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Primal-dual formulation of the Dynamic Optimal Transport using
Helmholtz-Hodge decomposition

Morgane Henry∗ , Emmanuel Maitre∗ , and Valérie Perrier∗

Abstract.
This work deals with the resolution of the dynamic optimal transport (OT) problem between 1D or

2D images in the fluid mechanics framework of Benamou-Brenier [6]. The numerical resolution of this
dynamic formulation of OT, despite the successful application of proximal methods [36] is still computa-
tionally demanding. This is partly due to a space-time Laplace operator to be solved at each iteration, to
project back to a divergence free space. In this paper, we develop a method using the Helmholtz-Hodge
decomposition [23] in order to enforce the divergence-free constraint throughout the iterations. We prove
that the functional we consider has better convexity properties on the set of constraints. In particular we
explain that in 1D+time, this formulation is equivalent to the resolution of a minimal surface equation. We
then adapt the first order primal-dual algorithm for convex problems of Chambolle and Pock [12] to solve
this new problem, leading to an algorithm easy to implement. Besides, numerical experiments demonstrate
that this algorithm is faster than state of the art methods for dynamic optimal transport [36] and efficient
with real-sized images.
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position, minimal surface
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1. Introduction. Optimal transport is a growing field, having numerous applications
in different domains such as economics [13, 22], machine learning [42, 33, 1, 43] or partial
differential equations [10, 30, 9, 8]. Above all, a lot of applications have arisen in image
processing [32], such as color image processing [20, 21], color transfer [40], segmentation
[38] or image interpolation [36, 14, 15]. This last application is particularly relevant for the
optimal transport, since it defines a metric between densities [45]. Several recent works
investigate new formulations for the optimal transport to make the interpolation more
physical [7, 34]. From the numerical point of view, while the application of proximal meth-
ods [36] was successful, the development of efficient new algorithms for the calculation of
the dynamic optimal transport between two densities, due to the lack of strict convexity,
is challenging (see [37] for an up-to-date tour on optimal transport).
In this paper, we focus on the image interpolation problem and the numerical resolution of
the L2-optimal transport problem, for which few numerical methods have been developed
so far [6, 24, 36]. The pioneering work of Benamou-Brenier [6] places the problem in the
context of fluid mechanics by adding a time dimension, leading to a new formulation called
the dynamic optimal transport.
The Benamou and Brenier algorithm is based on the minimization of a functional which
preserves the mass, through an augmented Lagrangian approach. In contrast we propose
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to work directly in the space of constraints for the functional to minimize. Indeed, existing
algorithms [36, 6, 21] require a projection onto the divergence-free constraint at each iter-
ation, which amounts to solving a 3D Poisson equation for 2D images. The fact that the
functional has better convexity properties in the set of constraints, which we will justify in
this paper, motivates our approach. To work in this space, defined by a divergence-free and
regularity constraint on the density and the velocity fields with boundary conditions, we
use the Helmholtz-Hodge decomposition: it separates any vector field into a curl-free and
a divergence-free component, and is often used in the context of partial differential equa-
tions [23, 31]. This change of unknown leads to a new formulation of the problem, which
in 1D + time, is equivalent to the resolution of a minimal surface equation on each level
set of the potential, equipped with appropriate Dirichlet boundary conditions. Another
approach to handle the new formulation is to use the first order primal dual algorithm for
convex problems developed by Chambolle and Pock [12], which can be easily adapted in
our case. The Chambolle-Pock method is nowadays widely used [16, 26], since it leads to
fast implementations and can be speed up on parallel architectures. Therefore our method
will provide a fast algorithm, simple to implement on imaging problems.
This paper is organized as follows. In section 2, the dynamic optimal transport framework
is introduced and the convexity of the functional in the set of constraints is studied, justify-
ing our approach. Then, introducing the Helmholtz-Hodge decomposition, we reformulate
the problem directly in the set of constraints. In 1D+time, we establish that the solution
satisfies a minimal surface equation. Section 3 is dedicated to the application of a primal-
dual algorithm adapted for our functional. Finally numerical experiments are conducted
to compare our algorithm to state of the art on several test cases, including real images,
proving the validity and efficiency of our method. Part of this work has been published in
a conference paper [[28]. In the present paper, we added theoretical developments on the
functional on the constraint space, an equivalent formulation in the 1D+t case in terms
of a minimal surface resolution, leading to an alternative algorithm, and several numerical
experiments.

