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Abstract

The implicit idea of global time adds dissonance to the bridge between Newtonian dy-

namics and high-speeds/curved-spacetimes. However Newtonian use of 3-vectors connects

naturally to a “traveler-point dynamics” that starts with “minimally frame-variant” proper-

time/velocity/acceleration. This allows one to express the introphysics equations of constant accel-

eration as a limiting case of characteristic-time equations which work well at both high speeds and

in curved spacetimes, provided that we (as usual) approximate geometric forces (like gravity and

centrifugal which are invisible to cell-phone accelerometers) as proper forces. This approach can

help make engineering pedagogy “spacetime smart”, and be useful in relativistic physics engines

used for cinema, video games, and interstellar travel simulations.
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I. INTRODUCTION

There are many ways to describe accelerated motion in spacetime, because one can choose

between using:

• time on map-clocks or traveler-clocks;

• velocity as distances on map1,2 or traveler1 yardsticks per unit time on map1 or traveler2

clocks;

• acceleration as second derivatives of distance on map1 or traveler yardsticks with respect

to time on map1 or traveler3,4 clocks.
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FIG. 1. Scalar and 3-vector parameters for characterizing motion using a single metric: Practical

use of the red parameters may require synchronized clocks, e.g. to measure map time at different

positions, while the indigo “traveler-point” parameter set is synchrony-free, and has minimal frame-

variance.

In (3+1)D one can also resolve components with respect to the directon of either: (i) the

”heading” or velocity1,4, (ii) the “traveler’s map-acceleration”4 or frame-variant force, (iii)

the coordinate-acceleration5, or (iv) the proper-acceleration3. None of these choices are wel-

come in the Lorentz-transform world of co-moving free-float-frames6, since extended frame-

works of synchronized clocks cannot accelerate lest they lose internal sync. Hence it’s not

surprising that 3-vector treatments of acceleration at any speed are not generally standard-

ized.

Only one of these descriptions works robustly (cf. Fig. 1) for 3-vectors in curved space-

time, namely that using “traveler-point” variables, namely frame-invariant proper time τ ,

synchrony-free2 proper velocity7 ~w ≡ δ~x/δτ , and magnitude-invariant proper acceleration ~α.

This strategy mirrors the “one-map two-clock” form of the metric-equation itself, whose

zeroeth through second derivative versions (with respect to traveler-time) define frame in-

variants in terms of displacements on bookkeeper or map yardsticks and times elapsed on

map clocks. Work with components referenced to the direction of the constant proper-
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TABLE I. Constant proper acceleration ~α in flat spacetime: Here τ is traveler-time from

“turnaround” when proper velocity ~w = ~wo ⊥ ~α, initial aging-factor γo =
√

1 + (wo/c)2), and

characteristic time is τo ≡
√

1
2(γo + 1)c/α.

4-vector V invariant scalar timelike component V t/c 3-vector spacelike component ~V

coordinate

{Xt, ~X}

proper

time

τ

√
gµνXµXν

t = 1
2
(wo/c)2

γo+1 τ +
(

ατo
c

)2
τo sinh

[

τ
τo

]

~wo = 0 → t = τo sinh
[

τ
τo

]

w ≪ c → t ≃ τ

~r =

1
2(τ + τo sinh

[

τ
τo

]

)~wo + τ2o (cosh
[

τ
τo

]

− 1)~α

~wo = 0 → ~r = τ2o

(

cosh
[

τ
τo

]

− 1
)

~α

w ≪ c → ~r ≃ ~woτ + 1
2~ατ

2

velocity

{U t, ~U}

lightspeed

c

√
gµνUµUν

dt
dτ ≡ γ = 1

2
(wo/c)2

γo+1 +
(

ατo
c

)2
cosh

[

τ
τo

]

~wo = 0 → γ = cosh
[

τ
τo

]

w ≪ c → γ ≃ 1 + 1
2

(

w
c

)2

d~r
dτ ≡ ~w =

1
2(1 + cosh

[

τ
τo

]

)~wo + τo sinh
[

τ
τo

]

~α

~wo = 0 → ~w = τo sinh
[

τ
τo

]

~α

w ≪ c → ~w ≃ ~wo + ~ατ

acceleration

{At, ~A}

proper

acceleration

α

√−gµνAµAν

δ2t
δτ2 = δγ

δτ = (αc )
2τo sinh

[

τ
τo

]

~wo = 0 → δγ
δτ = 1

τo
sinh

[

τ
τo

]

w ≪ c → δγ
δτ ≃ (αc )

2τ

δ2~x
δτ2

= δ ~w
δτ =

1
2 (sinh

[

τ
τo

]

/τo)~wo + cosh
[

τ
τo

]

~α

~wo = 0 → δ ~w
δτ = cosh

[

τ
τo

]

~α

w ≪ c → δ ~w
δτ ≃ ~α

TABLE II. Traveler-point dynamics in flat spacetime: Conserved quantities energy E = γmc2 and

momentum ~p = m~w, where differential-aging factor γ ≡ δt/δτ , proper velocity ~w ≡ δ~r/δτ ≡ γ~v,

coordinate acceleration ~a ≡ δ~v/δt.

