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Proofs of the properties presented in the article "Watersheding hierarchies" I

Proofs of the properties presented in the article
"Watersheding hierarchies"

This document contains the proofs of the properties and theorem presented
in the following conference article:

D. S. Maia, J. Cousty, L. Najman, and B. Perret. Watersheding hierarchies.
In ISMM. 2019.

A Proof of Property 3

Property 16. Let P be a map from R(B) to R+. The map P is an extinction
map for w if and only if the following statements hold true:

1. range(P ) = {0, . . . , n};
2. for any two minima M1 and M2 if P (M1) = P (M2), then M1 =M2; and
3. for any region R of B, we have P (R) = ∨{P (M) such that M is a minimum

of w included in R}.

We prove the forward and backward implications of Property 3 in Property
17 and Property 18, respectively.

Property 17. Let P be a map from R(B) to R+. If the map P is an extinction
map for w, then the following statements hold true:

1. range(P ) = {0, . . . , n};
2. for any two minima M1 and M2 if P (M1) = P (M2), then M1 =M2; and
3. for any region R of B, we have P (R) = ∨{P (M) such that M is a minimum

of w included in R}.

Proof. Let P be an extinction map. Then there is a sequence S = (M1, . . . ,Mn)
of minima of w such that P is the extinction map for S. By Definition 2, for
any minimum Mi, for i in {1, . . . , n}, we have P (Mi) = i because Mi is the only
minimum of w included in Mi. Therefore, for any two distinct minima Mi and
Mj, for i in {1, . . . , n}, we have P (Mi) 6= P (Mj), which proves the condition 2
of Property 17. Since w has n minima, the extinction value of any region which
includes a minimum (i.e. any non leaf region) is in the set {1, . . . , n}. For any
leaf region R which do not include any minimum of w, we have P (R) = 0 by
Definition 2. Therefore, the range of P is {0, . . . , n}, which corresponds to the
first condition of Property 17. The third condition of Property 17 is part of the
Definition 2, so its proof is trivial.

Property 18. Let P be a map from R(B) to R+ such that:

1. range(P ) = {0, . . . , n};
2. for any two minima M1 and M2 if P (M1) = P (M2), then M1 =M2; and
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3. for any region R of B, we have P (R) = ∨{P (M) such that M is a minimum
of w included in R}.

The map P is an extinction map for w.

Proof. Let P be a map from R(B) to R+ for which the statements 1, 2 and 3 hold
true. To prove that P is an extinction map, we have to show that there exists a
sequence S of n pairwise distinct minima of w such that, for any region R of B,
the value P (R) is the extinction value of R for S.

Let S = (M1, . . . ,Mn) be a sequence of n pairwise distinct minima of w
ordered in non-decreasing order for P , i.e., for any two distinct minima Mi

and Mj, for i and j in {1, . . . , n}, if i < j then P (Mi) ≤ P (Mj).
By the statement 2, the sequence S is unique. By the statement 3, for any

region R of B such that there is no minimum of w included in R, P (R) = ∨{} =
0, so P (R) is the extinction value of R for S.

Since w has n minima, for any minimum M of w, the value P (M) is
in {1, . . . , n}. Otherwise, if there existed a minimumM ′ of w such that P (M ′) =
0, then there would be a value i in {1, . . . , n} such that for any minimum M ′′

of w the value P (M ′′) is different from i. Consequently, the range of P would
be {0, . . . , n} \ {i}, which contradicts the statement 1. Therefore, for any mini-
mum Mi, for i in {1, . . . , n}, we have that P (Mi) = i, so P (Mi) is the extinction
value of Mi for S.

It follows that, by the statement 3, for any region R such that there is a min-
imum of B included in R, the value P (R) is the maximum value i in {1, . . . , n}
such that Mi is included in R.

Thus, for any region R of B, the value P (R) is the extinction value of R
for S. Therefore, the map P is an extinction map of w.

B Proof of Property 8

Property 19. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . The map f is the saliency map of a hierarchical watershed
of (G,w) if and only if the map ξf is an extinction map.

We prove the forward and backward implications of Property 8 in Property
20 and Property 29, respectively.