2. New formulations of the Monge-Kantorovich problem.

2.1. Introduction. Let Ω = (0, 1)n, and (ρ0, ρ1) ∈
(
L2(Ω)

)2
, with n ∈ N∗, be two

positive, bounded densities with∫
Ω
ρ0(x)dx =

∫
Ω
ρ1(x)dx = 1.

If |.| denotes the Euclidean norm in Rn, the L2-Wasserstein distance (see for example [45])
between ρ0 and ρ1 is defined by

d2(ρ0, ρ1)2 = inf
M

∫
Ω
|M(x)− x|2ρ0(x)dx,

where the infimum is taken among the maps M transferring ρ0 to ρ1, which means that
∀A ⊂ Ω,

∫
x∈A ρ1(x)dx =

∫
M(x)∈A ρ0(x)dx. The Monge-Kantorovich problem (MKP) con-

sists in finding an application M (the optimal transport) which realizes this infimum.
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Benamou and Brenier [6] placed the problem in the continuum mechanics framework. Let
us consider a time interval (0, 1) for sake of simplicity, set Q = (0, 1)× Ω and

(1) V (Q) = {f ∈ (L2(Q))1+n, divt,x f = 0}.

Let us introduce the time-dependent density ρ(t, x) ≥ 0 and the vector field v(t, x) ∈ Rn
verifying the continuity equation

(2) divt,x(ρ(t, x), ρv(t, x)) = ∂tρ(t, x) +∇x · (ρv)(t, x) = 0

for t ∈ (0, 1) and x ∈ Ω, equipped with the initial, final and boundary conditions

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), ∀x ∈ Ω,(3)

ρv(t, x) · νΩ = 0, ∀t ∈ (0, 1), x ∈ ∂Ω,(4)

where νΩ is the outward normal of Ω. As proven in [6] (see also [45]), the square of the
L2-Wasserstein distance between ρ0 and ρ1 verifies

d2(ρ0, ρ1)2 = inf

∫ 1

0

∫
Ω
ρ(t, x)|v(t, x)|2dxdt,

where the infimum is taken among all ρ, v satisfying (2) and (3). To obtain a convex
problem with linear constraints, Benamou and Brenier introduced the momentum m = ρv
and obtained the following formulation

min
(ρ,m)∈C

J(ρ,m) where J(ρ,m) =

∫ 1

0

∫
Ω
J(ρ(t, x),m(t, x))dxdt,(5)

with

∀(ρ,m) ∈ R+ × Rn, J(ρ,m) =


|m|2
2ρ , if ρ > 0,

0, espace es if (ρ,m) = (0, 0),
+∞, es otherwise ,

(6)

and the set of affine constraints reads

C := {(ρ,m); divt,x(ρ,m) = 0, m(., x).νΩ = 0, ∀x ∈ ∂Ω, ρ(0, .) = ρ0, ρ(1, .) = ρ1}.(7)

We will detail in the following an algorithm working directly in the set of constraints C.
This is crucial for our method since, as it will be proved in the next section, J has better
convexity properties on that set.

2.2. Convexity of the functional in the constraint space. We prove in this section a
convexity result for J on the constraint space, provided some regularity assumptions on the
velocity field v. Fortunately, thanks to Hug [29], we have at hand two important regularity
results.
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Proposition 1 (Hug). The velocity field v = m
ρ derived from optimal transport belongs

to W 1,1(Q). Moreover, let M > 0 and ρ0, ρ1 ∈ L∞(Ω) of equal mass and such that
0 ≤ ρ0, ρ1 ≤ M . Then, the time-dependent density ρ, solution of (5-6), is in L∞(Q) and
0 ≤ ρ ≤M .

From now on, we will assume that ρ0, ρ1 ∈ L∞(Ω). The set of constraints can then be
restricted to:

C∞ := {(ρ,m) ∈ C, ρ ∈ L∞(Q), ρ ≥ 0 and m = ρv, with v ∈ L1(Q)},

without changing the minimizer.

Proposition 2. The set C∞ is non empty and convex.

