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Geographic Cellular Automata
for Realistic Urban form Simulations:
How Far Should the Constraint be
Contained?

Jean-Philippe Antoni, Gilles Vuidel, Hichem Omrani and Olivier Klein

Abstract Cellular automata (CA) are discrete models that are being ever more1

widely used to study urban forms and, more broadly, to understand, simulate, and2

forecast land use changes (LUC). But LUC models are not based on CA dynamics3

alone and so they are not fully consistent with mathematical definitions of CA.4

Accordingly, to study urbanization, authors often use “constraint CA” or “geographic5

CA” (GCA), i.e., CA which are coupled with other models in order to integrate6

geographical assumptions related to urban form and to provide more realistic results.7

These complementary models are usually calibrated according to expert knowledge8

and do not lead to reproducible deterministic results. Consequently, there is often a9

sizeable gap between the theory of CA as defined in mathematics and their practical10

use for LUC. In this chapter, cellular automata are constrained by a Markovian11

process helping to determine the number of cells that can change from one land use12

category to another. Second, a potential model is used to create a suitability map and13

define the probability of a cell changing from one category to another. Finally, all these14

additional constraints lead to a suite of models which is clearly more complex than15

classical CA as it can be considered mathematically. Nevertheless, as far as possible,16

it presents GCA as a mathematical adaptation of CA integrating the geographical17

assumptions necessary for studying urban forms in a realistic way. AQ118
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2 J.-P. Antoni et al.

1 Introduction21

Urban form may be defined as the relationship between buildings and open spaces22

within agglomerations or different types of urban aggregates according to the speci-23

ficities of local context. It refers more specifically to the outer envelope or contours24

of the city (Antoni 2008). This form, which is characterized by developments at25

different scales (from the entire agglomeration to a single building), is the result26

of human occupation of the territory. As a result of individual behaviors, it reflects27

urban lifestyles generated through several factors such as the urban fabric, the built28

environment, density/compactness, and the spatial distribution of activities and facil-29

ities.30

Geographers tackling urban forms seek primarily to understand the mechanisms31

that lead to the current form of a given urban context, to provide procedures for32

designing optimal forms, and to simulate future developments. Such approaches33

rely on adapted modeling tools that integrate features based on explanatory and34

predictive models, which can be used as tools to support reflection and decision-35

making. Among the mathematical models, many computer-based solutions attempt36

to simulate the evolution of cities and specially to understand how urban forms37

change over time, past and/or future. Among them, cellular automata (CA) stand38

out as a form of mathematical computation models based on a discrete dynamic39

modeling system. They are structured into procedures based on the nesting of simple40

rules that reflect the complexity of real systems. This approach is attractive because41

it relies on a generic development principle that fits very well with the way systems42

in general, and urban systems in particular, evolve. In this framework, LucSim1 was43

designed and developed by ThéMA Laboratory (Antoni et al. 2017) as a cellular44

automata model specially designed for geographical analysis and spatial simulation45

for both researchers and advanced planning institutes. This user-friendly software is46

well adapted for analyzing and simulating land use changes and spatial dynamics at47

different scales for decision-making in urban and land planning.48

After having recalled some definitions of CA as used in geography, the next section49

shows why they remain difficult to apply directly to concrete urban form planning50

or studies. Section 3 then presents two major constraints (temporal and spatial) that51

can improve CA simulation results by refining basic assumptions related to land use52

change. Section 4 presents the results in a new theoretical CA formalization, leading53

to more realistic urban form simulations illustrated by the example of Wroclaw in54

Poland. These results are then discussed in Sect. 5 questioning the extent to which55

these constraints need to be contained.56

1See https://sourcesup.renater.fr/lucsim/ for more details.
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Geographic Cellular Automata for Realistic Urban … 3

