3. for any region R of B, we have P (R) = ∨{P (M ) such that M is a minimum of w included in R}.

The map P is an extinction map for w.

Proof. Let P be a map from R(B) to R + for which the statements 1, 2 and 3 hold true. To prove that P is an extinction map, we have to show that there exists a sequence S of n pairwise distinct minima of w such that, for any region R of B, the value P (R) is the extinction value of R for S.

Let S = (M 1 , . . . , M n ) be a sequence of n pairwise distinct minima of w ordered in non-decreasing order for P , i.e., for any two distinct minima M i and M j , for i and j in {1, . . . , n}, if i < j then P (M i ) ≤ P (M j ).

By the statement 2, the sequence S is unique. By the statement 3, for any region R of B such that there is no minimum of w included in R, P (R) = ∨{} = 0, so P (R) is the extinction value of R for S.

Since w has n minima, for any minimum M of w, the value P (M ) is in {1, . . . , n}. Otherwise, if there existed a minimum M of w such that P (M ) = 0, then there would be a value i in {1, . . . , n} such that for any minimum M of w the value P (M ) is different from i. Consequently, the range of P would be {0, . . . , n} \ {i}, which contradicts the statement 1. Therefore, for any minimum M i , for i in {1, . . . , n}, we have that P (M i ) = i, so P (M i ) is the extinction value of M i for S.

It follows that, by the statement 3, for any region R such that there is a minimum of B included in R, the value P (R) is the maximum value i in {1, . . . , n} such that M i is included in R.

Thus, for any region R of B, the value P (R) is the extinction value of R for S. Therefore, the map P is an extinction map of w.

B Proof of Property 8

Property 19. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . The map f is the saliency map of a hierarchical watershed of (G, w) if and only if the map ξ f is an extinction map.

We prove the forward and backward implications of Property 8 in Property 20 and Property 29, respectively.

Property 20. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If f is the saliency map of a hierarchical watershed, then ξ f is an extinction map.

By Theorem 3 of [11], if f is the saliency map of a hierarchical watershed, then f is a one-side increasing map, which implies that:

1. range(f ) = {0, . . . , n -1}; 2. for any u in E, f (u) > 0 if and only if u ∈ W S(w), where W S(w) is the set of watershed-cut edges of w; and 3. for any u in E, there exists a child

R of R u such that f (u) ≥ ∨{f (v) such that R v is included in R}.
In order to prove Property 20, we prove that three conditions for ξ f to be an extinction map (Property 3) are satisfied in Properties 21, 22 and 26.

Property 21. Let f be the saliency map of a hierarchical watershed and let ξ f be the approximated extinction map of f . Then range(ξ f ) = {0, . . . , n}.

Proof. We need to prove that:

1. for any i in {0, . . . , n}, there is a region R of B such that ξ f (R) = i; and 2. for any region R of B, we have ξ f (R) in {0, . . . , n}.

Proof of 1:

Let R = V , then ξ f (R) = ∨ f (R) + 1. Since the range of f is {0, . . . , n -1}, we have ∨ f (V ) = ∨{f (u) | R u ⊆ V } = n -1. Then, ξ f (R) = n -1 + 1 = n.
Let R be a leaf region of B. Then the building edge of parent(R) is not in W S(w). Let u be the building edge of parent(R). Since f is a one-side increasing map and since u is not in W S(w), we have f (u) = 0. Since R is a leaf region, R is not a dominant region for f and then, by Definition 7, we have ξ f (R) = f (u) = 0. Now, we have to prove that, for any i in {1, . . . , n -1}, there is a region R of B such that ξ f (R) = i. Since w has n minima, we can conclude that w has n -1 watershed-cut edges. Since the range of f is {0, . . . , n -1} and the weight of the watershed-cut edges of w is strictly greater than zero, we can conclude that the watershed-cut edges of w have pairwise distinct weights for f from 1 to n -1. Given any watershed-cut edge u, we can affirm that exactly one of the children of R u is a dominant region of f because, given the children X and Y of R u , we know that both X and Y are not leaf regions and we have either X ≺ (f,w) Y or Y ≺ (f,w) X. Let Y be the child of R u which is not a dominant region for f . By Definition 7, we have ξ f (Y ) = f (u). Therefore, for any i in {1, . . . , n -1}, there is a watershed-cut edge u in W S(w) such that f (u) = i and such that there is a child

Y of R u such that ξ f (Y ) = f (u) = i.
Proof of 2: Let R be a region of B and let u be the building edge of the parent of