Proof. First, C∞ is non empty. Indeed, because of proposition 1, the solution of the
optimal transport problem (ρ,m), for ρ0, ρ1 in L∞(Ω) and positive, belongs to C∞.
We now prove that C∞ is convex. Let (ρ,m) and (ρ′,m′) be in C∞ and α ∈]0, 1[, then
(ρα,mα) = (αρ + (1 − α)ρ′, αm + (1 − α)m′) is in C which is convex and ρα ∈ L∞(Q) is
positive. Let us now check that mα = ραvα with vα ∈ L1(Q).
Because ρ and ρ′ are positive, we have, if ρα 6= 0,

|vα| =
∣∣∣∣mα

ρα

∣∣∣∣ =

∣∣∣∣α m+ (1− α)m′

αρ+ (1− α)ρ′

∣∣∣∣ ≤ ∣∣∣∣ αm

αρ+ (1− α)ρ′

∣∣∣∣+

∣∣∣∣ (1− α)m′

αρ+ (1− α)ρ′

∣∣∣∣
≤
∣∣∣∣α mαρ

∣∣∣∣+

∣∣∣∣(1− α)m′

(1− α)ρ′

∣∣∣∣ = |v|+ |v′| ∈ L1(Q).

The case ρα = 0 corresponds to ρ = ρ′ = 0 which occurs only on a measure zero set since
v = m

ρ , v
′ = m′

ρ′ ∈ L
1(Ω). Thus vα is in L1(Q) and C∞ is convex.

Using these properties we can derive the following result for the optimal transport
problem:

Proposition 3. The functional J defined in (5,6) verifies:
1. J is a proper convex lower semicontinuous function on C∞.
2. Let (ρ,m) and (ρ′,m′) be in C∞ and α ∈]0, 1[, such that

(8) J(α(ρ,m) + (1− α)(ρ′,m′)) = αJ(ρ,m) + (1− α)J(ρ′,m′),

then δρ = ρ− ρ′ verifies{
∂t(δρ) +∇x(wδρ) = 0
δρ|∂Q = 0,

where w =


v if ρ > 0
v′ if ρ′ > 0
0 otherwise

and v = v′ if ρρ′ > 0.

Proof. The first point was proven for example in [4].
To study the convexity of J, let α ∈]0, 1[, (ρ,m), (ρ′,m′) ∈ dom J satisfying (8)∫

Q
J(α(ρ,m) + (1− α)(ρ′,m′))dxdt =

∫
Q

(
αJ(ρ,m) + (1− α)J(ρ′,m′)

)
dxdt.
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Because m = ρv, m′ = ρ′v′, and mα = ραvα with v, v′, vα ∈ L1(Q), we have for almost

every (t, x) ∈ Q, J(ρ,m) = 1
2ρv

2 = |m|2
2ρ and so we obtain:

0 =

∫
Q

(
|mα|2

ρα
− α |m|

2

ρ
− (1− α)

|m′|2

ρ′

)
dxdt

=

∫
Q

(
|mα|2ρρ′ − α|m|2ραρ′ − (1− α)|m′|2ραρ

ραρρ′

)
dxdt

=

∫
Q

|αρv + (1− α)ρ′v′|2ρρ′ −
(
αρ′|ρv|2 + ρ(1− α)|ρ′v′|2

)
(αρ+ (1− α)ρ′)

(αρ+ (1− α)ρ′)ρρ′
dxdt

Expanding and collecting terms gives:∫
Q

2α(1− α)ρ2ρ′2(v · v′)− α(1− α)ρ2ρ′2|v|2 − α(1− α)ρ2ρ′2|v′|2

(αρ+ (1− α)ρ′)ρρ′
dxdt = 0,

and finally, dividing by α(1− α) 6= 0 we obtain:∫
Q

ρρ′ |v − v′|2

αρ+ (1− α)ρ′
dxdt = 0.