2 CA-Based Discrete Modeling57

Starting from a formal definition of CA-based discrete modeling, this section focuses58

on the strengths and limitations of this type of approach when considering urban form59

simulations.60

2.1 CA Formal Definition61

CA are discrete computer models composed of a grid of regular cells assigned to62

one particular state (among a finite number of states) which may change into another63

state over time. They were invented in the 1940s through the works of S. Ulam and J.64

von Neumann (1963) and popularized in the 1970s by John Conway’s Game of Life65

(Conway 1970). Initially, they were of interest only to a few theorists of mathematics66

or computer science, who used them to solve puzzles or to build mathematical games67

in scientific journals. In the 1980s, a number of papers, especially those of Wolfram68

(1983, 1985) made CA fashionable, or rather showed them in a new light with69

a multitude of possible applications for very different fields. Having been focused70

initially on problems in physics and chemistry, several innovative experiments opened71

up biology, medicine, and ecology to CA before they were introduced into spatial72

studies, particularly geography and urban planning. In geography, the use of CA73

indeed echoes the cellular conception of geographical space defended by Tobler74

(1979) and Couclelis (1985) and reveals the deeply geographical character of this75

kind of tool (Couclelis 1988). For these authors, this cellular conception is more76

advantageous than considering space through the irregular spatial polygons defined77

by political and administrative jurisdictions. It provides a notational simplification78

allowing a cell of an array to be indexed in the same way as in matrix algebra. In such79

a notation, gt
i j is a cell characterized by a land use category (urban, forest, industry,80

etc.) at the location i, j at time t, and gt+�t
i j corresponds to the change in the land use81

category at the same location at time t + t.82

From this basis, Tobler (1979) was probably the first geographer to envisage and83

describe all the formal possibilities of cell transitions according to different processes84

involving their neighborhood (Fig. 1):85

1. An independent model where gt + �t
i j is not related to gt

i j in any way.86

2. A dependent model where the land use at location i, j at time t + t depends on87

the previous land use at that location, such that gt + �t
i j � f (gt

i j ).88

3. An historical model where the land use at position i, j in the future89

depends on the initial land uses at that location, such that gt + �t
i j �90

f
(

gt
i j , gt − �t

i j , gt − 2�t
i j , . . . , gt − k�t

i j

)
.91

4. A multivariate model where the land use at location i, j is dependent on several92

other variables at that location, such that gt + �t
i j � f

(
ut

i j , vt
i j , wt

i j , . . . , zt
i j

)
.93
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4 J.-P. Antoni et al.

Fig. 1 Tobler’s cells transitions models

5. A geographical model where the land use at location i, j is dependent on the land94

use at other locations, such that gt + �t
i j � f

(
gt

i + p, j + q

)
.95

This fifth model clearly corresponds to the process implemented in most CA96

models. Nevertheless, in the field of spatial studies and geographical sciences, for-97

mal definitions remain rare except for Tobler’s former theoretical formalization.98

Researchers using CA seldom take the time to describe the mathematical form of the99

model they are using and refer only to other fundamental papers (White and Engelen100

1993; Benenson and Torrens 2004), or describe CA as if -then-else algorithms (Batty101

1997). Torrens (2000) is one of the rare geographers to use a mathematical notationAQ2102

to define the principles of CA transition according to the geographical process (fifth103

model) defined by Tobler.104

2.2 CA Limits105

A Tobler-like geographical notation is clearly pleasant mathematically and correctly106

describes how a transition can operate from one cell state to another according to107

theoretical neighboring configurations. But despite this advantage, it does not model108

land use change in an operative way, nor does it reproduce or create realistic simu-109

lations. An illustrative example based on a case study of Wroclaw (Poland) helps to110

explain why.111
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Geographic Cellular Automata for Realistic Urban … 5

