. a User, M will be said, in this
7



paper, ”splitted by User”, and C will qualify the presence of User-specifics correlations
across all Users.

To identify the same correlations between two sets of variables {ix}x∈J0,mJ, {jx}x∈J0,mJ,
of length m, entries are splitted in m sub-entries M ′m∗k+x = {Mk,ox}o∈{i,j}. The cor-
relation matrix C is then computed from M’. If each x corresponds to, e.g. a Digraph,
M will be said, in this paper, ”merged by Digraph”, and C will qualify the presence of
non-Digraphs-specifics correlations across all Digraphs.

3.2.2. Laws followed by Variables

Once the variables are assumed independent, or transformed in such a way, laws
followed by each variable are searched through the following process:

1. Given the realizations of a variable X, and a law lawp with unknown parameters
p;

2. Estimate p̂ from the median, mean, min, max, or/and standard deviation of X;

3. Estimate p through a fitness algorithm using p̂ as a starting point.

In the scope of this paper, we seek to maximize 1−χ2(X, law, p). The χ2 test qualifies
the capacity of a set of observed values to match a set of expected values. The χ2 test
returns χ2(X, law, p) = 1 − α, in which α is the p-value, i.e. the probability to obtain
the same 1 − α score if X follows lawp. If the p-value is below an arbitrary threshold
(s.a. 0.05), the hypothesis ”X follows lawp” can then be rejected.

However, in the scope of this paper, our goal is not to reject hypothesis, but to select
laws that best represent X. The χ2(X, law, p) score can then be seen as a score of
distance between observed values of X, and the expected values. For the same reason,
the number of estimated parameters is not subtracted to the freedom, in order to have
comparable values across all laws.

Reminder: We compute χ2(X, law, p) as follows:

1. Let Card(X) be the cardinal of X;

2. Let a%b be the rest of the division of a by b;

3. IR is divided in n = dCard(X)/5e subspaces Ei, i ∈ J0, nJ, each expected to contain
5 elements of X. En−1 is expected to contain Card(X)%5 elements of X if 5 -
Card(X);

4. Let Xi = X ∩ Ei;

5. Let Card(Ei) = 5, and Card(En−1) = Card(X)%5 if 5 - Card(X);

6. Let Sum = Σn−1i=0 (Card(Ei)− Card(Xi))
2/Card(Ei).

7. Let cdff be the cumulative distribution function of the law χ2 of freedom f;

8. χ2(X, law, p) = cdfn−1(Sum).
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To qualify the capacity of n subsets of X, Xi, i ∈ J0, nJ, to follow a same law law,
but each with different parameters pi, s = 1 − χ2(X, law) is computed as the mean of
the χ2 test applied on each Xi: s = 1− 1

nΣn−1i=0 χ
2(Xi, law, pi). The higher s is, the more

the law law is assumed to fit the observed values. In the scope of this paper, 5 fitness
algorithms are used:

• Maximum Likelihood Estimation (R mle) ;

• Quantile Matching Estimation (R qme) ;

• Maximum Goodness-of-fit Estimation (R mge) ;

• The best estimation between R mle, R qme, and R mge (R max) ;

• p̂ (raw) ;

The R mle, R qme, and R mge fitness algorithms are executed through R’s fitdist

function2. {1/3,2/3} is used as probs parameter for R qme. If the fitness algorithm fails
to estimate p, p is set to p̂, and 1− χ2(X, law, p) is assumed to be 0.

In this paper, a set of 19 laws have been tested with the raw estimator, with and
without exclusion of aberrant values (here, values that differ from ±3σ from the median
value of X):
• arcsine

• beta

• betaprime

• chi

• chisquare

• raised cosine

• erlang

• exponential

• f

• gamma

• gumbel

• laplace

• logistic

• lognormal

• uniform

• normal

• rayleigh

• student’s t

• triangular

From these tested laws, the best 3 are selected, i.e. the 3 laws that maximize s =
1 − 1

nΣn−1i=0 χ
2(Xi, law, pi), and are tested again with the other fitness algorithms. All

laws are not directly tested with all fitness algorithms to gain time on the execution, but
also due to the fact that all laws (s.a. raised cosine) are not defined in R.

3.3. Experimental observations

In this section, we first analyze the statistics of real keystroke dynamics from the
datasets presented in section 2.3.

3.3.1. Durations correlations

We analyze as a starting point the correlation between durations in a keystroke dy-
namics sample.

First, diagonals of correlation matrix are discarded. Correlations between two du-
rations DTDi [5], and DTDj [0] are discarded if j = i + 1, as they are in fact the same
duration. Digraph are considered equal if their positions in the keystroke sample are
equals.

2 https://www.rdocumentation.org/packages/fitdistrplus/versions/1.0-11/topics/fitdist
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Figure 4: Number of correlations greater to a minimal value, between durations from different Digraphs
(Out, Out U), durations d0 and d5, with durations of the same Digraph (05 K, 05 D, 05), and between
durations d1 to d4 inside a same Digraph (/05).