This leads to

ρρ′
∣∣v − v′∣∣2 = 0 for almost all t, x ∈ Q,(9)

Thus v = v′ if ρρ′ > 0 and we can define

w =


v if ρ > 0
v′ if ρ′ > 0
0 otherwise,

w ∈ L1(Q) because |w|L1 ≤ |v|L1 + |v′|L1 . Moreover, since (ρ,m), (ρ′,m′) ∈ C∞,

∂tρ+∇x ·m = ∂tρ+∇x · ρv = ∂tρ+∇x · wρ(10)

∂tρ
′ +∇x ·m′ = ∂tρ

′ +∇x · ρ′v′ = ∂tρ
′ +∇x · wρ′

and we obtain the desired result for δρ = ρ− ρ′:

∂t(δρ) +∇x(wδρ) = 0.

Remark.
• The proposition 3 shows that δρ = ρ − ρ′ ∈ L∞(Q) is solution of the continuity

equation with homogeneous Dirichlet boundary conditions, associated to the veloc-
ity field w ∈ L1(Q). As proved in [19, 2], if the velocity field would be in W 1,1(Q),
there will be a unique solution and thus δρ = 0. However for w ∈ L1(Q), we are
not able to prove the unicity of the solution.
• From another point of view, if we would add the assumption v ∈ W 1,1(Q) in the

set C∞, we could not prove that C∞ remains convex.

In the following we will only consider positive densities ρ0, ρ1 in the space L∞(Ω).
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2.3. Reformulation of the problem using the Helmholtz-Hodge decomposition. To
work directly in the constraint space C, we use the orthogonal decomposition of L2(Q)1+n,
for n = 1 or 2, detailed in [23]. Any vector field v = (ρ,m) ∈ L2(Q)1+n has the following
Helmholtz-Hodge decomposition:

(11) (ρ,m) = ∇× φ+∇h,

where we will denote ∇ = ∇t,x, in the following. Moreover, h ∈ H1(Q)/R, and for
n+ 1 = 2, φ ∈ H1

0 (Q) whereas for n+ 1 = 3, φ ∈ (H1
0 (Q))3, and ∇ · φ = 0. Furthermore,

if (ρ,m) ∈ V (Q) (defined in (1)) is divergence-free, the potential h satisfies:{
∆h = 0 in Q,
∂h
∂νQ

= (ρ,m) · νQ on ∂Q,
(12)

where νQ is the outward normal of Q and (ρ,m) · νQ represents exactly the boundary
conditions in C. In practice, we have first to solve the system (12) to obtain h, which is
no more than a Poisson equation with known boundary conditions. Then, knowing h, we
have to find the minimum of the new energy

E(φ) = Jh(∇× φ) =

∫
Q
J (∇× φ(t, x) +∇h(t, x)) dxdt,(13)

where J has been defined in (6). Note that, as a composition of an affine operator with a
convex function, Jh is still convex.

Proposition 4. In the particular case n = 1 (dimension one in space), looking for the
minimum in H1

0 (Q) of the energy E(φ) defined in (13), with the constraint ρ = ∂xφ+∂th >
0, and h being known, is formally equivalent to solve the equation:

divt,x
∇φ−∇× h
|∇φ−∇× h|

= 0.(14)

Proof. Since Jh is convex, we search for φ ∈ H1
0 (Q) cancelling dE:

dE(φ)(ψ) = 0, ∀ψ ∈ H1
0 (Q).

E(φ) =
∫
Q J(∇× φ+∇h)dxdt, with, by (6), J(X,Y ) = Y 2

2X a.e.. Then:

∂XJ(X,Y ) = − Y 2

2X2
and ∂Y J(X,Y ) =

Y

X

Using ∇× φ = (∂xφ,−∂tφ), the differential of E is given by

dE(φ)(ψ) =

∫
Q

[∂XJ(∇× φ+∇h)∂xψ − ∂Y J(∇× φ+∇h)∂tψ] dxdt

=

∫
Q

(
−(−∂tφ+ ∂xh)2

2(∂xφ+ ∂th)2
∂xψ(t, x)− −∂tφ+ ∂xh

∂xφ+ ∂th
∂tψ(t, x)

)
dxdt

=

∫
Q

1

2
∂x

(
(−∂tφ+ ∂xh)2

(∂xφ+ ∂th)2

)
ψ + ∂t

(
−∂tφ+ ∂xh

∂xφ+ ∂th

)
ψ dxdt.
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Then dE(φ)(ψ) = 0 for all ψ ∈ H1
0 (Q) if and only if