Property 20. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If f is the saliency map of a hierarchical watershed, then
ξf is an extinction map.

By Theorem 3 of [11], if f is the saliency map of a hierarchical watershed,
then f is a one-side increasing map, which implies that:

1. range(f) = {0, . . . , n− 1};
2. for any u in E, f(u) > 0 if and only if u ∈WS(w), where WS(w) is the set

of watershed-cut edges of w; and
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3. for any u in E, there exists a child R of Ru such that f(u) ≥ ∨{f(v) such
that Rv is included in R}.

In order to prove Property 20, we prove that three conditions for ξf to be an
extinction map (Property 3) are satisfied in Properties 21, 22 and 26.

Property 21. Let f be the saliency map of a hierarchical watershed and let ξf
be the approximated extinction map of f . Then range(ξf ) = {0, . . . , n}.

Proof. We need to prove that:

1. for any i in {0, . . . , n}, there is a region R of B such that ξf (R) = i; and
2. for any region R of B, we have ξf (R) in {0, . . . , n}.

Proof of 1:
Let R = V , then ξf (R) = ∨f (R) + 1. Since the range of f is {0, . . . , n− 1},

we have ∨f (V ) = ∨{f(u) | Ru ⊆ V } = n− 1. Then, ξf (R) = n− 1 + 1 = n.
Let R be a leaf region of B. Then the building edge of parent(R) is not in

WS(w). Let u be the building edge of parent(R). Since f is a one-side increasing
map and since u is not inWS(w), we have f(u) = 0. Since R is a leaf region, R is
not a dominant region for f and then, by Definition 7, we have ξf (R) = f(u) = 0.

Now, we have to prove that, for any i in {1, . . . , n− 1}, there is a region R of
B such that ξf (R) = i. Since w has n minima, we can conclude that w has n− 1
watershed-cut edges. Since the range of f is {0, . . . , n− 1} and the weight of the
watershed-cut edges of w is strictly greater than zero, we can conclude that the
watershed-cut edges of w have pairwise distinct weights for f from 1 to n − 1.
Given any watershed-cut edge u, we can affirm that exactly one of the children
of Ru is a dominant region of f because, given the children X and Y of Ru, we
know that both X and Y are not leaf regions and we have either X ≺(f,w) Y or
Y ≺(f,w) X. Let Y be the child of Ru which is not a dominant region for f . By
Definition 7, we have ξf (Y ) = f(u). Therefore, for any i in {1, . . . , n− 1}, there
is a watershed-cut edge u in WS(w) such that f(u) = i and such that there is a
child Y of Ru such that ξf (Y ) = f(u) = i.

Proof of 2:
Let R be a region of B and let u be the building edge of the parent of R if

R 6= V . By Definition 7, the value ξf (R) is: ∨f (V ) + 1, f(u) or ξf (parent(R)).
It is enough to prove that ∨f (V )+ 1 and f(u) are in {0, . . . , n}. Since the range
of f is {0, . . . , n − 1}, it is clear that f(u) is in {0, . . . , n}. We can see that
∨f (V ) = n − 1 because any region of B is included in V . Then ∨f (V ) + 1 = n
which is in {0, . . . , n}.

Property 22. Let f be the saliency map of a hierarchical watershed and let ξf
be the approximated extinction map for f . For any two minimaM1 andM2 of w,
if ξf (M1) = ξf (M2), then M1 =M2.

As established by Theorem 3 of [11], if f is the saliency map of a hierarchical
watershed of (G,w), then f is one-side increasing for B. To prove Property 22,
we first present the Properties 23, 24 and 25.
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Property 23. Let f be a one-side increasing map and let ξf be the approximated
extinction map of f . For any region X of B, we denote by uX the building edge
of X. For any region X such that there is a minimum of w strictly included
in X, there is a child Y of X such that:

– ξf (Y ) = ξf (X);
– ξf (sibling(Y )) = f(uX); and
– there is a minimum of w included in Y .