Fig. 2 The urban form of Wroclaw in 2006 and 2012

This example is built using data from the Urban Atlas (Copernicus Programme)2
112

which describes land use in 2006 and 2012. As shown in Fig. 2, land use is classified113

into eight categories: water, fields, forest, dense urban, urban, industry, facilities,114

and transport. To simulate the evolution of this territory in the future, we use four115

transition rules implemented in the LucSim CA software (Antoni et al. 2017). These116

rules are constructed from expert knowledge and are supposed to reproduce urban117

expansion based on simple principles that have largely determined the evolution118

of urban form in the past. Rules are here expressed in two ways: verbal language119

and their conversion into a computer-based language specific to LucSim software120

(dashes):121

1. Fields will become urban if, within a neighborhood of two cells, the current122

cell is surrounded by at least 10% of urban and dense urban cells, if, within a123

neighborhood of fifteen cells, there is at least one cell of facilities, if there is no124

direct connection to forest (within a neighborhood of one cell), and if within a125

neighborhood of three cells less than 50% of the cells are urban and dense urban:126

– Fields -> Urban: pCellCir(Urban,2) + pCellCir(Urban_dense,2) + pCell-127

Cir(New,2) >� 10% and nbCellCir(Facilities,15) >� 1 and nbCell-128

Cir(Forest,1) <� 1 and pCellCir(Urban,3) + pCellCir(Urban,3) <� 50%;129

2. Urban cells will be densified if they are completely surrounded by urbanized130

areas within a neighborhood of one cell:131

– Urban -> Urban_dense: pCellCir(Urban,1) � 100%;132

2See https://land.copernicus.eu/about for more details.
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6 J.-P. Antoni et al.

3. Urban parks (forests) will be created from urban or dense urban if the density of133

urbanized areas is more than 90% within a small radius (within a neighborhood134

of 2 cells for an urban category and within a neighborhood of 1 cell for a dense135

urban category):136

– Urban -> Forest: pCellCir(Urban,2) + pCellCir(Urban_dense,2) >� 90%;137

– Urban_dense -> Forest: pCellCir(Urban,1) + pCellCir(Urban_dense,1) >�138

90%;139

However, the strict application of these rules within LucSim produces results that140

have nothing to do with the current land use, nor with any logical development from141

a town planning or land use planning perspective.142

Figure 3 indeed shows resulting spatial configurations, which are supposed to143

reproduce an urban sprawl process. It clearly shows that the urban sprawl process144

simulated by the model leads to a credible expansion of the urban form during the145

first iterations of the CA run, with an expansion of the city taking the form of an146

oil slick. But very quickly, the number of newly urbanized cells produced by the147

Fig. 3 Simulation of the urban form of Wroclaw from T0 to T + 6, (To make the images easier to
read, newly urbanized areas appear in black before returning to their original color (red))
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Geographic Cellular Automata for Realistic Urban … 7

Fig. 4 Land use changes in Wroclaw from T0 to T + 15

model generates a snowball effect that far exceeds any realistic forecast of future148

urbanization for a city like Wroclaw.149

From this example, we can conclude that the simple use of CA with transition150

rules is not sufficient for forecasting realistic and operational simulations of urban151

forms. On the one hand, the recognition of spatial patterns leading to the application152

of a transition rule corresponds only very partially to the reality of the urbanization153

process. Indeed, the number of possible transitions appears to be much greater than154

the real needs in terms of new housing and population growth. On the other hand, the155

results give no information about the timing of this urbanization. Therefore, although156

it seems clear that a time step does not correspond to a regular and stable duration,157

we are unable to say whether the images produced from t + 1 to t + 16 lead us to158

2020, 2050, 2200, or 3500 (Fig. 4). AQ3159

It appears clearly, then, that a CA cannot be directly applied to simulate city160

growth and more generally land use change. It must necessarily be constrained to161

answer more precise questions about space and time, so that the results produced can162

be integrated more easily, and realistically within a range of analysis and decision-163

making for planning. Only these kinds of constraints, based on assumptions about164

urban form, enable CA to be used in geography and allow for the fundamental165

difference between classical mathematical cellular automata and geographic cellular166

automata (GCA).167

3 Suitable Constraints for Urban Modeling168

There are many methods by which to constrain CA and the literature abounds with169

examples using several methods and models. In this section, we shall focus on just two170

kinds of fundamental constraints. The first is a time constraint to situate the results171
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8 J.-P. Antoni et al.