As shown in Figure 4, no strong stable correlation has been found between durations
from different Digraph, (Out: dataset, Out U: dataset splitted by User). DigraphTime
will be thus assumed independent. Also, no strong stable correlation implying durations
d0 and d5 of a same DigraphTime has been found (05 K: dataset splitted by User, 05 D:
dataset merged and splitted by Digraph, 05: dataset merged by Digraph).

Stable correlations have been detected between durations d1, d2, d3, d4 of a same
DigraphTime (05: dataset merged by Digraph). It is easy to understand such a result as
these durations can be written as dx = d3 + kx ∗ d0 + lx ∗ d5 with lx ∈ {0, 1}, kx ∈ {0, 1},
and σ(d3) ≈ 3 ∗ σ(d0 + d5) (see Table 3). In the scope of this paper, DigraphTime is
assumed to be computable from 3 independent durations.

3.3.2. Durations laws

For the 6 DigraphTime durations DTD[i], i ∈ J0, 6J, the 10 best laws that maximize
1−χ2(DTD[i], law), with parameters depending on the Digraph and User, are presented
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Dataset σ(d3)/(σ(d0 + d5)) σ(d3)/(σ(d0) + σ(d5))
GREYC K 3.86 2.98

GREYC W1 3.14 2.41
GREYC W2 2.51 2.03

CMU 6.24 4.96

Table 3: Standard deviation of d0 durations, compared to the standard deviation of d3 and d5 durations.
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Figure 5: Density function (pdf) of several laws (with median=0, standard deviation=1).

in Table 4. DigraphTime durations will then be assumed to best follow either a gumbel,
a normal, or a logistic, which parameters depend on the User and Digraph.

These findings are confirmed in Table 5. The gumbel law seems to best fit d1 to
d4 durations followed by either the normal or the logistic law. However, for d0 and d5
durations, the normal law seems to best fit them, followed by the logistic law and the
gumbel law. The exclusion of aberrant values seems to increase the fitness of the law.

As shown in Figure 5, these three laws are quite similar. Contrary to the two other,
the gumbel law is asymmetric and possesses a trail that match users’ hesitations when
typing.

We define the coverage as the headcount of sets for which 1 -χ2(X, law) > 0.01. As
shown in Figures 6 to 9, sets of 23 elements give better χ2 scores than with 45 elements,
that can be explained by the fact that sets of 45 elements have more classes, and thus
the χ2 test is more strict. GREYC K gives poor results, that can be explained to its d0
and d5 durations and the time precision of near 10ms. To the contrary, CMU gives the
best results, followed by GREYC W2 and GREYC W1. As expected, the R max fitness
algorithm performs better than other fitness algorithms. Although, R mle and R qme
perform poorly, they still give a significant increase to the R max fitness algorithm. Sur-
prisingly, raw fitness algorithm outperforms R qme.

In order to reduce the number of possible combinations, each duration will be gener-
ated with by two laws X, Y (X being used for d0 and d5, and Y for d1 to d4), but with
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Datasets Rank d0 χ2 d1 χ2 d2 χ2 d3 χ2 d4 χ2 d5 χ2

CMU

1 normal (3σ) 0.550 gumbel (3σ) 0.262 gumbel (3σ) 0.266 gumbel (3σ) 0.266 gumbel (3σ) 0.285 normal (3σ) 0.546
2 logistic (3σ) 0.546 logistic (3σ) 0.194 logistic (3σ) 0.200 logistic (3σ) 0.193 logistic (3σ) 0.210 logistic (3σ) 0.546
3 cosine (3σ) 0.524 normal (3σ) 0.172 normal (3σ) 0.189 normal (3σ) 0.166 normal (3σ) 0.197 cosine (3σ) 0.523
4 logistic 0.505 laplace (3σ) 0.159 laplace (3σ) 0.167 laplace (3σ) 0.156 laplace (3σ) 0.178 logistic 0.507
5 normal 0.491 cosine (3σ) 0.149 cosine (3σ) 0.163 cosine (3σ) 0.142 cosine (3σ) 0.162 normal 0.484
6 cosine 0.438 gumbel 0.127 gumbel 0.133 gumbel 0.123 gumbel 0.142 cosine 0.433
7 gumbel (3σ) 0.410 logistic 0.081 logistic 0.084 rayleigh (3σ) 0.078 logistic 0.085 gumbel (3σ) 0.403
8 gumbel 0.388 normal 0.068 laplace 0.076 logistic 0.077 laplace 0.077 laplace 0.391
9 laplace (3σ) 0.384 laplace 0.063 normal 0.072 laplace 0.067 normal 0.067 laplace (3σ) 0.390
10 laplace 0.380 cosine 0.057 cosine 0.063 normal 0.055 cosine 0.051 gumbel 0.377