relation (1+1)D (3+1)D w ≪ c → γ ≃ 1

momentum ~p ~p = m~w = mγ~v ~p = m~w = mγ~v ~p ≃ m~v

energy E E = γmc2 E = γmc2 E ≃ mc2 + 1
2mv2

felt (~ξ) ↔ map-based

(~f)

force conversions

~f = ~ξ
~ξ = ~f||~w + γ ~f⊥~w

~f = ~ξ||~w + ~ξ⊥~w/γ

~f ≃ ~ξ

map-based

force:momentum

felt force:acceleration

Σ~f = δ~p/δt = m~α
Σ~f = δ~p/δt

Σ~ξ = m~α
Σ~f = δ~p/δt ≃ m~a

action-reaction ~fAB = −~fBA
~fAB = −~fBA

~fAB = −~fBA

work-energy δE = Σ~f · δ~x δE = Σ~ξ · δ~x δE ≃ Σ~f · δ~x

4



acceleration looks particularly promising.

We describe a parameterization of these flat-space equations of motion in terms of a

characteristic “traveler-time from turnaround”

τo ≡
c

α

√

γo−1
2

, (1)

after which the exponential or “e-folding” effects of constant proper-acceleration’s hyperbolic

trig-functions start to “kick in”. Here c is lightspeed, α is the proper-acceleration magni-

tude, and γo is the differential-aging (Lorentz) factor “at turnaround”, when the velocity-

component parallel to that acceleration reverses sign. The result is a set of scalar (time,

energy, power) and 3-vector (position, momentum, force) equations that reduce seamlessly

to the familiar low-speed equations. Their application, initially in flat-spacetime simula-

tions, is also discussed because (in addition to the hyperbolic trig functions) there are some

important differences when operating in this metric-first8 or one-map two-clock9 world.

II. METRIC INVARIANTS AND THEIR SOLUTIONS

We start with the flat-space interval or metric equation in Cartesian form, as a spacetime

Pythagoras’ theorem with “time-like” hypoteneuse:

(cδτ)2 = (cδt)2 − (δx)2 − (δy)2 − (δz)2 (2)

where as usual t represents scalar map-time and 3-vector ~x represents map-position, while

frame-invariant proper time (elapsed on the clocks of our accelerated object) is represented by

τ , and c is the space/time conversion factor e.g. the number of meters (namely 299,792,458)

defined to be contained in a second.

Applying the metric equation to the first proper time derivative of each displacement

component gives a velocity-component relation:

c2 = (cγ)2 − (wx)
2 − (wy)

2 − (wz)
2 (3)

where differential-aging (Lorentz) factor γ ≡ δt/δτ and proper velocity ~w ≡ δ~x/δτ . Here

of course the “synchrony-free” three-vector proper-velocity ~w is also the traveling object’s

3-vector momentum ~p per unit mass, while the scalar differential-aging factor γ ≥ 1 is the

traveling object’s total energy E = mc2 + K divided by mc2. In curved spacetimes and
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accelerated frames, in addition to rest and kinetic energy this Lorentz factor γ will also

include terms for potential energies associated with improper “geometric” (i.e. connection-

coefficient) forces like gravity and centrifugal.

This differential equation yields the familiar flat-space relationships for Lorentz-factor,

namely γ =
√

1 + (w/c)2 = 1/
√

1− (v/c)2 where v is the magnitude of coordinate velocity

~v ≡ δ~x/δt, and shows that c (now seen to be the magnitude of all 4-vector velocities) is a

true frame-invariant just as are proper-time intervals like δτ . In other words, all frames of

reference agree on their values.

Applying the metric equation to the second proper-time derivative of each displacement

component gives an acceleration component relation that can be used to define a third

frame-invariant, namely the proper acceleration 3-vector’s magnitude α, defined by:

−α2 = (c δγ
δτ
)2 − ( δwx

δτ
)2 − ( δwy

δτ
)2 − ( δwz

δτ
)2. (4)

In terms of conserved quantities, we’ll refer to spatial 3-vector δ ~w
δτ

as the “net frame-variant

force” Σ~F ≡ δ~p/δτ per unit mass, and the temporal scalar δγ
δτ

as the “fractional empower-

ment” or rate of energy change P ≡ δE/δτ (e.g. in watts) divided by mc2.

Note that the proper acceleration 4-vector becomes a pure 3-vector ~α in the frame of the

traveling object (and in free-float frames “tangent” to the traveler’s world line), since γ has

”bottomed out” at 1 so that the time component c δγ
δτ

has vanished. Because the foregoing

equations must be true instantaneously (with simultaneity defined by our choice of a “free-

float” or inertial origin for map-time t and spatial 3-vector ~x), we can think of equations 3

and 4 as a set of differential equations with which we can track an object’s unfolding motion

if both the magnitude and direction of that proper-acceleration 3-vector stays unchanged.