produced by the automaton over time. As in many publications (Arsanjani et al. 2013),172

it relies on a Markov chain process. The second constraint is a space constraint, which173

aims to reduce the number of neighboring configurations for possible transitions and174

focuses on the most realistic of them. It is based on a potential model.175

3.1 Temporal Constraint176

The first step uses a Markov chain to constrain the process of land use change177

in quantitative terms. Comparison of two static land use images (2006, 2012) can178

be used to determine what has happened between each image and so formulate a179

transition process. By comparing the land use categories date by date and cell by180

cell, it is possible to determine cellular changes between t and t + 1 and to identify181

the land use dynamics. Theoretically, each cell can either change from one land use182

category to another or remain in its initial category. The dynamics of the model can183

therefore be presented as a series of possible transitions from one land use category184

k at time t to another land use category l at t + 1. For a given cell Ni, a transition �185

can be written as:186

�Ni,kl � 1 if Ni,k(t) � 1 and Ni,l(t + 1) � 1187188

To simplify the complexity resulting from the large number of cells and possi-189

ble transitions, changes can be aggregated by land use categories. The aggregate190

transition for the complete system is then191

�N kl �
n∑

i�1

�Ni,kl192193

This formulation allows us to build a contingency matrix indicating the number of194

cell transitions from a category k to a category l between t and t + 1 (i.e., between 2006195

and 2012). This matrix can be easily converted into a transition matrix indicating the196

probability of change between all land use categories (Table 1). When associated with197

the previous vectors, this matrix provides all the elements needed for the construction198

of a Markov chain (MC). In the literature, an MC is defined as a mathematical199

process where transition probabilities are conditional on the past, and express the200

state of a variable at a time t as a function of observations of this variable at t −201

1 (Feller 1968, Berchtold 1998). It relies on the connection of three items: (i) the202

description of the relative values associated with an initial state (land uses visualized203

as a vector for example); (ii) a transition matrix expressing the transition probabilities204

of different groups of observations from one category to another; and (iii) a diachronic205

transformation by an operator in the form of a matrix multiplication iteration.206

If we follow this procedure, land use at time t + 1 can be simulated by multiplying207

the corresponding vector at time t by the corresponding contingency matrix, after the208
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Geographic Cellular Automata for Realistic Urban … 9

Table 1 The transition matrix for Wroclaw between 2006 and 2012

Water Fields Forest Dense U Urban Industry Facilities Transp.

Water 98.784 0.608 0 0 0.304 0 0 0.304

Fields 0.08 96.849 0.017 0.028 2.178 0.364 0.034 0.049

Forest 0 0.063 99.561 0 0.104 0.125 0 0.146

Dense U 0 0 0 99.831 0.042 0.085 0.042 0

Urban 0 5.755 0.719 11.151 69.784 6.475 0.719 5.396

Industry 0 0.558 0 0 1.275 98.088 0 0.08

Facilities 0 0 0.159 0.638 1.115 0.159 97.448 0.478

Transp 0 0 0 0 0.662 0 0 99.338

transformation of the latter into transition probabilities from one land use category209

k to another l. To transform observed contingencies into transition probabilities, we210

use the following:211

pkl(t) � �Nkl

Nk(t)
and

m∑
k�1

pkl(t) � 1212213

We then consider the MC as follows:214

Ni(t + 1) �
m∑

k�1

pkl · Nk(t)215216

where pkl � �Nkl

Nk(t)
� �Nkl∑

l
�Nkl

and
∑

l

pkl � 1217218

According to this formulation, the MC process gives us the chance to prospectively219

calculate future states from known past states, based on observation of past trends and220