GREYC K

1 normal (3σ) 0.009 gumbel (3σ) 0.149 gumbel (3σ) 0.175 gumbel (3σ) 0.143 gumbel (3σ) 0.157 cosine (3σ) 0.008
2 cosine (3σ) 0.008 normal (3σ) 0.143 normal (3σ) 0.173 normal (3σ) 0.140 normal (3σ) 0.154 normal (3σ) 0.008
3 normal 0.008 cosine (3σ) 0.135 logistic (3σ) 0.162 logistic (3σ) 0.137 logistic (3σ) 0.147 normal 0.008
4 cosine 0.007 logistic (3σ) 0.135 cosine (3σ) 0.153 cosine (3σ) 0.129 cosine (3σ) 0.142 cosine 0.007
5 logistic (3σ) 0.006 gumbel 0.099 gumbel 0.109 gumbel 0.092 gumbel 0.098 logistic (3σ) 0.005
6 logistic 0.005 laplace (3σ) 0.088 laplace (3σ) 0.103 laplace (3σ) 0.089 laplace (3σ) 0.096 logistic 0.005
7 uniform (3σ) 0.004 normal 0.076 normal 0.090 logistic 0.079 logistic 0.084 uniform (3σ) 0.004
8 gumbel 0.004 logistic 0.074 logistic 0.086 normal 0.072 normal 0.076 gumbel (3σ) 0.004
9 gumbel (3σ) 0.004 cosine 0.068 cosine 0.075 cosine 0.067 cosine 0.069 gumbel 0.004
10 uniform 0.004 laplace 0.055 laplace 0.065 rayleigh (3σ) 0.055 laplace 0.057 uniform 0.004

GREYC W1

1 cosine (3σ) 0.149 logistic (3σ) 0.194 logistic (3σ) 0.231 logistic (3σ) 0.164 normal (3σ) 0.188 cosine (3σ) 0.147
2 normal (3σ) 0.145 normal (3σ) 0.192 normal (3σ) 0.227 gumbel (3σ) 0.159 logistic (3σ) 0.186 normal (3σ) 0.145
3 logistic (3σ) 0.136 gumbel (3σ) 0.192 gumbel (3σ) 0.220 normal (3σ) 0.153 gumbel (3σ) 0.181 logistic (3σ) 0.135
4 logistic 0.124 cosine (3σ) 0.171 cosine (3σ) 0.207 cosine (3σ) 0.132 cosine (3σ) 0.164 logistic 0.124
5 normal 0.119 laplace (3σ) 0.140 laplace (3σ) 0.166 laplace (3σ) 0.123 laplace (3σ) 0.133 normal 0.119
6 cosine 0.116 logistic 0.114 gumbel 0.140 gumbel 0.089 logistic 0.108 cosine 0.115
7 laplace 0.095 gumbel 0.110 logistic 0.137 logistic 0.084 gumbel 0.107 laplace 0.096
8 laplace (3σ) 0.095 normal 0.103 normal 0.131 normal 0.076 normal 0.093 laplace (3σ) 0.095
9 gumbel (3σ) 0.092 laplace 0.091 cosine 0.113 laplace 0.072 laplace 0.085 gumbel (3σ) 0.092
10 gumbel 0.091 cosine 0.086 laplace 0.104 cosine 0.063 cosine 0.074 gumbel 0.091

GREYC W2

1 normal (3σ) 0.208 gumbel (3σ) 0.235 gumbel (3σ) 0.264 gumbel (3σ) 0.198 logistic (3σ) 0.226 normal (3σ) 0.210
2 cosine (3σ) 0.191 logistic (3σ) 0.217 logistic (3σ) 0.250 logistic (3σ) 0.188 gumbel (3σ) 0.219 logistic (3σ) 0.190
3 logistic (3σ) 0.190 normal (3σ) 0.193 normal (3σ) 0.224 normal (3σ) 0.188 normal (3σ) 0.212 cosine (3σ) 0.187
4 logistic 0.161 cosine (3σ) 0.179 cosine (3σ) 0.214 cosine (3σ) 0.155 cosine (3σ) 0.173 logistic 0.165
5 gumbel (3σ) 0.158 laplace (3σ) 0.169 laplace (3σ) 0.179 laplace (3σ) 0.128 laplace (3σ) 0.156 gumbel (3σ) 0.150
6 normal 0.148 gumbel 0.138 gumbel 0.146 gumbel 0.106 gumbel 0.136 normal 0.148
7 cosine 0.135 logistic 0.114 logistic 0.124 normal 0.096 logistic 0.121 cosine 0.133
8 gumbel 0.132 normal 0.093 normal 0.117 logistic 0.094 normal 0.107 gumbel 0.131
9 laplace (3σ) 0.131 laplace 0.092 laplace 0.115 laplace 0.084 laplace 0.105 laplace (3σ) 0.123
10 laplace 0.118 cosine 0.082 cosine 0.104 rayleigh (3σ) 0.083 cosine 0.092 laplace 0.115

Table 4: Top 10 results of χ2 tests with 19 laws, using raw estimator, with (3σ) and without exclusion
of aberrant values. χ2 = 1 -χ2(X, law)
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Datasets Rank d0 χ2 d1 χ2 d2 χ2 d3 χ2 d4 χ2 d5 χ2