R if R = V . By Definition 7, the value ξ f (R) is: ∨ f (V ) + 1, f (u) or ξ f (parent(R)). It is enough to prove that ∨ f (V ) + 1 and f (u) are in {0, . . . , n}. Since the range of f is {0, . . . , n -1}, it is clear that f (u) is in {0, . . . , n}. We can see that ∨ f (V ) = n -1 because any region of B is included in V . Then ∨ f (V ) + 1 = n which is in {0, . . . , n}.
Property 22. Let f be the saliency map of a hierarchical watershed and let ξ f be the approximated extinction map for f . For any two minima M 1 and M 2 of w,

if ξ f (M 1 ) = ξ f (M 2 ), then M 1 = M 2 .
As established by Theorem 3 of [11], if f is the saliency map of a hierarchical watershed of (G, w), then f is one-side increasing for B. To prove Property 22, we first present the Properties 23, 24 and 25.

Property 23. Let f be a one-side increasing map and let ξ f be the approximated extinction map of f . For any region X of B, we denote by u X the building edge of X. For any region X such that there is a minimum of w strictly included in X, there is a child Y of X such that:

-ξ f (Y ) = ξ f (X); -ξ f (sibling(Y )) = f (u X ); and -there is a minimum of w included in Y .
Proof. Let X be a region such that there is at least one minimum of w strictly included in X. By the definition of dominant regions (Definition 6), at most one of the children of X is a dominant region of B. Since there is at least one minimum of w strictly included in X, then there is a minimum included in at least one child of X. Therefore, there is a child Y of X such that Y is a dominant region of B and, therefore ξ f (Y ) = ξ f (X) (condition 2 of Definition 7). Thus, sibling(Y ) is not a dominant region of B and ξ(sibling(Y )) = f (u), where u is the building edge of X (condition 3 of Definition 7).

Property 24. Let u be any watershed edge of w and let f be a one-side increasing map. There is a minimum M of w such that ξ f (M ) = f (u).

Proof. Let u be a watershed-cut edge of w and let f be a one-side increasing map. By Property 23, there is a child X 1 of R u such that ξ f (X 1 ) = f (u). Since u is a watershed edge, X 1 cannot be a leaf node. If X 1 is a minimum of w, then the property holds true. Otherwise, by Property 23, there is a child X 2 of X 1 such that ξ f (X 2 ) = ξ f (X 1 ) = f (u) and such that there is a minimum of w included in X 2 . We can see that we define a sequence (X 1 , . . . , X p ) where X p is a minimum of w and such that ξ

f (X p ) = • • • = ξ f (X 1 ) = f (u) and X i ⊂ X i-1
for any i in {2, . . . , p}. Therefore, there is a minimum X p included in R u such that ξ f (X p ) = f (u).

Property 25. Let X be a non-leaf region of B. There exists a minimum M of w such that ξ f (M ) = ξ f (X).

Proof. If X is a minimum of w, then the proof is trivial. Otherwise, there is a minimum of w strictly contained in X. By Property 23, there is a child X 1 of X such that ξ f (X 1 ) = ξ f (X) and such that there is a minimum of w included in X 1 . If X 1 is a minimum of w, then the property holds true. Otherwise, by Property 23, there is a child

X 2 of X 1 such that ξ f (X 2 ) = ξ f (X 1 ) = ξ f (X)
and such that there is a minimum of w included in X 2 . We can see that we define a sequence (X 1 , . . . , X p ) where X p is a minimum of w and such that ξ

f (X p ) = • • • = ξ f (X 1 ) = ξ f (X) and X i ⊂ X i-1 for any i in {2, . . . , p}. Therefore, there is a minimum X p included in X such that ξ f (X p ) = ξ f (X).

Proof (Property 22).

Let f be a one-side increasing map for B and let ξ f be the estimated extinction map for f . We need to prove that, for any two minima M 1 and M 2 of w, if ξ f (M 1 ) = ξ f (M 2 ), then M 1 = M 2 . By Property 24, we know that for any wateshed edge u of w, there is a minimum M such that ξ f (M ) = f (u). By Property 25, we can say that there is a minimum M of w such that ξ f (M ) = ξ f (V ) = n. Since the range of f for the set of watershed edges is {1, . . . , n -1}, we can conclude, by Properties 24 and 25, that the range of ξ f for the set of minima of w is {1, . . . , n}. Since w has n minima, it implies that the values ξ f (M 1 ) and ξ f (M 2 ) should be distinct for any pair (M 1 , M 2 ) of distinct minima of w.