probabilities. According to the method, this calculation is based on the assumption221

that future changes will follow the trend of past changes, but as it is based on a222

matrix calculation, this trend is not necessarily linear. Moreover, the values of the223

transition matrix can also be modified by users of the model to integrate different224

parameters for the quantification of future land use changes. In our case, LucSim225

uses the original transition matrix to calculate the number of cells in each land use226

category in 2018, 2024, 2030, etc., on the basis of 2006 and 2012 land uses (same227

interval of 6 years between each date). This system gives us a more plausible picture228

of urban dynamics by calculating land use vectors for each future date, as presented229

in Table 2.230

This table also indicates that the total number nl,t of cells that should be urbanized231

in 2030 must not exceed 984 “urban” cells and 2571 “dense urban” cells.232
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10 J.-P. Antoni et al.

Table 2 Expected future land use vectors

Water Fields Forest Dense U Urban Industry Facilities Transp.

2018 339 17058 4771 2401 613 1322 620 1006

2024 348 16568 4758 2474 836 1407 615 1121

2030 357 16107 4747 2571 984 1504 612 1245

3.2 Spatial Constraint233

Among other methods, MCs are a way to quantify future land use changes when space234

is considered through cells. However, they say nothing about the location of those235

changes. The places where changes occur are strictly determined by the transition236

rules of the CA. To integrate information known elsewhere about the spaces most237

likely to be urbanized quickly (or on the contrary not to be if they are protected), it238

is therefore mandatory to add a second constraint capable of determining the most239

suitable locations. This second constraint is relatively conventional using GCA and240

is usually based on expert knowledge. It consists of constructing a suitability map241

based on driving factors, namely geographical features that are supposed to influence242

urbanization (Clarke 2008).243

It seems obvious that working on locations requires a theoretical framework for244

geographical space. It is not surprising, then, that geographers have developed many245

models for this, often dedicated to residential location (Putman 1979). Diffusion mod-AQ4246

els, for example, are spatial models that make it possible to locate certain elements247

on the assumption that they are generated through the diffusion of other elements.248

Fractal models are other models that can also simulate urban growth (Batty 2007).249

The city is then considered as a system that maximizes interactions between the250

elements it contains. Spatial interaction models are also another family of models251

derived from Newton’s law of universal gravitation. They are based on identical prin-252

ciples and make it possible to locate changes where they are complementary to those253

around them by minimizing the distances between them. They have been used for254

calculating areas of traffic or influence (Helvig 1964) and for estimating residential255

or industrial locations (Abler et al. 1972).256

Among spatial interaction models, potential models indicate that the probability257

of there being a relationship between places decreases with distance. Basically, they258

are used to measure “accessibility” aiming to evaluate the variation of the relative259

amount of relationship opportunity depending on the position of all places. Generally,260

the potential of a place is calculated from the analysis of the importance of all the261

other points of the system, an importance that is termed “mass” in reference to262

the Newtonian gravity model. The potential of a cell is usually the sum of all the263

potentials created at that location by the set of individual masses that make up the264

system (i.e., all the other cells). The calculation of the potential P of each point i265

therefore consists in applying to them a formula simultaneously taking into account266

the mass value m of all the points j located in a geographical area as a function of the267
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Geographic Cellular Automata for Realistic Urban … 11

Fig. 5 Two contrasting realistic potential models

distance dα
i j separating those points from the one for which the calculation is made.268

The operative formula is defined as follows:269

Pi �
n∑

j�1

m j

dα
i j

270271

Spatial constraints based on potential results were applied to the case study of272

Wroclaw by distinguishing two contrasting scenarios. The first scenario (S1) focuses273

on “Urban densification” and assigns significant masses to Dense urban and Urban274

(m � 10) categories and medium masses to Industry, Facility, and Transport (m � 5)275

categories. As a result, the potential map (Fig. 5, left) shows high potential for land276

use change around the heart of the city of Wroclaw. Areas with high potential for277

change—urbanization—are limited to very closed urban areas. The second scenario278