CMU

1 normal (3σ) 0.685 gumbel (3σ) 0.530 gumbel (3σ) 0.533 gumbel (3σ) 0.533 gumbel (3σ) 0.544 normal (3σ) 0.680
2 logistic (3σ) 0.677 gumbel 0.503 gumbel 0.511 gumbel 0.503 gumbel 0.515 logistic (3σ) 0.673
3 logistic 0.668 logistic (3σ) 0.360 logistic (3σ) 0.352 logistic (3σ) 0.338 logistic (3σ) 0.363 logistic 0.665
4 normal 0.668 normal (3σ) 0.348 normal (3σ) 0.347 normal (3σ) 0.327 normal (3σ) 0.360 normal 0.663
5 gumbel (3σ) 0.604 normal 0.322 logistic 0.324 logistic 0.309 logistic 0.334 gumbel (3σ) 0.591
6 gumbel 0.596 logistic 0.321 normal 0.324 normal 0.301 normal 0.324 gumbel 0.577

GREYC K

1 normal 0.011 gumbel (3σ) 0.305 gumbel (3σ) 0.357 gumbel (3σ) 0.287 gumbel (3σ) 0.310 normal 0.010
2 normal (3σ) 0.011 gumbel 0.296 gumbel 0.350 gumbel 0.282 gumbel 0.302 normal (3σ) 0.010
3 logistic 0.009 normal (3σ) 0.235 normal (3σ) 0.279 normal (3σ) 0.223 normal (3σ) 0.247 logistic 0.009
4 logistic (3σ) 0.009 logistic (3σ) 0.229 logistic (3σ) 0.267 logistic (3σ) 0.214 logistic (3σ) 0.238 logistic (3σ) 0.008
5 gumbel (3σ) 0.009 normal 0.209 normal 0.250 normal 0.201 normal 0.222 gumbel (3σ) 0.008
6 gumbel 0.008 logistic 0.209 logistic 0.248 logistic 0.194 logistic 0.221 gumbel 0.008

GREYC W1

1 normal (3σ) 0.197 gumbel (3σ) 0.347 gumbel (3σ) 0.408 gumbel (3σ) 0.299 gumbel (3σ) 0.350 normal (3σ) 0.198
2 normal 0.196 gumbel 0.342 gumbel 0.403 gumbel 0.292 gumbel 0.343 normal 0.196
3 logistic 0.191 normal (3σ) 0.309 normal (3σ) 0.359 logistic (3σ) 0.257 normal (3σ) 0.297 logistic 0.193
4 logistic (3σ) 0.186 logistic (3σ) 0.301 logistic (3σ) 0.357 normal (3σ) 0.255 logistic (3σ) 0.294 logistic (3σ) 0.188
5 gumbel (3σ) 0.161 logistic 0.283 logistic 0.338 normal 0.240 logistic 0.281 gumbel (3σ) 0.163
6 gumbel 0.155 normal 0.283 normal 0.333 logistic 0.237 normal 0.274 gumbel 0.158

GREYC W2

1 normal (3σ) 0.280 gumbel (3σ) 0.441 gumbel (3σ) 0.491 gumbel (3σ) 0.358 gumbel (3σ) 0.417 normal (3σ) 0.278
2 logistic 0.267 gumbel 0.419 gumbel 0.462 gumbel 0.338 gumbel 0.408 logistic 0.264
3 logistic (3σ) 0.265 logistic (3σ) 0.340 normal (3σ) 0.383 normal (3σ) 0.294 logistic (3σ) 0.350 logistic (3σ) 0.260
4 normal 0.260 normal (3σ) 0.331 logistic (3σ) 0.370 logistic (3σ) 0.284 normal (3σ) 0.345 normal 0.253
5 gumbel 0.245 logistic 0.319 normal 0.367 normal 0.267 logistic 0.311 gumbel 0.240
6 gumbel (3σ) 0.239 normal 0.318 logistic 0.362 logistic 0.265 normal 0.307 gumbel (3σ) 0.237

Table 5: Top 6 results of χ2 tests with 3 laws, using R max estimator, with (3σ) and without exclusion
of aberrant values. χ2 = 1 -χ2(X, law)

different parameters. The configuration will be noted X Y. If X and Y are the same law,
the configuration will be noted X.

In our study, we used 7 configurations obtained by combining the normal, and logistic
law as X, and the gumbel, normal, and logistic law as Y, and adding the configuration
gumbel gumbel (i.e. gumbel). If the parameters of the laws have been estimated with
exclusion of aberrant values, ”-3s” is appended to the configuration name.

We can see clearly in Tables 4 and 5 that the estimated laws and parameters for all
DigraphTime durations are quite similar for the datasets we used in this study. Thanks
to these statistical observations, we propose a generative model of keystroke dynamics
data in the next section.

4. Keystroke dynamics generative model

4.1. Principles

As seen in the previous section, DigraphTime durations follow either a gumbel, a
normal, or a logistic law which parameters can be estimated for each known User and
Digraph. For a given User and Digraph, a DigraphGen can be then implemented as a set
of 6 random engines generating the 6 DigraphTime durations with the chosen law and
estimated parameters.

The full generative algorithm is thus the following:

• Select two laws, one for d0 and d5, one for d1 to d4;
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Figure 6: 1 -χ2(law) for gumbel (3σ) with 23 ele-
ments per sets
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Figure 7: 1 -χ2(law) for gumbel (3σ) with 45 ele-
ments per sets
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Figure 9: Coverage for gumbel (3σ) with 45 ele-
ments per sets

• Estimate the parameters of the durations for each DigraphTime;

• Generate a new Keystroke by randomly generating durations from the chosen laws
and estimated parameters;

• Apply a consistency strategy on the generated Keystroke.