Proof. Let X be a region such that there is at least one minimum of w strictly
included in X. By the definition of dominant regions (Definition 6), at most
one of the children of X is a dominant region of B. Since there is at least one
minimum of w strictly included in X, then there is a minimum included in at
least one child of X. Therefore, there is a child Y of X such that Y is a dominant
region of B and, therefore ξf (Y ) = ξf (X) (condition 2 of Definition 7). Thus,
sibling(Y ) is not a dominant region of B and ξ(sibling(Y )) = f(u), where u is
the building edge of X (condition 3 of Definition 7).

Property 24. Let u be any watershed edge of w and let f be a one-side increas-
ing map. There is a minimum M of w such that ξf (M) = f(u).

Proof. Let u be a watershed-cut edge of w and let f be a one-side increasing map.
By Property 23, there is a child X1 of Ru such that ξf (X1) = f(u). Since u is
a watershed edge, X1 cannot be a leaf node. If X1 is a minimum of w, then
the property holds true. Otherwise, by Property 23, there is a child X2 of X1

such that ξf (X2) = ξf (X1) = f(u) and such that there is a minimum of w
included in X2. We can see that we define a sequence (X1, . . . , Xp) where Xp is
a minimum of w and such that ξf (Xp) = · · · = ξf (X1) = f(u) and Xi ⊂ Xi−1
for any i in {2, . . . , p}. Therefore, there is a minimum Xp included in Ru such
that ξf (Xp) = f(u).

Property 25. Let X be a non-leaf region of B. There exists a minimum M of w
such that ξf (M) = ξf (X).

Proof. If X is a minimum of w, then the proof is trivial. Otherwise, there is
a minimum of w strictly contained in X. By Property 23, there is a child X1

of X such that ξf (X1) = ξf (X) and such that there is a minimum of w included
in X1. If X1 is a minimum of w, then the property holds true. Otherwise, by
Property 23, there is a child X2 of X1 such that ξf (X2) = ξf (X1) = ξf (X) and
such that there is a minimum of w included in X2. We can see that we define
a sequence (X1, . . . , Xp) where Xp is a minimum of w and such that ξf (Xp) =
· · · = ξf (X1) = ξf (X) and Xi ⊂ Xi−1 for any i in {2, . . . , p}. Therefore, there
is a minimum Xp included in X such that ξf (Xp) = ξf (X).

Proof (Property 22).
Let f be a one-side increasing map for B and let ξf be the estimated ex-

tinction map for f . We need to prove that, for any two minima M1 and M2

of w, if ξf (M1) = ξf (M2), then M1 = M2. By Property 24, we know that for
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any wateshed edge u of w, there is a minimum M such that ξf (M) = f(u). By
Property 25, we can say that there is a minimum M of w such that ξf (M) =
ξf (V ) = n. Since the range of f for the set of watershed edges is {1, . . . , n− 1},
we can conclude, by Properties 24 and 25, that the range of ξf for the set of min-
ima of w is {1, . . . , n}. Since w has n minima, it implies that the values ξf (M1)
and ξf (M2) should be distinct for any pair (M1,M2) of distinct minima of w.

Property 26. Let f be the saliency map of a hierarchical watershed and let ξf be
the estimated extinction map for f . For any region R in R(B), we have ξf (R) =
∨{ξf (M) such that M is a minimum of w included in R}.

As established by Theorem 3 of [11], if f is the saliency map of a hierarchical
watershed of (G,w), then f is one-side increasing for B. To prove this lemma,
we introduce properties 27 and 28.

Property 27. Let f be a one-side increasing map and let X be a region of B.
Then ξf (X) ≥ ∨{f(v) | Rv ⊆ X}.

Proof. Let X be a region of B. We will prove that this property holds true in all
the cases of the definition of approximated extinction maps (Definition 7).

1. If X = V , then ξf (X) = n (first case of Definition 7). Since the range of f
is {0, . . . , n− 1}, we have ξf (X) ≥ ∨{f(v) | Rv ⊆ X}.

2. If X is non-dominant region of B and if X is a leaf region of B. Then {f(v) |
Rv ⊆ X} = ∅. Since ∨∅ = 0, we have ξf (X) ≥ ∨{f(v) | Rv ⊆ X}.