(S2) deals with “Rural expansion” and assigns significant masses to Urban (m � 10)279

and medium masses to Forest and Water (m � 5) categories. Therefore, in this case,280

the potential map (Fig. 5, right) highlights more sprawling areas with high potential281

for change, mainly in the northwestern part of the study area, relatively far from282

Wroclaw city center.283

4 Constraint Geographical CA284

Based on the spatiotemporal constraints presented in Sect. 3, a new more integrated285

formalization of CA can be proposed. In this new formula, the state of a cell i at step286

t + 1 still depends on the state of the cell at step t (cj, t) and the state of the cells in287
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12 J.-P. Antoni et al.

the neighborhood
(
V r

i, t

)
. This relation is clearly based on the classical CA definition288

defined par Tobler or Torrens (Sect. 2). But, it also integrates the MC results limiting289

land use development to within a number nt of cells for each land use category.290

Moreover, the suitability of the simulations calculated by the CA is dependent on the291

cell’s potential Pi based on land use attractiveness masses and distances. A synthetic292

expression of the model could be written293

ci, t+1 � f
(
ci, t , V r

i, t , nl, t , Pi
)

294295

where nt � was defined in Sect. 3.1 and Pi was defined in Sect. 3.2.296

This formula corresponds to the CA process integrated in the LucSim software297

and was applied to produce two contrasting and realistic scenarios in the case study298

of Wroclaw in 2006 and 2012. Scenario S1 seeks to densify the more urbanized areas299

in a pronounced manner. This urban development is thus concentrated around the300

previously densely built-up areas and seeks to fill the open space corresponding to301

fields or less dense urban categories. S2 is a peri-urban development scenario which302

takes place around villages relatively far from the most urbanized areas, where the303

fields have high potential for change into the less dense urban category.304

Moreover, for each scenario, MCs make it possible to quantify future urbanization305

by 2030 by estimating the number of cells that change from a nonurban to an urban306

state with a distinction between two categories: urban and dense urban categories for307

the years 2018, 2024, and 2030 (Table 2). In a second step, two contrasting suitability308

maps (Fig. 5) constrain the spatial development according to the weighting of each309

land use category. The resulting suitability maps based on the potential model (Fig. 5)310

show two contrasting potentials for development: one that is more concentrated311

around the city core for S1, and the other that is more dispersed in the center and312

northern part of the case study for S2. Then in a third step, based on the results of313

steps 1 and 2, the AC could be run according to the three rules set out in Sect. 2.2.314

As expected, S1 concentrates on urban development in the southern part of the315

study area around the core of Wroclaw. This concentration around the core is accom-316

panied by a few outgrowths mainly in the northwestern and northeastern parts of the317

city. By contrast, S2 reveals a marked expansion in the urban category in the more318

rural northwestern part of the study area. Urbanization there is less dense and takes319

on more the form of urban sprawl. As can be seen from the example, LucSim makes320

it easy to simulate urban development scenarios and their consequences for urban321

forms, on the one hand reinforcing the compactness of the city and on the other322

fostering its expansion in rural areas. This kind of modeling process helps in inter-323
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Geographic Cellular Automata for Realistic Urban … 13

Fig. 6 Simulation of two contrasting scenarios by 2030

actively analyzing the direct consequences of spatial planning policies. Finally, it is324

also important to emphasize that by integrating space and time constraints, the sim-325

ulation results are made much more realistic than in the total absence of constraints326

(Fig. 6).327

5 Discussion328

The results presented in the previous section are certainly consistent, but they raise329

a number of questions that call for discussion. First, the CA is driven by a dual330

constraint system applied to the initial transition rules. However, although there is331

no prior theoretical, conceptual, and formal incompatibility between the Markovian332

model and the potential model, some inconsistencies may appear in its actual use.333