We propose 10 consistency strategies, 1 for inconsistent DigraphTime, in which all
durations are randomly generated (u), and 10 for partially-consistent DigraphTime, in
which 3 durations are computed from the 3 others. The durations to compute can be
chosen among the 8 following lists, and be used for all Digraph and User, or be randomly
chosen (null) for each new DigraphTime to generate:

• 0: d3d4d5
• 1: d2d3d5

• 2: d2d3d4
• 3: d1d4d5

• 4: d1d3d4
• 5: d1d2d5

• 6: d1d2d4
• 7: d2d1d3

We also propose an 11th consistency strategy that perform the mean of the 8 strategies
from the previous list (m). For each consistency strategy, we propose a fully-consistent
version which first applies the consistency strategy, then set to 0 negative d0, d5, and
d1 durations, before recomputing d2, d3, and d4 from the 3 previous duration. Such
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strategies are suffixed by ’c’.

Once the DigraphGen created for a given User, the keystroke dynamics of a given
Text Tn is generated through the following process:

1. K[1] = Tn

2. ∀i ∈ J0, nJ,K[0][i] = DTTn[i] = DGTn[i]().

Before the consistency strategy application, and if Keystroke is expected to be
consistent (or partially consistent), the DigraphTime first duration K[0][i][0] is
settled, if exists (i.e. if i > 0), to the last duration of the previous DigraphTime
K[0][i− 1][5].

3. If fully-consistent strategy, d2 to d4 recomputed after setting negative d0, d1, and
d5 to 0.

4.2. Synthetic dataset generation: protocol

20 synthetic datasets are generated for each real KD datasest, and each possible
configuration, i.e. each law configuration L and each consistency strategy CS. The con-
figuration is labelled L.CS. These synthetic datasets are generated so as to contain the
same number of users and entries per user than the real dataset from which it is gener-
ated (as seen in previous section).

For each synthetic dataset, and each distance function DistFct (matching algorithm),
3 sub-datasets are computed:

• DataSU: to qualify the capacity of synthetic Keystroke dynamics to be indistin-
guishable from real Keystroke dynamics;

• DataU: to qualify the KDS performance with real Keystroke dynamics data;

• DataS: to qualify, in comparison with DataU, the capacity of synthetic datasets to
match the KDS performance that would be expected with real Keystroke dynamics
data.

These datasets are composed of legitimate and impostor scores, computed with the
distance function DistFct. Legitimate scores are obtained by comparing the reference
template with samples from the same user. The 10 first entries of each User are used as
templates, and the other entries as samples. Impostors scores are obtained by comparing
the reference template of users with samples from other users. DataU is computed from
the real dataset, and DataS, from the synthetic one. In DataSU, legitimate scores are
legitimate scores of DataU, and impostors scores are the distance, for each User, between
real user templates, and its synthetic samples.

We consider the False Acceptance Rate (FAR) describing the ratio of accepted impos-
tor data, the False Rejection Rate (FRR) describing the ratio of falsely rejected legitimate
users. The Equal Error Rate (EER) corresponds to configuration of the biometric sys-
tem when FAR equals FRR. Computed indicators across the 20 synthetic datasets are
aggregated by generating the following values:
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• mean: the mean of the indicators ;

• error: the difference between the mean of the indicators and an expected value ;

• prec: the maximal absolute difference between the mean and the second greater
indicator, and between the mean and the second lesser indicator.

These values can then be aggregated with the following process:

• mean: by the mean of the mean indicators ;

• error: by the absolute mean of the error indicators ;

• prec : by the maximal prec indicators.

4.3. Synthetic dataset generation: results

We present the obtained results of the synthetic generation of KD datasets given real
ones.

4.3.1. Indicators

In this study, the durations are assumed independent, and the laws parameters, as-
sumed to be correctly estimated by the fitness algorithm. The equivalency between
synthetic keystroke samples and real keystroke samples should be guaranteed by the pro-
posed model, and has thus to be verified.

Three indicators are used to qualify the capacity of the generated synthetic samples
to match samples that would have been expected:

• Area Between the Curves (ABC): qualify the capacity of the synthetic datasets to
estimate the ROC curves of real datasets (the lesser, the better);

• EER estimation error (EEE): qualify the capacity of the synthetic datasets to
estimate the EER of real datasets (the lesser, the better);

• EER of real against synthetic data (ERS): qualify the capacity of synthetic datasets
to usurp users from real datasets (the greater, the better).

In order to compare our findings to the related work [25, 26], we added one consistency
strategy (6o) where the durations d1, d2, and 4 are computed, and all durations are
positives. We used the normal law (StefN), and the uniform law (StefU), using the raw
parameter estimation. As we work on fixed text, the Markov model is not used. We show
in the following sections that the uniform law gives poor performances, as expected.

These three indicators are detailed in the following sections. As shown in Figures
10 and 12, best results for the configuration gumbel.5 are found for R mge and R qme
fitness algorithm, while the raw fitness algorithm gives the worst results. The use of only
23 elements per set seems surprisingly to give slightly better results than we using 45
elements. This might be due to the fact that users’ ways of typing evolve with time.
The use of R mge fitness algorithm will thus be ,by default, assumed in the following
sections, as for the use of 45 elements per sets.