3. If X is non-dominant region and a non-leaf region of B, then sibling(X)
is a dominant region of B, which implies that ∨{f(v) such that Rv is a de-
scendant of X} ≤ ∨{f(v) such that Rv is a descendant of sibling(X)} by
the definition of dominant regions. Since f is a one-side increasing map,
then f(uparent(X)) ≥ ∨{f(v) such that Rv is included in Z} for a child Z
of parent(X). Consequently, f(uparent(X)) ≥ ∨{f(v) such that Rv is a de-
scendant of X} and, therefore, ξf (X) = f(uparent(X)) ≥ ∨{f(v) such that Rv

is a descendant of X}.
4. If X is a dominant region of B, then ξf (X) = ξf (parent(X)). We will prove

that ξf (X) ≥ ∨{f(v) such that Rv is a descendant of X} by induction.
– Base step: if parent(X) is V , then ξf (X) = ξf (V ) = n and our property

holds true.
– Inductive step: if the property holds for parent(X), then we have to show

that it holds for X as well. If ξf (parent(X)) ≥ ∨{f(v) such that Rv is
a descendant of parent(X)} then ξf (X) = ξf (parent(X)) ≥ ∨{f(v)
such that Rv is a descendant of X} because every descendant of X is a
descendant of parent(X) as well.

Property 28. Let X be a non-leaf region of B. Then, for any region Y such
that Y ⊆ X, the value ξf (Y ) is in {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}

Proof. By induction:
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– Base step: if X is a minimum of w. Let u be the building edge of X. For
any child Y of X, we can affirm that Y is a non-dominant region of B and
then ξf (Y ) = f(u), which is equal to zero because f is a one-side increasing
map. Thus, ξf (Y ) is in {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}.

– Inductive step: if X is not a minimum and the property holds for both chil-
dren of X. By Property 23, we know that there is a child Y of X such
that ξf (Y ) = f(uX) and ξf (sibling(Y )) = ξf (X). Therefore, for any re-
gion Y such that Y ⊆ X, the value ξf (Y ) is in {ξf (Y ), 0} ∪ {f(u) | Ru ⊆
Y } ∪ {ξf (sibling(Y )), 0} ∪ {f(u) | Ru ⊆ sibling(Y )} ∪ {ξf (X)} which is
equivalent to {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}.

Proof (Property 26). We can now prove that, for any region R of B, we
have ξf (R) = ∨{ξf (M) such that M is a minimum of w included in R}. Given
a region X of B:

– If there is no minimum of w included in X, then X is a leaf region and
X is a non-dominant region of B. Then ξf (Y ) = f(u) (third condition of
Definition 7), which is equal to zero because f is a one-side increasing map.
Therefore, ξf (X) = ∨{ξf (M) such that M is a minimum of w included
in R} = ∨∅ = 0

– Otherwise, for any region Y ⊆ X, ξf (Y ) is in {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}
by Property 28. By Property 27, ξf (X) ≥ {f(v) | Rv ⊆ X}. There-
fore, ξf (X) ≥ ξf (Y ). Then, ξf is increasing on the hierarchy B, i.e., for
any region X, we have ξf (X) = ∨{ξf (Y ) | Y ⊆ X}. By Property 23, there
is a minimum M of w such that ξf (X) = ξf (M). Hence, ξf (X) = ∨{ξf (Y ) |
Y ⊆ X and Y is a minimum of w}.

Property 29. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If ξf is an extinction map, then f is the saliency map of a
hierarchical watershed.

If ξf is an extinction map, then, by Property 3, we have:

– range(P ) = {0, . . . , n};
– for any two distinct minima M1 and M2, P (M1) 6= P (M2); and
– for any region R of B, we have P (R) = ∨{P (M) such that M is a minimum

of w included in R}.

Now we have to prove that f is a one-side increasing map. We need to prove
that the three conditions for f to be a one-side increasing map are satisfied.

Property 30. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If ξf is an extinction map, then range(f) = {0, . . . , n− 1}.

Proof. We need to prove that:

1. for any i in {0, . . . , n− 1}, there is an edge u in E such that f(u) = i; and
2. for any edge u in E, we have f(u) in {0, . . . , n− 1}.
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Proof of 1:
For i = 0: Since ξf is an extinction map, for any leaf region R of B, we

have ξf (R) = ∨{ξf (M) such that M is a minimum of w included in R} = 0.
Let R be a leaf region. Since R is not a dominant region for f , this means that
ξf (R) = f(u), where u is the building edge of parent(R), and, since ξf (R) = 0,
this implies that there exists an edge u in E such that f(u) = 0.