For example, constraints derived from MCs, such as the transition rules themselves,334

apply at the level of the land use categories. They are dependent on each transition335

involving two-to-one states. On the other hand, the potential model produces a result336

applicable for all of these categories. It is therefore independent of transitions and less337

precise. One solution to overcome this problem would be not to calculate one single338

potential model, but as many potential models as there are transitions by calibrating339

each of them on masses of attractiveness corresponding actually and more precisely to340

this transition. Such a solution might be attractive in theory, but in practice, it makes AQ5341

modeling increasingly more complex by multiplying the problems of calibration,342

which were already questionable in the example discussed here.343

The calibration of models also raises a second set of questions. Among the mod-344

els used here, only MCs can be considered “autonomous” since they automatically345
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14 J.-P. Antoni et al.

produce results from two original images. The potential model and the definition of346

the transition rules require the use of expert knowledge. In the current state of our347

knowledge about the growth of urban forms, such recourse is a qualitative input that348

does not guarantee the reproducibility of the results produced by the modeling in349

any way. Moreover, insofar as these parameters are not directly derived from math-350

ematical calculation, they appear questionable. This fundamental point is obviously351

a limitation for the modeling exercise and for the application of mathematical tools352

for forecasting urban forms. To overcome this problem, many authors have proposed353

to use “machine learning” approaches so that transition rules are automatically gen-354

erated based on known past states. Indeed, recent work simulates transitions using355

decision trees (Samardžić-Petrović et al. 2015) or artificial neural networks (Li and356

Yeh 2002; Almeida et al. 2008; Tayyebi et al. 2011). Although still very exploratory,357

the results obtained so far seem promising and, through artificial intelligence pro-358

cesses, they offer an additional step to mathematical and geographical modeling.359

But finally, these recent developments also raise the question of the importance360

of expert knowledge in forecasting urban growth. The results produced in this field361

are often considered as “images of the future” leading to a collective reflection on362

the future of territories, rather than final results. Given our difficulty in predicting the363

future, and the fact that it is very unlikely that this future will be a mere reproduction364

of the past, it is clear that these results will probably be wrong in the long run (Antoni365

2016). Consequently, using expert knowledge to involve local actors in defining a366

common future does not seem completely absurd. In essence, these reflections on367

CA calibration ask how far the constraint should be contained. Depending on their368

objectives, anyone can define the level of constraint they wish to apply to simulate369

land use change, from a calibration entirely defined by mathematical models or totally370

derived from expert knowledge. The best way might be a mixed approach combining371

both machine learning and expert knowledge.372

6 Conclusion373

After having shown the necessity for constraining CA in the study of urban forms,374

this paper has proposed a mathematical formalization for specific geographic cellu-375

lar automata (GCA) implemented in LucSim software. At this level of detail, such376

a formalization adapted to the social sciences is rare in the literature and therefore377

appears as one of the fundamental originalities of this chapter. In particular, it aims378

to link the cellular design of geographical space, the Markovian approach to tran-379

sition processes, the distance weighting included in gravity models (potential), and380

the phenomenon of emergence that defines artificial intelligence models in a single381

formal notation. That’s not so bad! In addition, the results produced using this set382

of methods and models appear quite realistic and are able to correctly reproduce a383

credible process of urban growth. But at the same time, this reproduction remains384

open to the intricacy of planning scenarios and allows us to consider a wider use385
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of CA in the framework of a more operational territorial forecast. And that’s even386

better!387

Finally, in a more general way, this chapter also shows that it is worth transferring388

methods developed in mathematics, physics, computer sciences, or mathematics to389

the social sciences. This transfer obviously requires a substantial effort of abstraction390

and what may be considerable investment for researchers or developers who are not391

immediately comfortable with mathematical tools. But since the quantitative revo-392

lution started by geographers in the 1960s (Burton 1963), this approach is currently393

enabling us to work the latest advances in artificial intelligence for decision support394

into urban and land use planning.395
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