Property 26. Let f be the saliency map of a hierarchical watershed and let ξ f be the estimated extinction map for f . For any region R in R(B), we have

ξ f (R) = ∨{ξ f (M ) such that M is a minimum of w included in R}.
As established by Theorem 3 of [11], if f is the saliency map of a hierarchical watershed of (G, w), then f is one-side increasing for B. To prove this lemma, we introduce properties 27 and 28.

Property 27. Let f be a one-side increasing map and let X be a region of B.

Then ξ f (X) ≥ ∨{f (v) | R v ⊆ X}.
Proof. Let X be a region of B. We will prove that this property holds true in all the cases of the definition of approximated extinction maps (Definition 7).

1. If X = V , then ξ f (X) = n (first case of Definition 7). Since the range of f is {0, . . . , n -1}, we have ξ f (X) ≥ ∨{f (v) | R v ⊆ X}. 2. If X is non-dominant region of B and if X is a leaf region of B. Then {f (v) | R v ⊆ X} = ∅. Since ∨∅ = 0, we have ξ f (X) ≥ ∨{f (v) | R v ⊆ X}.

If X is non-dominant region and a non-leaf region of B, then sibling(X)

is a dominant region of B, which implies that ∨{f (v) such that R v is a descendant of X} ≤ ∨{f (v) such that R v is a descendant of sibling(X)} by the definition of dominant regions. Since f is a one-side increasing map, then f (u parent(X)

) ≥ ∨{f (v) such that R v is included in Z} for a child Z of parent(X). Consequently, f (u parent(X) ) ≥ ∨{f (v) such that R v is a de- scendant of X} and, therefore, ξ f (X) = f (u parent(X) ) ≥ ∨{f (v) such that R v is a descendant of X}. 4. If X is a dominant region of B, then ξ f (X) = ξ f (parent(X)). We will prove that ξ f (X) ≥ ∨{f (v) such that R v is a descendant of X} by induction. -Base step: if parent(X) is V , then ξ f (X) = ξ f (V )
= n and our property holds true. -Inductive step: if the property holds for parent(X), then we have to show that it holds for X as well.

If ξ f (parent(X)) ≥ ∨{f (v) such that R v is a descendant of parent(X)} then ξ f (X) = ξ f (parent(X)) ≥ ∨{f (v)
such that R v is a descendant of X} because every descendant of X is a descendant of parent(X) as well.

Property 28. Let X be a non-leaf region of B. Then, for any region Y such that Y ⊆ X, the value

ξ f (Y ) is in {ξ f (X), 0} ∪ {f (u) | R u ⊆ X}

Proof. By induction:

-Base step: if X is a minimum of w. Let u be the building edge of X. For any child Y of X, we can affirm that Y is a non-dominant region of B and then ξ f (Y ) = f (u), which is equal to zero because f is a one-side increasing map. Thus,

ξ f (Y ) is in {ξ f (X), 0} ∪ {f (u) | R u ⊆ X}.
-Inductive step: if X is not a minimum and the property holds for both children of X. By Property 23, we know that there is a child

Y of X such that ξ f (Y ) = f (u X ) and ξ f (sibling(Y )) = ξ f (X). Therefore, for any re- gion Y such that Y ⊆ X, the value ξ f (Y ) is in {ξ f (Y ), 0} ∪ {f (u) | R u ⊆ Y } ∪ {ξ f (sibling(Y )), 0} ∪ {f (u) | R u ⊆ sibling(Y )} ∪ {ξ f (X)} which is equivalent to {ξ f (X), 0} ∪ {f (u) | R u ⊆ X}.
Proof (Property 26). We can now prove that, for any region R of B, we have

ξ f (R) = ∨{ξ f (M ) such that M is a minimum of w included in R}. Given a region X of B:
-If there is no minimum of w included in X, then X is a leaf region and X is a non-dominant region of B. Then ξ f (Y ) = f (u) (third condition of Definition 7), which is equal to zero because f is a one-side increasing map. Therefore,

ξ f (X) = ∨{ξ f (M ) such that M is a minimum of w included in R} = ∨∅ = 0 -Otherwise, for any region Y ⊆ X, ξ f (Y ) is in {ξ f (X), 0} ∪ {f (u) | R u ⊆ X} by Property 28. By Property 27, ξ f (X) ≥ {f (v) | R v ⊆ X}. There- fore, ξ f (X) ≥ ξ f (Y ).
Then, ξ f is increasing on the hierarchy B, i.e., for any region X, we have

ξ f (X) = ∨{ξ f (Y ) | Y ⊆ X}. By Property 23, there is a minimum M of w such that ξ f (X) = ξ f (M ). Hence, ξ f (X) = ∨{ξ f (Y ) | Y ⊆ X and Y is a minimum of w}.
Property 29. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If ξ f is an extinction map, then f is the saliency map of a hierarchical watershed.