∂t

(
−∂tφ+ ∂xh

∂xφ+ ∂th

)
+

1

2
∂x

(
(−∂tφ+ ∂xh)2

(∂xφ+ ∂th)2

)
= 0.(15)

If we now denote (
v
u

)
= ∇× φ+∇h =

(
∂xφ+ ∂th
−∂tφ+ ∂xh

)
,

equation (15) rewrites:

0 = ∂t

(u
v

)
+

1

2
∂x

(u
v

)2
=

(∂tu)v − u∂tv
v2

+
u

v

(∂xu)v − u∂xv
v2

=
(∂tu)v2 − uv∂tv + uv∂xu− u2∂xv

v3
.

Remarking that:

∇φ−∇× h =

(
−u
v

)
and |∇φ−∇× h|2 = u2 + v2,

we compute:

divt,x

(
(−u, v)

(u2 + v2)1/2

)
= ∂t

(
−u

(u2 + v2)1/2

)
+ ∂x

(
v

(u2 + v2)1/2

)
= −∂tu(u2 + v2)− u2∂tu− uv∂tv

(u2 + v2)3/2
+
∂xv(u2 + v2)− vu∂xu− v2∂xv

(u2 + v2)3/2
(16)

=
−(∂tu)v2 + uv∂tv + (∂xv)u2 − vu∂xu

(u2 + v2)3/2

=

(
∂t

(u
v

)
+

1

2
∂x

(u
v

)2
)(

−v3

(u2 + v2)3/2

)
.

Since we assumed v = ∂xφ+ ∂th > 0, (15) is equivalent to

divt,x

(
(−(−∂tφ+ ∂xh), ∂xφ+ ∂th)

((−∂tφ+ ∂xh)2 + (∂xφ+ ∂th)2)1/2

)
= 0.

which is the expected equation (14).

Remarks.
1. The result of proposition 4 stems from different facts. First, let us observe that in

dimension two the Hessians HJ and HJ of respectively the functionals J(X,Y ) =
Y 2

2X and J(X,Y ) =
√
X2 + Y 2 are proportional, which is no more true in higher

dimensions. Indeed,

HJ =

(
∂XXJ ∂XY J
∂XY J ∂Y Y J

)
=

1

X3

(
Y 2 −XY
−XY X2

)
7



and

HJ =
1

(X2 + Y 2)3/2

(
Y 2 −XY
−XY X2

)
Now, define

E(φ) =

∫
Q
J (∇× φ(t, x) +∇h(t, x)) dxdt =

∫
Q
|∇ × φ(t, x) +∇h(t, x)| dxdt.

Then dE can be rewritten in terms of E. For all ψ ∈ H1
0 (Q), using anew the

notation (v, u) = ∇× φ+∇h,

dE(φ)(ψ) =

∫
Q

[∂XJ(v(t, x), u(t, x))∂xψ − ∂Y J(v(t, x), u(t, x))∂tψ] dxdt

= −
∫
Q

[∂x∂XJ(v, u)− ∂t∂Y J(v, u)]ψ dxdt

= −
∫
Q

[∂xv∂XXJ(v, u) + ∂xu∂XY J(v, u)

−∂tv∂XY J(v, u)− ∂tu∂Y Y J(v, u)]ψ dxdt

= −
∫
Q
HJ(v, u) :

(
∂xv ∂xu
−∂tv −∂tu

)
ψ dxdt

= −
∫
Q

(v2 + u2)3/2

v3
HJ(v, u) :

(
∂xv ∂xu
−∂tv −∂tu

)
ψ dxdt.

where ′′ :′′ denotes the euclidean dot product between two matrices.
Because v2 + u2 = |∇ × φ+∇h|2 is non zero, we obtain:

dE(φ)(ψ) = 0 ⇐⇒ dE(φ)(ψ) = 0

Moreover, the norms |∇φ−∇× h| and |∇ × φ+∇h| are equal, so minimizing∫
Q
|∇ × φ(t, x) +∇h(t, x)|dxdt

is equivalent to minimizing∫
Q
|∇φ(t, x)−∇× h(t, x)|dxdt

which Euler-Lagrange equation is (14).
2. The minimisation of this new functional is simpler than the minimization of J as

we will see in section 3.
3. The L2 orthogonality of ∇φ and ∇×h provided by the decomposition (11) and the

orthogonality of ∇φ − ∇ × h and ∇ × φ +∇h allowed to simplify the calculation
(16).
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4. This proposition does not hold in the 2D+t case because -in particular- HJ and
HJ̄ are no more proportional.