With help from various parameterizations of the (3+1)D acceleration equations in the

literature, a second-order ordinary differential equation γ̈ − γ̇2/(1+ γ) = (α/c)2 in the trav-

eling object’s Lorentz factor, with a closed form solution, was obtained. The characteristic

time parameterization of that solution illustrated in Table I emerged later. This allows for

an elegant scalar/3-vector representation, and can be substituted (numerically with ease, as

shown in Table IV) into the differential equations above to show that it works.

Note that we are here using the subscript “o” in two different ways. One is to flag

quantities, like γo and ~wo, associated with a traveler’s motion “at turnaround” when τ and

t equal zero in our constant acceleration model. The other is to flag special quantities, and
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in particular the “characteristic time” τo pertaining to accelerated motion at any time from

the vantage point of a specific bookkeeper frame.

III. WORK-ENERGY AND NEWTON’S LAWS

This parameterization generalizes the low-speed 3-vector equations for use at high speeds

in flat spacetime, but it also specializes general relativity’s 4-vector equations of motion

with help from “synchrony free” parameters which are as frame-invariant as possible. This

is easiest to see with the generalization of the work-energy theorem which shows up in the

observation from Table I that δE/δτ = m~α · ~w. This is special case of the more general work-

energy relation, which says that δE = δγmc2 = Σ~ξ · δ~r, where Σ~ξ is the net frame-invariant

“felt force” ~ξ experienced by our traveler such that Σ~ξ = m~α. These ~ξ are specifically those

“proper forces” whose sum is detectable by accelerometers fixed to our traveler.

In flat spacetime, of course E = γmc2 includes only rest energy mc2 and kinetic energy

(γ − 1)mc2, but in curved spacetimes it also includes potential energies associated with

local connection-coefficient or “geometric” forces like −GMm/r for gravity around a planet,

mα∆x for a long vehicle accelerating in the x-direction, and −1
2
mω2r2 for the “artificial

gravity” in a centrifuge. Thus we have a work-energy theorem that not only works at

any speed, but that connects the potential energies associated with geometric forces to the

differential-aging factor γ on the non-force side of the equation. By moving these potentials

to the proper-force side of the equation, we get the local approximations commonly used in

curved spacetime and accelerated frames here on earth. The right-hand side of this work-

energy theorem in flat space-time also allows one to experimentally track the energy-related

quantities on the right-hand side of Fig. 1, without the need for synchronized clocks.

We now turn to the momentum-related 3-vectors on the left-hand side of Fig. 1. Rates of

energy-change are frame-variant at any speed, but at high speed rates of momentum-change

(even in flat spacetime) become frame-variant as well. Nonetheless, proper acceleration

retains an intimate connection to these rates of change.

To see this we define a version of the “map-based force” ~f acting on a traveling object

with fixed rest-mass m in terms of map-time, namely Σ~f ≡ mδ~w/δt = δ~p/δt. Momentum

conservation from a given map-frame’s perspective also includes action-reaction i.e. ~fAB =

7



−~fBA. Thus Newton’s law takes the same form at any speed in flat spacetime as it does

in the Newtonian low-speed approximation. We summarize these relationships in Table II

using a focus on the simple distinction between frame-invariant “felt force” (denoted by ~ξ),

connected directly to proper acceleration, and “map-based force” ~f connected directly to

rates of momentum change in the map-frame.

For instance, in (1+1)D spacetime we can write Newton’s 2nd law as simply Σ~f =

m~α, provided that we carefully use forces ~fi here defined from the vantage-point of our

bookkeeper metric or map frame. In (3+1)D the 2nd law becomes more complicated. This

is more clearly seen using scaling relations for components parallel and perpendicular to the

instantaneous proper velocity4, which allow us to say that ~f = ~ξ||~w + (1/γ)~ξ⊥~w. In general,

therefore, the acceleration form of Newton’s 2nd law is only a magnitude inequality, namely

0 ≤ |Σ~f | ≤ |m~α| = |~ξ|, where as before the right-hand side of this inequality is seen to have

the same value from all (even accelerated frame) points of view.

We should also mention that one consequence of the inequality between proper (or felt)

force ~ξ and the corresponding map-based force ~f is that the latter naturally breaks down

into a sum of static and kinetic components, like ~fE ≡ ~ξ||~w + γ~ξ⊥~w = γ2m~a and ~fB ≡
−γ(v/c)2~ξ⊥~w when to the traveling object there are no hidden kinetic components (like B-

fields unfelt in the object frame). This breakdown is especially useful when proper forces

may be exerted by oppositely-signed force carriers. The distinction is so useful, in fact, that

it was discovered (along with an elegant notation for dealing with it) in the mid-19th century

while modeling electrostatic and magnetic (i.e. kinetic-component) forces, well before the

intimate connection between space and time was uncovered.

IV. USES IN SIMULATION AND IN PEDAGOGY

Although the equations in Table I and II look remarkably like the familiar ones that work

only at low speed, there are important differences in doing 3-vector dynamics with traveler-

point variables at high speeds, and especially in curved spacetime or accelerated frames.