If ξ f is an extinction map, then, by Property 3, we have:

range(P ) = {0, . . . , n}; for any two distinct minima M 1 and M 2 , P (M 1 ) = P (M 2 ); and for any region R of B, we have P (R) = ∨{P (M ) such that M is a minimum of w included in R}.

Now we have to prove that f is a one-side increasing map. We need to prove that the three conditions for f to be a one-side increasing map are satisfied.

Property 30. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If ξ f is an extinction map, then range(f ) = {0, . . . , n -1}.

Proof. We need to prove that:

1. for any i in {0, . . . , n -1}, there is an edge u in E such that f (u) = i; and 2. for any edge u in E, we have f (u) in {0, . . . , n -1}.

Proof of 1:

For i = 0: Since ξ f is an extinction map, for any leaf region R of B, we have ξ f (R) = ∨{ξ f (M ) such that M is a minimum of w included in R} = 0. Let R be a leaf region. Since R is not a dominant region for f , this means that ξ f (R) = f (u), where u is the building edge of parent(R), and, since ξ f (R) = 0, this implies that there exists an edge u in E such that f (u) = 0.

For i in {1, . . . , n -1}: Since ξ f is an extinction map, then range(ξ f ) = {0, . . . , n}. Then, for any i in {1, . . . , n -1} there is a region R of B such that ξ f (R) = i. Let i be any value in {1, . . . , n -1} and let R be a region of B such that ξ f (R) = i. If R is not a dominant region for R, then ξ f (R) = f (u), where u is the building edge of the parent of R and, then, we can affirm that there exists an edge in E whose weight for

f is i. Otherwise, if R is a dominant region for f , then ξ f (R) = ξ f (parent(R)). If parent(R) is not a dominant region for f , then ξ f (parent(R)) = ξ f (v)
, where v is the building edge of the parent of parent(R) and we have our property. Otherwise, if parent(R) is a dominant region of B, then ξ f (parent(R)) = ξ f (parent(parent(R))). We can see that, at some point, we will have ξ f (R) = ξ f (parent . . . (parent(R)))) = f (y) for an edge y in E.

Proof of 2: By contradiction, let us assume that there is an edge u in E such that f (u) is not in {0, . . . , n-1}. We can affirm that any non leaf region of B has a child which is not a dominant region for f . So, we can affirm that there is a child X of R u such that ξ f (X) = f (u). Since ξ f is an extinction map, the range of ξ f is {0, . . . , n}. Then, ξ f (X) = f (u) should be in {0, . . . , n} as well. Therefore, the only value that f (u) could have and that is not in {0, . . . , n -1} is n. So, let us assume that f (u) = n. In this case, we would have ∨ f (V ) = n + 1, which contradicts the fact that range(ξ f ) = {0, . . . , n}. Therefore, we may conclude that, for any edge u in E, we have f (u) in {0, . . . , n -1}.

Property 31. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If ξ f is an extinction map, then for any u in E, f (u) > 0 if and only if u ∈ W S(w).

Proof. If ξ f is an extinction map, then only the leaf nodes do not include any minimum of w, which implies that only the leaf nodes has a value equal to zero for ξ f . We can say that any leaf region R is not a dominant region of B, and then ξ f (R) = f (u) where u is the building edge of the parent of R. We can say that an edge is a watershed-cut edge if and only if it has no leaf regions as children. This implies that ξ f (R) = 0 if and only if the parent of R is not a watershed-cut edge.

Property 32. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If ξ f is an extinction map, then for any u in E, there exists a

child R of R u such that f (u) ≥ ∨{f (v) such that R v is included in R}.
In order to prove Property 32, we first present properties 33 and 34.