For i in {1, . . . , n − 1}: Since ξf is an extinction map, then range(ξf ) =
{0, . . . , n}. Then, for any i in {1, . . . , n − 1} there is a region R of B such that
ξf (R) = i. Let i be any value in {1, . . . , n − 1} and let R be a region of B such
that ξf (R) = i. If R is not a dominant region for R, then ξf (R) = f(u), where u
is the building edge of the parent of R and, then, we can affirm that there exists
an edge in E whose weight for f is i. Otherwise, if R is a dominant region for f ,
then ξf (R) = ξf (parent(R)). If parent(R) is not a dominant region for f , then
ξf (parent(R)) = ξf (v), where v is the building edge of the parent of parent(R)
and we have our property. Otherwise, if parent(R) is a dominant region of B,
then ξf (parent(R)) = ξf (parent(parent(R))). We can see that, at some point,
we will have ξf (R) = ξf (parent . . . (parent(R)))) = f(y) for an edge y in E.

Proof of 2: By contradiction, let us assume that there is an edge u in E such
that f(u) is not in {0, . . . , n−1}. We can affirm that any non leaf region of B has
a child which is not a dominant region for f . So, we can affirm that there is a
child X of Ru such that ξf (X) = f(u). Since ξf is an extinction map, the range of
ξf is {0, . . . , n}. Then, ξf (X) = f(u) should be in {0, . . . , n} as well. Therefore,
the only value that f(u) could have and that is not in {0, . . . , n − 1} is n. So,
let us assume that f(u) = n. In this case, we would have ∨f (V ) = n+ 1, which
contradicts the fact that range(ξf ) = {0, . . . , n}. Therefore, we may conclude
that, for any edge u in E, we have f(u) in {0, . . . , n− 1}.
Property 31. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If ξf is an extinction map, then for any u in E, f(u) > 0
if and only if u ∈WS(w).

Proof. If ξf is an extinction map, then only the leaf nodes do not include any
minimum of w, which implies that only the leaf nodes has a value equal to zero
for ξf . We can say that any leaf region R is not a dominant region of B, and then
ξf (R) = f(u) where u is the building edge of the parent of R. We can say that
an edge is a watershed-cut edge if and only if it has no leaf regions as children.
This implies that ξf (R) = 0 if and only if the parent of R is not a watershed-cut
edge.

Property 32. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If ξf is an extinction map, then for any u in E, there exists
a child R of Ru such that f(u) ≥ ∨{f(v) such that Rv is included in R}.

In order to prove Property 32, we first present properties 33 and 34.

Property 33. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If ξf is an extinction map then, for any region R of B,
ξf (R) ≥ ∨{ξf (X) | X ⊆ R}.
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Proof. The proof is straightforward if we consider the third condition of Property
3.

Property 34. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . If ξf is an extinction map then, for any region R of B,
ξf (R) ≥ f(u), where u is the building edge of R.

Proof. Let R be a region of B:

– If R = V , then ξf (R) = ∨f (V ) + 1, which means that ξf (R) > f(u).
– If R is not a dominant region, then ξf (R) = f(v) where v is the building edge

of the parent of R. By Property 33, we know that ξf (parent(R)) ≥ ∨{ξf (X) |
X ⊆ R}, which means that ξf (parent(R)) ≥ ξf (R) = f(v), so the property
holds for the parent of R.

Proof (Property 32).
Let R be any region of B. We have ξf (R) ≥ {ξf (X) | X ⊆ R}. Then, we

have ξf (R) ≥ {f(u) | u is the building edge of X ⊆ R}. If R is a non-dominant
region, then ξf (R) = f(v) where v is the building edge of the parent of R. So,
we will have f(v) ≥ {f(u) | u is the building edge of X ⊆ R}. Since R is a child
of Rv, we can say that there is a child of Rv such that the property holds.