Some arise from the structure of the equations themselves. For instance, determining the

characteristic-time τo as well as the “turnaround parameters” γo and ~wo given a nonzero

initial velocity ~w1 not perpendicular to ~α, as well as the “proper-time offset” or initial time-

from-turnaround (call it τ1) is more complicated than we are used to when working with
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FIG. 2. It takes time to stop on a dime, not to mention fuel. This is true at any speed, but

especially at proper-speeds greater than 1[ly/ty], where it takes more than 2 traveler years of 1-gee

thrust to return “stopped” at your current location.

Newtonian approximations at low speed.

Fortunately these have closed form solutions. The always-positive characteristic time τo

(this is not a time on any clock) can be obtained from ~w1 (with magnitude w1 and angle θ

with respect to ~α) using:

τo =
c

α

w1
√

w2
1 cos[θ]

2 + 2c2(γ1 − 1) sin[θ]2
(5)

Here the current differential-aging (Lorentz) factor is as usual γ1 =
√

1 + (w1/c)2. The

result is greater than or equal to c/α.

Given this, the time elapsed “since or until” turnaround becomes:

τ1 = ±τo cosh
−1

[

(1 + γ1)

(

c

ατo

)2

− 1

]

(6)

This is positive (i.e. since turnaround) when θ is acute (e.g. between ±π/2), and negative

(i.e. until turnaround) when θ is obtuse.

We of course also need an expression for the proper-velocity vector ~wo (and perhaps

9



FIG. 3. For a given traveler-time relativity drastically increases the range for a 1-gee round-trip

over the Newtonian model (dotted), but payload to launchmass ratios also drop off exponentially.

Lorentz factor γo =
√

1 + (wo/c)2) at turnaound. This becomes:

~wo =

(

2ατo

√

(ατo
c

)2

− 1

)

û1 (7)

where û1 is a unit vector directed along the component of ~w1 which is perpendicular to ~α,

e.g. equal to ~w1 − w1cos[θ]~α/α divided by its own magnitude.

Given these quantities, one can simply infer change in map-position at any traveler time

∆τ elapsed from an arbitrary initial velocity ~w1 under constant proper acceleration ~α by

following:

∆~x[∆τ ] =
τo
2
(∆ sinh[

τ

τo
])~wo + τ 2o (∆ cosh[

τ

τo
])~α (8)

where the ∆ in front of a hyperbolic trig function means the difference between the value

at τ1 +∆τ and at τ1. The traveler’s new proper-velocity at the end of that interval is:

~w[∆τ ] =
1 + cosh[ τ1+∆τ

τo
]

2
~wo + τo sinh[

τ1 +∆τ

τo
]~α (9)

These quantities can then be used to extrapolate the constant proper-acceleration trajectory

as far as we like (forward or backward) by ∆τ from the current time τ1 with respect to

10



FIG. 4. Schematic of a starfleet battlecruiser’s rendezvous with an enemy ship, discussed in the

on-line supplment.

turnaround. For changing accelerations, one can also use this numerically to calculate

trajectories as Riemann sums of small fixed-acceleration proper-time intervals.

This also suggests a more general problem in use of traveler-point variables, namely that

they are specific to one traveler only. Moreover, at high speeds the complicated frame-

dependence for forces, velocities, and times must be taken into account when changing

bookkeeper frames, even if it is a free-float-frame in flat spacetime moving at a constant

speed with respect to the original bookkeeper frame. Thus asking about the dynamics of one

accelerated traveler from the perspective of another, for example, is a much bigger problem

in (3+1)D than it would be with the Galilean low-speed approximations. The approach

only avoids the problem of “whose simultaneity” and “whose yardsticks” by sticking with

one bookkeeper metric only, and describing the motion using variables which are minimally

frame-variant and synchrony free.

V. CONCLUSIONS

Physics engines for interstellar flight simulations e.g. in Celestia and Orbiter, for sci-fi

movies or games, and even for research simulations may benefit from an approach which
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uses dimensioned variables and a familiar 3-vector context. There is also an appetite in the

engineering community4 for a more “spacetime smart” education, and of course students who

are enthused about the challenges of space travel will be happy to know that the familiar

low speed equations can be extended in a fairly natural way to high speeds, and numerically

to curved spacetimes.

The parameterization makes accessible to intro-physics students problems like those il-

lustrated in Figs. 2, 3, and 4. The last of these is discssued in more detail, with solutions, in

the on-line supplement. Note that 1-gee acceleration is approximately 1[ly/y2], so that the

minimum (and unidirectional) value for characteristic time τo is c/α ≃ 1 traveler year or [ty].

This both constrains “relativistically interesting” travel for humans to voyages measured in

years, and really simplifies “back of envelope” calculations involving 1-gee acceleration.
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Appendix A: Supplementary Material

1. Intro to motion studies

In this section of the supplementary material we show introductory physics teachers and

students how the minimally frame-variant “traveler-point variables” (proper time, velocity,

and acceleration), used in the main paper to parameterize constant proper-acceleration, can

also help put Newtonian motion studies into a relativity-smart but unit-rich 3-vector form.

a. start with a map

To describe motion we often first define a bookkeeper coordinate-system, or “map with

metric”, made up of distributed clocks as well as position markers that will be used to

locally describe the map position ~r = {x, y, z} and map time t of events. This coordinate-

system might be simply be a set of identical synchronized clocks separated by standardized

yardsticks, although this is not always possible even here on earth e.g. since time’s rate of

passage increases with altitude i.e. when standing, your head ages faster than your feet.