Property 33. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If ξ f is an extinction map then, for any region R of B,

ξ f (R) ≥ ∨{ξ f (X) | X ⊆ R}.
is an extinction map, only the leaf regions of B has a zero value for ξ f . Since the parent of M is not a leaf region, we can affirm that ξ f (parent(M )) > 0 and, therefore, ξ f (M ) > 0. So, we just proved that the range of ξ f for the set of minima is {1, . . . , n}. Since ξ f is an extinction map, we can say for any region R, we have ξ f (R) = ∨{ξ f (M ) | M is a minimum }. So, ξ f is the extinction map for S f . Property 36. Let f be a map from E into R + and let S f be the estimated sequence of minima of f . If ξ f is an extinction map, then for any edge u, we have f (u) = min{ξ f (R u ), f (u)}.

Proof. Any region has a child which is dominant and a child which is not a dominant region of B. This implies that, for any edge u, there is a child X of u such that ξ f (X) = ξ f (R u ) and another child Y such that ξ f (Y ) = f (u). By Property 34, we have ξ f (R u ) ≥ f (u), which implies that f (u) = min{ξ f (X) | X ⊆ R u } = min{ξ f (R u ), f (u)}.

D Proof of Theorem 12

Theorem 37. Let f be a map from E into R + . The watersheding ω(f ) of f is the saliency map of the hierarchical watershed of (G, w) for the estimated sequence of minima for f . Proof. By Property 8, the map ξ f is an extinction map and, by Property 35, the map ξ f is an extinction map for the estimated sequence of minima S f for f . Therefore, by the Definition 11 of watersheding, the watersheding ω(f ) of f is the saliency map of the hierarchical watershed of (G, w) for the estimated sequence of minima for f .

E Proof of Property 13

Property 38. Let f be a map from E into R + . The watersheding ω(ω(f )) of ω(f ) is equal to ω(f ).

Proof. By Theorem 12, we know that ω(f ) is the saliency map of a hierarchical watershed. By Property 10, we know that ξ ω(f ) is the extinction map for the estimated sequence of minima S ω(f ) for ω(f ). By Property 36, we know that ω(f )(u) = min{ξ ω(f ) (X) | X ⊆ R u }. By Definition 11, we have ω(ω(f

)) = min{ξ ω(f ) (X) | X ⊆ R u } = ω(f )(u).

F Proof of Property 15

Property 39. Let H be a hierarchy and let f be the saliency map of H. The hierarchy H is a hierarchical watershed of (G, w) if and only if ω(f ) = f .

Proof. The proof is straightforward if we consider the third condition of Property 3.

Property 34. Let f be a map from E into R + and let ξ f be the approximated extinction map of f . If ξ f is an extinction map then, for any region R of B, ξ f (R) ≥ f (u), where u is the building edge of R.

Proof. Let R be a region of B:

where v is the building edge of the parent of R. By Property 33, we know that

, so the property holds for the parent of R.

Proof (Property 32).

Let R be any region of B. We have

we can say that there is a child of R v such that the property holds.

Proof (Property 8).

Properties 20 and 29 correspond to the forward and backward implications of Property 8.

C Proof of Property 10

Let f be a map from E into R + and let S f be the estimated sequence of minima of f . If f is the saliency map of a hierarchical watershed, then ξ f is an extinction map by Property 8. First, we have to prove that ξ f is the extinction map for the sequence S f . Then, we have to prove that, for any edge u, we have f

Property 35. Let f be a map from E into R + and let S f be the estimated sequence of minima of f . If ξ f is an extinction map, then ξ f is the extinction map for the estimated sequence of minima S f of f . Proof. If ξ f is an extinction map, then for any two distinct minima M 1 and M 2 , we have ξ f (M 1 ) = ξ f (M 2 ). If we prove that ξ f (M ) > 0 for any minimum M , then we prove that the range of ξ f for the set of minima is {1, . . . , n}. Let M be a minimum of w and let us assume that ξ f (M ) = 0. If M is a not a dominant region of B, then ξ f (M ) = f (v) = 0 where v is the building edge of parent(M ). However, if M is not a dominant region of B, this implies that none of the children of R v is a leaf region and then, v is a watershed-cut edge. Since f is one-side increasing, this implies that f (v) is strictly greater than 0. If M is a dominant region of B, this implies that ξ f (M ) = ξ f (parent(M )). Since ξ f Proof. Let H be a hierarchical watershed and let f be the saliency map of H. By Property 14, we may say that ω(f ) = f . On the other hand, let ω(f ) = f . Then, for any edge u, we have f (u) = ω(f )(u) = min{P (R) | R is a child of R u }, where P is the extinction map for S f . Therefore, by the backward implication of Property 8, we can say that f is the saliency map of the hierarchical watershed for S f .