As shown in Figures 11 and 13, results highly depend on the dataset and the used
distance function. For example, GREYC W1 dataset with Blesha distance gives an EER
estimation error of 0.069 using gumbel.5, 45 elements per sets, and R mge fitness algo-
rithm while the best configuration, for this dataset and distance, is normal-3s.1c with an
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Figure 10: EER estimation error (EEE) using R mge, gumbel.5, and 45
elements per sets.
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Figure 11: EER estimation error (EEE) using R mge, gumbel.5, and 45
elements per sets.

EEE of 0.026, which performs poorly, on the same dataset, with the Hocquet distance
with an EEE of 0.148.

As shown in Figures 14 and 15, the selection of the configuration is a trade-off between
EEE and ERS, although some configurations give both satisfying EEE and ERS.

4.3.2. ROC curve estimations

The Area Between the Curves (ABC), computed from the synthetic (DataS) and
real (DataU) entries, qualify the capacity of the synthetic datasets to estimate the ROC
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Sets of 23 elements Sets of 45 elements

1 R qme:gumbel.null
0.045 (0.025±0.095)
0.415 (0.085±0.021)

R qme:gumbel.5
0.045 (0.027±0.095)
0.337 (0.163±0.009)

2 R qme:normal gumbel.null
0.045 (0.026±0.089)
0.410 (0.090±0.021)

raw:gumbel-3s.5
0.045 (0.028±0.089)
0.326 (0.174±0.009)

3 R qme:logistic normal.null
0.044 (0.026±0.086)
0.437 (0.065±0.017)

R qme:logistic gumbel.null
0.053 (0.029±0.085)
0.433 (0.067±0.009)

4 R qme:logistic gumbel.null
0.049 (0.027±0.084)
0.454 (0.054±0.017)

R qme:gumbel.null
0.049 (0.029±0.080)
0.400 (0.100±0.012)

5 R qme:gumbel.0
0.045 (0.027±0.080)
0.344 (0.156±0.013)

R qme:gumbel-3s.5
0.046 (0.029±0.086)
0.354 (0.146±0.008)

6 R qme:normal.null
0.049 (0.028±0.085)
0.396 (0.104±0.018)

R qme:logistic normal.null
0.050 (0.029±0.087)
0.420 (0.080±0.013)

7 R qme:normal gumbel-3s.null
0.047 (0.028±0.089)
0.430 (0.071±0.017)

R qme:normal gumbel.null
0.049 (0.029±0.086)
0.396 (0.104±0.011)

8 R qme:gumbel.5
0.046 (0.028±0.087)
0.346 (0.154±0.013)

R qme:gumbel-3s.0
0.048 (0.029±0.090)
0.346 (0.154±0.012)

9 R qme:normal-3s.null
0.048 (0.029±0.084)
0.418 (0.082±0.021)

R qme:gumbel.0
0.047 (0.030±0.079)
0.329 (0.171±0.009)

10 R qme:gumbel-3s.null
0.048 (0.029±0.085)
0.433 (0.068±0.013)

R qme:normal.5
0.049 (0.030±0.077)
0.323 (0.177±0.010)

Comparison with the related work, using sets of 45 elements
With all values With exclusion of aberrant values

raw:StefN.6o
0.057 (0.035±0.080)
0.389 (0.111±0.009)

raw:StefN-3s.6o
0.112 (0.078±0.093)
0.496 (0.029±0.008)

raw:StefU.6o
0.261 (0.165±0.082)
0.640 (0.140±0.008)

raw:StefU-3s.6o
0.305 (0.181±0.072)
0.691 (0.191±0.010)

Table 6: TOP10 configuration that minimize the area between the ROC curves (ABC).
In the first line, the ABC, in the second line the ERS. Each line contains the absolute value, the error,
then the precision.
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Figure 12: EER of real against synthetic data (ERS) using R mge, gum-
bel.5, and 45 elements per sets.
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Figure 13: EER of real against synthetic data (ERS) using R mge, gum-
bel.5, and 45 elements per sets.

curves of real datasets.

Table 6 shows the best configurations that minimize the ABC. For each configuration,
the first line describes the mean the maximal distance between the synthetic and the real
ROC curve, then the ABC, then prec, the maximal variation of the synthetic ROC curves
relatively to its mean. The second line gives the ERS with its mean, error, and then prec.

As shown in Table 6, the ROC curve can be estimated with a great accuracy (ABC
of 0.027 with a prec of 0.095). The bests ABC are obtained with the gumbel law, and

19



 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

E
E

R
 e

s
ti
m

a
ti
o

n
 e

rr
o

r

EER of real against synthetic data

normal
fully consistent

USURP LINE

Figure 14: Performances of configurations with sets of 23 elements (using R mge)
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Figure 15: Performances of configurations with sets of 45 elements (using R mge)

with strategies 5, null, and 0 which, as said in the previous section does not generate d5,
but compute it from the other durations. Removal of aberrant values when estimating
the parameters (-3s) does not seem to benefit the ABS. Fully consistant strategies are
absents from this top. R qme is over represented in this top. Best configurations in ABS
have lesser performances in ERS (> 0.10 instead of ∼0.02).
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Figure 16: ROC curves for the CMU dataset with 45 entries per users, using R qme and gumbel.5.