When two separately-located events show the same time t on their bookkeeper clocks,

we say that those events are simultaneous. Folks using a different map-frame or metric,

even one simply moving at a fixed speed with respect to the first, may determine that

those two events are not simultaneous i.e. that one event occurs before the other. Hence

map-time, map-position, and the meaning of simultaneity are all defined by our choice of

coordinate-system or metric.

13



b. traveler-point kinematics

Motion may be described most generally, e.g. at any speed and in curved spacetimes, by

describing it from one traveling object’s perspective. That is because every one (regardless

of metric, including our traveler) measures the same value for the separation between events,

or proper-time τ elapsed, on a traveling object’s “world line” through spacetime. To work

with many traveling objects at once, particularly at low speeds, it may be useful to pretend

that elapsed map-time δt and all traveler-times elapsed (δτ) are one and the same, but we

don’t want to do that just yet.

The increment of traveler-time δτ elapsed along a world line follows a kind of space-time

Pythagoras’ theorem. In its simplest form, this can be written as (cδτ)2 = (cδt)2 − δ~s · δ~s,
where the 3-vector displacement-increment or hypotenuse δ~s, as usual in Cartesian {x, y, z}
coordinates, obeys δ~s · δ~s = (δx)2 + (δy)2 + (δz)2.

Here the spacetime constant c, often referred to as lightspeed or “the number of meters

in a second” is, like traveler-time, also a frame-invariant i.e. something on which observers

from all vantage points can agree. This follows because the metric equation also defines

invariants for derivatives of the map-coordinates ~r and t, with respect to proper-time τ .

This allows us to define the “first-derivative” traveler-point velocity variables named

proper-velocity ~w ≡ δ~r/δτ and differential aging-factor γ ≡ δt/δτ , as well as “second-

derivative” traveler-point velocity variables which, when combined, allow one to track the

traveler’s proper-acceleration 3-vector ~α, whose magnitude (like that of δτ and c) is also

frame-invariant i.e. something on which observers in all frames reference can agree. That

proper acceleration 3-vector is also the acceleration measured by the accelerometer in the

traveler’s smartphone.

Proper-velocity ~w does not require synchronized map-clocks for its measurement, and it

is equal to the momentum ~p carried by our traveler per unit traveler rest-mass m. Note that

any traveling object’s rest-mass is also, in this context, a frame-invariant and something on

which observers from all frames can agree. Unlike the “coordinate-velocity” ~v ≡ δ~r/δt that

we’ll be using later in this course, proper-velocity also has no upper limit. This is great news

for relativistic travelers, if they are wanting to get somewhere as fast as possible on their own

clocks, i.e. regardless of how much time the trip takes from perspective of “couch-potatoes”

in the map-frame.
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This is the place to introduce constant proper-acceleration equations for proper-velocity

~w[τ ] and displacement ~r[τ ] in terms of the proper-acceleration 3-vector ~α and the initial

proper-velocity “at turnaround” wo given in our (3+1)D table, which at low speeds reduce

to the familiar ~wo + ~ατ and ~woτ + 1
2
~ατ 2, respectively. In that limit also aging-factor γ[τ ]

goes to 1 + 1
2
(w/c)2 (equal to rest plus kinetic energy, divided by mc2), and map-time t[τ ]

is basically traveler-time τ .

For unidirectional motion at any speed, the trajectory looks like ~w[τ ] = τo sinh[τ/τo]~α

and ~r[τ ] = τ 2o (cosh[τ/τo] − 1)~α, where characteristic time τo becomes simply c/α (about

a year for 1-gee ≃ 1 ly/y2 accelerations). These latter equations are quite useful e.g. for

analyzing constant proper-accceleration roundtrips between two stars.

c. map-based dynamics

In order to track interactions (particularly of conserved quantities like energy E = γmc2

and momentum ~p = m~w) between multiple traveling objects, we now must move beyond

those traveler-point variables, which sadly are good for describing the motion of only one

traveler at a time. This will lead to a work-energy theorem (δE = Σ~ξ ·δ~x = m~α ·δ~x) familiar

at any speed, and a map-based force-momentum theorem, namely Σ~f = δ~p/δt, where each

map-based force ~f equals ~ξ||~w + ~ξ⊥~w/γ in terms of the corresponding frame-invariant felt-

force ~ξ detectable e.g. by the traveler’s cell-phone accelerometer. The latter, in turn, obey

the frame-invariant felt force-acceleration relation Σ~ξ = m~α.

An everyday example of this is the use of frame-invariant felt force ~ξ = ~f||~w+γ ~f⊥~w to show

how the magnetic force on a positive charge moving at coordinate-speed v opposite to the

current I in a neutral wire is, from the moving charge’s (traveler-point) perspective, nothing

more than the purely-electrostatic repulsion from a wire with charge-density λ = γvI/c2.