Proof (Property 8).
Properties 20 and 29 correspond to the forward and backward implications

of Property 8.

C Proof of Property 10

Let f be a map from E into R+ and let Sf be the estimated sequence of minima
of f . If f is the saliency map of a hierarchical watershed, then ξf is an extinction
map by Property 8. First, we have to prove that ξf is the extinction map for
the sequence Sf . Then, we have to prove that, for any edge u, we have f(u) =
min{ξf (X) | X ⊆ Ru}.

Property 35. Let f be a map from E into R+ and let Sf be the estimated
sequence of minima of f . If ξf is an extinction map, then ξf is the extinction
map for the estimated sequence of minima Sf of f .

Proof. If ξf is an extinction map, then for any two distinct minima M1 and
M2, we have ξf (M1) 6= ξf (M2). If we prove that ξf (M) > 0 for any minimum
M , then we prove that the range of ξf for the set of minima is {1, . . . , n}. Let
M be a minimum of w and let us assume that ξf (M) = 0. If M is a not a
dominant region of B, then ξf (M) = f(v) = 0 where v is the building edge of
parent(M). However, if M is not a dominant region of B, this implies that none
of the children of Rv is a leaf region and then, v is a watershed-cut edge. Since
f is one-side increasing, this implies that f(v) is strictly greater than 0. If M
is a dominant region of B, this implies that ξf (M) = ξf (parent(M)). Since ξf
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is an extinction map, only the leaf regions of B has a zero value for ξf . Since
the parent of M is not a leaf region, we can affirm that ξf (parent(M)) > 0
and, therefore, ξf (M) > 0. So, we just proved that the range of ξf for the set of
minima is {1, . . . , n}. Since ξf is an extinction map, we can say for any region
R, we have ξf (R) = ∨{ξf (M) |M is a minimum }. So, ξf is the extinction map
for Sf .

Property 36. Let f be a map from E into R+ and let Sf be the estimated
sequence of minima of f . If ξf is an extinction map, then for any edge u, we
have f(u) = min{ξf (Ru), f(u)}.

Proof. Any region has a child which is dominant and a child which is not a
dominant region of B. This implies that, for any edge u, there is a child X of
u such that ξf (X) = ξf (Ru) and another child Y such that ξf (Y ) = f(u). By
Property 34, we have ξf (Ru) ≥ f(u), which implies that f(u) = min{ξf (X) |
X ⊆ Ru} = min{ξf (Ru), f(u)}.

D Proof of Theorem 12

Theorem 37. Let f be a map from E into R+. The watersheding ω(f) of f
is the saliency map of the hierarchical watershed of (G,w) for the estimated
sequence of minima for f .

Proof. By Property 8, the map ξf is an extinction map and, by Property 35,
the map ξf is an extinction map for the estimated sequence of minima Sf for
f . Therefore, by the Definition 11 of watersheding, the watersheding ω(f) of f
is the saliency map of the hierarchical watershed of (G,w) for the estimated
sequence of minima for f .

E Proof of Property 13

Property 38. Let f be a map from E into R+. The watersheding ω(ω(f))
of ω(f) is equal to ω(f).

Proof. By Theorem 12, we know that ω(f) is the saliency map of a hierarchical
watershed. By Property 10, we know that ξω(f) is the extinction map for the
estimated sequence of minima Sω(f) for ω(f). By Property 36, we know that
ω(f)(u) = min{ξω(f)(X) | X ⊆ Ru}. By Definition 11, we have ω(ω(f)) =
min{ξω(f)(X) | X ⊆ Ru} = ω(f)(u).

F Proof of Property 15

Property 39. Let H be a hierarchy and let f be the saliency map of H. The
hierarchy H is a hierarchical watershed of (G,w) if and only if ω(f) = f .
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Proof. Let H be a hierarchical watershed and let f be the saliency map of H. By
Property 14, we may say that ω(f) = f .

On the other hand, let ω(f) = f . Then, for any edge u, we have f(u) =
ω(f)(u) = min{P (R) | R is a child of Ru}, where P is the extinction map for
Sf . Therefore, by the backward implication of Property 8, we can say that f is
the saliency map of the hierarchical watershed for Sf .