The best configurations to estimate the ROC curves of real datasets has been found
to be gumbel.5 (using R qme), followed by gumbel-3s.5 (using raw). The estimation of
the ROC curves with gumbel.5 and R qme is shown in Figure 16

4.3.3. Usurpation of keystroke dynamics

The EER value computed from DataSU (ERS) is used to qualify the capacity of
synthetic Keystroke dynamics data to be indistinguishable from real Keystroke dynam-
ics data. As the EER corresponds to configuration of the biometric system when FAR
equals the FRR, it is not possible to set a threshold enabling to reject less than EER %
of genuine users, without accepting less than EER % impostors. Thus, with an EER of
50%, it is not possible to set a threshold that reject of accept users better than random.
With a, EER > 50%, more impostors will be accepted than genuine users.

However, a biometric system with an EER < 50% can be trivially built from an
existing one having an EER > 50%, simply by considering distance scores as similarity
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Sets of 23 elements Sets of 45 elements

1 R max:logistic normal.nullc
0.498 (0.033±0.013)
0.199 (0.065±0.016)

raw:normal-3s.6
0.500 (0.021±0.011)
0.175 (0.075±0.011)

2 R qme:normal.4
0.506 (0.034±0.021)
0.182 (0.080±0.013)

raw:normal-3s.6c
0.501 (0.022±0.010)
0.172 (0.077±0.010)

3 R mle:normal gumbel.6c
0.505 (0.034±0.019)
0.192 (0.070±0.013)

R mle:normal-3s.6
0.499 (0.022±0.010)
0.175 (0.074±0.010)

4 R mle:normal gumbel.6
0.505 (0.034±0.019)
0.193 (0.069±0.012)

R mle:normal-3s.6c
0.501 (0.022±0.010)
0.173 (0.077±0.010)

5 R max:logistic gumbel.nullc
0.489 (0.034±0.017)
0.212 (0.053±0.014)

raw:normal gumbel-3s.7
0.510 (0.024±0.011)
0.172 (0.078±0.012)

6 R qme:normal.6
0.513 (0.035±0.015)
0.178 (0.084±0.013)

raw:normal gumbel-3s.7c
0.511 (0.024±0.011)
0.171 (0.078±0.012)

7 R mle:normal-3s.4
0.519 (0.035±0.016)
0.179 (0.082±0.014)

R qme:gumbel.4
0.500 (0.024±0.012)
0.169 (0.080±0.010)

8 R qme:logistic normal-3s.nullc
0.489 (0.035±0.015)
0.207 (0.057±0.015)

R mle:normal-3s.7c
0.495 (0.025±0.010)
0.176 (0.074±0.009)

9 R qme:normal.4c
0.510 (0.035±0.023)
0.175 (0.087±0.017)

raw:normal-3s.2c
0.499 (0.025±0.010)
0.173 (0.076±0.011)

10 raw:normal-3s.4
0.518 (0.035±0.013)
0.180 (0.082±0.015)

R mle:normal-3s.2c
0.499 (0.025±0.008)
0.173 (0.077±0.010)

Comparison with the related work, using sets of 45 elements
With all values With exclusion of aberrant values

raw:StefN.6o
0.389 (0.111±0.009)
0.246 (0.021±0.010)

raw:StefN-3s.6o
0.496 (0.029±0.008)
0.177 (0.072±0.010)

raw:StefU.6o
0.640 (0.140±0.008)
0.062 (0.188±0.007)

raw:StefU-3s.6o
0.691 (0.191±0.010)
0.028 (0.221±0.006)

Table 7: TOP10 configuration that enables good usurpation(ERS).
In the first line, the ERS, in the second line the EEE. Each line contains the absolute value, the error,
then the precision.

scores, i.e. by rejecting users below, instead of rejecting them over, a given threshold.
Meaning that for each biometric system with an EER of X, one can build a biometric
system with an EER of 1 - X.

In this study, we aim at building synthetic Keystroke dynamics data that are indis-
tinguishable (using the 4 distances functions we study) from real one, i.e. maximizing
the minimum of ERS and 1 - ERS, i.e. getting an ERS as close as 50%. Obviously, if the
Keystroke dynamics sample contains aberrant values, it would be easily detected. Thus,
fully consistent strategies are desired.

Table 7 shows the best configurations that minimize the ERS error (i.e. |ERS−0.50|).
For each configuration, the first line describes the ERS with its mean, error, and then
prec, and the second line the synthetic data EER with its mean, EEE, and then prec.

The best usurpation are obtained with the either the gumbel or the normal law for
strategies 6, 7, 4, and 2. None of theses strategies recomputes d5. Removal of aberrant
values when estimating the parameters (-3s) seems to benefit the usurpation. R max and
R mge are absent from these top. However, as already shown in the previous section,
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the best configurations in usurpation have poor results in EER estimation, with an EEE
> 0.05, which is still high.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

real
synth

 

Figure 17: FAR/FRR curves using Hocquet distance of real samples against synthet-
ics samples generated with the configuration logistic gumbel-3s.nullc using R mge,
with sets of 45 elements.