Put another way, magnetic forces are a direct and everyday consequence of these “anyspeed”

dynamical laws and the purely-electrostatic felt forces ~ξ that follow from Coulomb’s law.

In fact, when in the “primed” traveler frame the felt force is electrostatic i.e. ~ξ =

m~α = q ~E ′, then the total map-based force ~f = ~fE + ~fB can be broken (using SI units)

into electrostatic ~fE = q ~E and magnetic ~fB = q~v × ~B components. When expressed in

terms of the electrostatic ~E ′ and magnetic ~B′ fields in the traveler frame, these map-frame
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FIG. 5. Translating a “purely felt” force ~ξ = m~α into a map-based sum ~f = δ~p/δt of static (dashed)

and kinetic (dotted) components.

components are10 quite generally:

~fE = q ~E ′
||~w + γq ~E ′

⊥~w − q ~w × ~B′ (A1)

and

~fB =
(

1
γ
− γ
)

q ~E ′
⊥~w + q ~w × ~B′. (A2)

If the force in the traveler frame is moreover “purely felt” i.e. ~B′ = 0, then the static

component is also ~fE = γ3m~a and therefore in the direction of coordinate-acceleration4

~a ≡ δ~v/δt. More generally, whenever a moving object accelerates itself with help from

any “purely felt” net force ~ξ (like the thrust from a rocket engine cf. Fig. 5), the rate of

momentum change ~f ≡ δ~p/δt has a static component ~fE = γ3m~a = ~ξ||~w + γ~ξ⊥~w which is
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parallel to the observed coordinate acceleration ~a = δ~v/δt, and a corrective kinetic compo-

nent ~fB = (1/γ − γ)~ξ⊥~w which bends the total map-based force ~f ≡ δ~p/δt = ~fE + ~fB back

toward the object’s line of travel without increasing the object’s speed |~w| = |γ~v|, as shown
in Fig. 5.

The force-momentum and force-acceleration relations reduce to Newton’s 2nd law (Σ~f ≃
m~α ≃ m~a) in terms of coordinate-acceleration ~a ≡ δ2~r/δt2 at low speeds i.e. when γ3 ≃ 1.

For unidirectional motion, map-based forces ~f and frame-invariant felt forces ~ξ are equal,

so that Σ~f = δ~p/δt = Σ~ξ = m~α works at any speed. Momentum-conservation in the map-

frame, of course, also gives rise to a general version of Newton’s 3rd action-reaction law in

flat spacetime, i.e. ~fAB = −~fBA.

For the special cases of curved spacetimes (like that we live in here on earth) and for

accelerated frames, this may also be a good place to discuss the utility of pretending that

non-proper geometric forces (like gravity and centrifugal), which are invisible to our cell-

phone accelerometers, are also proper forces for the purpose of predicting local trajectories.

Worked examples of these include the link between differential-aging (through γmc2) and

potential energies U associated with: (i) Schwarzschild gravity i.e −GMm/r, (ii) centrifugal

“gravity” i.e. −1
2
mω2r2, and (iii) a linearly accelerating spaceship i.e. m~α · δ~x. Such

geometric-force “potential energies” may be obtianed for time-independent metrics in the

low-speed weak-field limit by setting δt/δτ ≃ 1/
√
g00, where g00 is the time-only metric

coefficient.

Three-vector addition of relative proper-velocities may also be useful to mention here.

Folks might enjoy this even less than they do the relative-velocity section in a standard

Newtonian text, although it has the advantage that it works at any speed using a very similar

construction. It also makes it pretty obvious why a collider is a way better investment than

an accelerator, if you are trying to break the relative land speed record (in proper-velocity

units, of course) for an electron, a proton, or a uranium nucleus. Worked examples of

this include (i) the unidirectional relation where coordinate-velocities add while the aging-

factors multiply to yield a relative proper velocity i.e. ~wAC = γABγBC(~vAB + ~vBC), and (ii)

more general 3-vector proper-velocity addition problems using ~wAC = ~wAB∗ + ~wB∗C where

~wAB∗ = ~wAB⊥~wBC
+ γBC ~wAB||~wBC

and ~wB∗C = γAB ~wBC , e.g. involving an enemy spaceship

dropping out of hyperspace in the neighborhood of a starfleet ship orbiting a ringworld.
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2. Symbols

In this section of the supplementary material, we provide a set of symbol definitions (Table

III) designed to extend, rather than to replace, the standard set of variables used for intro-

physics, so that they might in addition be used for applications at any speed. Our notation is

also consistent with that adopted by Messerschmitt4, where he invokes the phrase “denizen”

as the map-based complement to the “traveler”, and refers to the spacelike component of

the acceleration 4-vector as ”traveler’s map acceleration” denoted by the 3-vector ~b.

We are also using the greek letter ~ξ for forces as felt by the traveler, just as greek ~α is the

acceleration felt by the traveler, because it looks a bit like the lower case ~f which replaces

it in both force-acceleration and work-energy relations for unidirectional motion, as well as

in the Newtonain approximation. The appoach also allows us to put the approximate local

use of “geometric forces”, like gravity and centrifugal, into a modern integrative context.

3. Numerical examples

In this section of the supplementary material, we provide the result of some sample cal-

culations in Table IV, to provide some high precision numerical examples that may be useful

to developers and teachers in checking algorithms. It is also referred to in the main paper

as a numerical illustration of the differential-equation solution’s invariance relationships.

4. Sample acceleration problem

Although intended to include discussions of Figs. 2, 3 and 4, we illustrate with a discussion

of only the latter here. A starfleet battlecruiser (black) traveling upward at 1.0 [ly/ty], on

seeing light from an enemy spaceship (gray) dropping out of hyperspace (dotted red circle)

at constant speed, accelerates rightward at 1.0 [ly/ty] in order to intercept. This allows it

to dock with the enemy ship 1.0 traveler year later. It then reverses thrusters so as to begin

a return to its starting trajectory.

1. Questions to ask, using only the “consensus” bookkeeper frame pictured to define

simultaneity between spatially-separated events, might include:
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TABLE III. Extended symbol set, with upper-case Latin used for 4-vectors and components, like

Xµ ≡ {Xt, ~X}, and superposed arrows used to denote 3-vectors.

Name Symbols Comments

proper or traveler time τ ≡
√

gµνXµXν/c
frame-invariant time elapsed

e.g. along a traveler’s world line.

lightspeed constant c ≡
√

gµνUµUν frame-invariant magnitude of the velocity 4-vector U.

proper acceleration α ≡
√

−gµνAµAν
frame-invariant magnitude of acceleration 4-vector A

and of the proper-acceleration 3-vector ~α.

map time t ≡ Xt/c
scalar time parameter in the “bookeeper metric”

used to define simultaneity

speed of map time δt
δτ ≡ γ ≡ U t/c = E

mc2

scalar differential-aging (Lorentz) factor linked

to kinetic & geometric-force potential energies

timelike acceleration δ2t
δτ2

≡ At/c = γ P
mc2

scalar proper-time derivative of Lorentz-factor

linked to work-energy theorem δE = Σ~ξ · δ~x, where

proper felt-forces ~ξ obey Σ~ξ = m~α and P ≡ δE/δt

map displacement ~r ≡ ~X
3-vector displacement in the “bookkeeper metric”

used to define position

proper velocity δ~r
δτ ≡ ~w ≡ ~U = ~p

m = γ~v
3-vector map-distance traveled per unit traveler time

linked to momentum ~p = m~w. Here ~v ≡ δ~x/δt.

spacelike acceleration δ2~r
δτ2

≡ ~A = δ~p
δτ = γΣ~f/m

3-vector proper-velocity change per unit traveler time

linked to map-based forces ~f = ~ξ||~w + ~ξ⊥~w/γ through

Newton’s laws Σ~f = δ~p/δt and ~fAB = −~fBA.

(a) How fast and in what direction was the enemy ship traveling, in map-distance

per unit time on enemy-ship clocks?

(b) How many “gees” (net proper-force per unit mass) did the battlecruiser experi-

ence during the rendezvous maneuver?

(c) How long, in battleship and in map years, did the ”ignition to docking” leg of

the detour take? Note that we are not asking how long it took on enemy ship

clocks. Why?

(d) Where (relative to an origin when first-light from the enemy ship arrived) did the

docking take place?

(e) How much kinetic energy and momentum per unit mass did our battlecruiser

gain during the speedup, from the map-frame perspective?
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TABLE IV. Five examples illustrating the first-derivative (timelike) and second-derivative (space-

like) “metric hypoteneuse” relations via the match between the first two and last two columns. Here

proper-acceleration α, plus starting proper-velocity wo and elapsed traveler-time τ from turnaround

are chosen randomly between 0 and 2 in units where c = 1. Intermediate velocity and acceleration

“component predictions” are also provided, to make manual checks on the results easier. The

values in such tables also agree if we allow space/time conversion constant c (AKA “lightspeed”)

to vary randomly.

c α wo τ w|| w⊥ γ γΣf||/m γΣf⊥/m γP/(mc2) ctest αtest

1 0.74499 1.32609 0.472665 0.357626 1.35723 1.72336 0.779977 0.132778 0.266428 1. 0.74499

1 1.92718 0.892756 1.35403 5.98691 2.95676 6.75171 10.8383 4.40094 11.5379 1. 1.92718

1 1.24773 0.925914 1.04885 1.64859 1.30402 2.32773 2.26679 0.806067 2.057 1. 1.24773

1 1.0874 0.924361 0.890118 1.10106 1.12014 1.862 1.54802 0.4686 1.19729 1. 1.0874

1 1.14245 1.6369 0.413079 0.484021 1.70017 2.03097 1.23076 0.310179 0.552972 1. 1.14245

(f) Just after ignition and just before the docking event, what were the apparent

forces and rates of energy increase per unit mass to our battlecruiser from the

map-frame perspective.

(g) Assuming that the battleship does a final rightward constant acceleration burn

to return to its original trajectory, how much ship time is lost or gained as a

consequence of the detour? How much map time is lost or gained, as well?