As shown by the symmetric of the FAR/FRR curves in Figure 17, our proposed
Keystroke generation method is thus able to produce synthetic samples that enable iden-
tity usurpation of a known user, by imitating its keystroke dynamics.

4.3.4. EER estimations

The difference between the EER values (EEE), computed from the synthetic (DataS)
and real (DataU) entries, qualify the capacity of the synthetic datasets to estimate the
EER value of the real one. Note that the threshold, in which the EER value is reached,
is not taken into account.

Table 8 shows the best configurations that minimize the EEE. For each configuration,
the first line describes the mean of the synthetic dataset EER with its EEE, and then
prec, and the second line the ERS with its mean, error, and then prec.

As shown in Table 8, the EER value can be estimated with a great accuracy (EEE of
0.016 with a prec of 0.012). The bests EEE are obtained with the gumbel law , and with
strategies 5, 2, 7, and 6. Removal of aberrant values when estimating the parameters
(-3s) does not seem to benefit the EEE.R mge and R max are absent from this TOP. As
already shown in previous sections, the best configurations in EEE have lesser perfor-
mances in ERS (> 0.12 instead of ∼0.021).
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Sets of 23 elements Sets of 45 elements

1 R qme:gumbel.0
0.258 (0.015±0.016)
0.344 (0.156±0.013)

R qme:gumbel.5
0.251 (0.016±0.012)
0.337 (0.163±0.009)

2 R qme:gumbel.5
0.255 (0.016±0.015)
0.346 (0.154±0.013)

R qme:gumbel-3s.5
0.238 (0.017±0.012)
0.354 (0.146±0.008)

3 R qme:normal.0
0.264 (0.018±0.015)
0.329 (0.171±0.015)

raw:gumbel-3s.5
0.262 (0.017±0.010)
0.326 (0.174±0.009)

4 R qme:normal.5
0.260 (0.019±0.017)
0.331 (0.169±0.014)

R qme:normal.5
0.254 (0.018±0.011)
0.323 (0.177±0.010)

5 R qme:gumbel.null
0.259 (0.019±0.015)
0.415 (0.085±0.021)

R mle:normal.2c
0.244 (0.019±0.013)
0.378 (0.122±0.009)

6 R qme:gumbel-3s.0
0.246 (0.019±0.015)
0.361 (0.139±0.011)

raw:normal.7c
0.247 (0.019±0.012)
0.375 (0.125±0.012)

7 R qme:normal gumbel.null
0.261 (0.019±0.016)
0.410 (0.090±0.021)

raw:normal.6c
0.245 (0.019±0.013)
0.380 (0.120±0.008)

8 raw:gumbel-3s.5
0.257 (0.019±0.013)
0.348 (0.152±0.014)

R mle:normal.6c
0.244 (0.019±0.013)
0.380 (0.120±0.008)

9 raw:gumbel-3s.0
0.261 (0.019±0.016)
0.342 (0.158±0.015)

raw:normal.2c
0.245 (0.019±0.013)
0.378 (0.122±0.009)

10 R qme:logistic normal.null
0.257 (0.021±0.012)
0.437 (0.065±0.017)

R mle:normal.7c
0.247 (0.019±0.015)
0.376 (0.124±0.011)

Comparison with the related work, using sets of 45 elements
With all values With exclusion of aberrant values

raw:StefN.6o
0.246 (0.021±0.010)
0.389 (0.111±0.009)

raw:StefN-3s.6o
0.177 (0.072±0.010)
0.496 (0.029±0.008)

raw:StefU.6o
0.062 (0.188±0.007)
0.640 (0.140±0.008)

raw:StefU-3s.6o
0.028 (0.221±0.006)
0.691 (0.191±0.010)

Table 8: TOP10 configuration that minimize the mean of EER estimation error (EEE).
In the first line, the EEE, in the second line the ERS. Each line contains the absolute value, the error,
then the precision.
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The best configurations to estimate the EER of real datasets has been found to be
gumbel.5 (using R qme), followed gumbel-3s.5 (using R qme).

5. Conclusion and perspectives

In this paper, we presented a method that enables the generation of synthetic keystroke
dynamics data from known Users, to either usurp real user KD, or to estimate the EER
value of a KDS. These methods have been tested on fixed text, but could be as well
applied to free text.

We show that, the best estimation of the EER value of a KDS is meet when us-
ing gumbel laws, without exclusion of values, and by computing durations d5, d1, and d2
from other durations instead of generating them (gumbel.5). However, even though some
configurations have satisfying performances in both usurpation and EER estimation, our
findings show that the generation of synthetic keystroke dynamics is a trade-off between
an optimal EER estimation, and an optimal usurpation.

This work constitutes a first step towards the generation of large synthetic Keystroke
dynamics datasets. The following step would be the generation of keystroke dynamics
data for an unknown user. Such large synthetic Keystroke dynamics datasets could then
be used to fairly compare KDS performances, as well as to improve learning-based KDS’
performances.
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