2. Questions that involve more than one map-frame might include:

(a) Before the beginning of the chase, what was the velocity (magnitude and direc-

tion) of the enemy ship with respect to the battlecruiser.

(b) Before the beginning of the chase, what was the velocity (magnitude and direc-

tion) of the battlecruiser with respect to the enemy ship.

Variations might involve different numbers, non-orthogonal starting velocities & acceler-

ations, plus (even more challenging) thrust recommendations by shipboard computers for

rendezvous given only data on the moving target. The multi-frame problems, like traditional

special relativity problems involving multiple Lorentz transform frames, because of the need

for multiple definitions of extended simultaneity seem to have more potential for confusion.
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The key parameter for addressing all legs of the starfleet battleship’s detour is the

trajectory’s characteristic time, given by τo = c/α
√

(γo + 1)/2 ≃ 1.09868[ty], where the

differential-aging (Lorentz) factor at turnaround is γo =
√

1 + (wo/c)2 ≃ 1.41421. Given

this::

1. “One-map” or single bookkeeper metric questions, where it may be convenient to define

generalized hyperbolic velocity angle or rapidity as η ≡ τ/τo, might be addressed as

follows:

(a) When the enemy velocity matches the battleship velocity of wB = 1
2
(1 +

cosh[η])~wo + τo sinh[η]~α, we can infer that wE ≃
√
1.2218122 + 1.143922 =

1.67372[ly/ty] at roughly tan−1[1.22181/1.1439] ≃ 46.886o counterclockwise from

right;

(b) The proper-acceleration given as = 1[ly/y2] ≃ 9.51287[m/s2] amounts to (from

units conversion) about 0.970043 (or nearly one) [gee];

(c) The docking segment was given to take ∆τB of about one [battleship year], which

translates to a map-time elapsed ∆t ≃ 1.58792[y] (map years), while time-elapsed

between these events on enemy clocks involves a different map frame for defining

simultaneity between spatially separated events;

(d) As above using equations from the bottom row of Table II in the paper, the

docking takes place at displacement {∆x,∆y} ≃ {0.535485, 1.07195}[ly] from
ignition at the origin;

(e) Per unit mass from the map-frame perspective during the speed up, the total ki-

netic energy increase is ∆K/m = c2∆γ ≃ 0.535485c2 ≃ 4.8127×1016[J/kg] while

the momentum increase is ∆p/m = ∆w ≃ 0.673716c ≃ 2.01965× 108[m/s], sug-

gesting that adventures at relativistic speeds can be energetically costly especially

if you have to carry fuel with you in the process;

(f) Per unit mass from the map-frame perspective on ignition the starting power

output γP/m ≡ (1/m)δE/δτB = α2τo sinh[η] is zero [W/kg] since at turnaround

the force is perpendicular to velocity, while before docking γP/m ≃ 1.1439c2

per year i.e. about 3.26451 × 109 [W/kg], and the initial frame-variant force

γΣf/m = |1
2
(sinh[η]/τo)~wo+cosh[η]~α| is 1[ly/y2] = 1.0α while just before docking
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γΣf/m ≃ 1.51938c per year i.e. about 4.81792[m/s2] = 0.506463α, consistent

with the upper limit on frame-variant forces discussed in the paper;

(g) There are four equivalent “legs” associated with the full detour, so that re-

markably the traveler time saved by the detour is 4.28781[ty]− 4[ty] ≃ 3.45371

[traveler months], but there’s a different story from the vantage point of couch

potatoes awaiting your arrival, as I’m afraid that they’ll see the ship arrive

6.35169[y]− 6.06388[y] ≃ 3.45371 [map months] late!

2. Here we have to go beyond the 1-map approach to use of the “multi-map” addition-

equation for 3-vector proper-velocities, of the form ~wAC = ~wAB∗ + ~wB∗C where the first

term in the vector sum ~wAB∗ = ~wAB⊥~wBC
+ γBC ~wAB||~wBC

involves a change in metric

from B → C while the second term ~wB∗C = γAB ~wBC only involves a change in clock

from B → A. In both cases we let R stand for our reference-map (or consensus-metric)

frame, B for the pre-chase battleship frame, and E for the enemy ship frame, and are

therefore given ~wBR = {0, 1}[ly/ty] and ~wER ≃ {1.1439, 1.2218}[ly/ty] to get:

(a) that ~wEB ≃ {1.1439,−0.22185}[ly/ty]; and

(b) that ~wBE ≃ {−1.1439,−0.22185}[ly/ty].

Two puzzles that might be fun to explore in the followup are:

• From the result for (1g), under what conditions does the time saved on battleship

clocks as a result of the detour equal the time lost on map-clocks at the (originally

constant-speed) destination point?

• From the multi-frame velocity addition analysis in (2) which shows that from R’s

point of view the velocities of B with respect to E, and of E with respect to B, are

both Wigner-rotated in the direction of R’s relative motion, under what conditions

in general is the proper velocity of A with respect to B “equal and opposite” to the

proper velocity of B with respect to A?
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