In conclusion, in 1D, searching for the minimum of E in (13) amounts to the resolution
of a minimal surface equation on each level set of the potential φ equipped with appropriate
Dirichlet boundary conditions. Finally we obtain the following systems:

{
∆h = 0 in Q,
∂h
∂νQ

= (ρ,m) · νQ on ∂Q
(17)

and {
divt,x

∇φ−∇×h
|∇φ−∇×h| = 0,

φ = 0 on ∂Q.
(18)

The equation (18) is the Euler-Lagrange equation of the functional (convex as the compo-
sition of a linear operator with a convex function)

(19) Jms(∇φ) :=

∫
Q
|∇φ−∇× h| dxdt = ||∇φ−∇× h||1.

Section 3.1 will detail the minimization of this new functional Jms, instead of directly
solving the equation (18).

Remark. Optimal transport between two densities applies under a condition of iso-mass
of those densities. However in applications one might want to interpolate between to images
which are not of equal mass. This case referred as to unbalanced optimal transport has
been soon addressed [5, 39, 34, 14, 15]. Our present formulation could be generalized to
that context by incorporating a source term in the Laplace equation in h.

3. Two algorithms using a first order primal-dual formulation. Let now denote X and
Y two real vector spaces equipped with the same inner product 〈., .〉 and norm |.| = 〈., .〉1/2.
Our formulation of the optimal problem (13) can be viewed as searching the minimum of
a functional of the form:

(20) min
φ

F (K(φ)) + ιC0(φ),

where F ∈ Γ0(Y), the set of proper, convex, lower semi-continuous (l.s.c.) applications
Y → R+, K : X → Y is a linear continuous operator and ιC0 is the indicator function of
the set C0 := {φ = 0 on ∂Q} which is in Γ0(Y). Such minimization problem falls into the
framework of Chambolle and Pock [12], who solve (20) using its primal dual formulation
(see [41]):

(21) min
φ

max
z
〈Kφ, z〉+ ιC0(φ)− F ∗(z).

F ∗ is the Legendre transform of F (see [4]), and is defined by

F ∗ :

{
Y → [0,+∞)
y 7→ max

x
〈x, y〉 − F (y).

9



The proximal operator of the function F ∗ defined, for γ > 0, by

proxγF ∗ :

{
Y → Y

x 7→ argmin
y

(
1
2 |x− y|

2 + γF ∗(y)
)
,

and the norm of the operator K, ||K|| = sup{|Kx| : x ∈ X, |x| ≤ 1}, are used in the
primal-dual algorithm, summarized as follows.

Algorithm 1 (General Chambolle-Pock).
Initialization: τ, σ > 0, θ ∈ [0, 1], (φ0, z0 = Kφ0, φ̃0 = φ0).
Iterations:

zi+1 = proxF ∗(z
i + σ(Kφ̃i))

φi+1 = proxιC0
(φi − τK∗zi+1)

φ̃i+1 = φi+1 + θ(φi+1 − φi).

Because the 1D case leads to a minimal surface formulation (see section 2.3), we will present
two different algorithms. The first one solves equation (14) minimizing the functional Jms
defined in (19), whereas the second one minimizes the functional Jh defined in (13).

Convergence of the algorithm: Assuming that X and Y have finite dimension, and
that the problem (21) has a solution (φ̂, ẑ), it has been proved in [11, 12, 25] that for θ = 1
and στ ||K||2 < 1, the sequence (φi, zi) computed with Algorithm 1, converges to the exact
solution (φ̂, ẑ), for any initial condition φ0.
We thus have the convergence of the algorithm for the discretized problem which will be
now detailed in both cases.

3.1. Primal dual algorithm for the minimal surface equation. We first detail the
algorithm when considering the minimal surface equation (14), which consists to minimize
Jms defined in (19), with suitable boundary conditions:

(22) min ||∇φ−∇× h||1 + ιC0(φ) = min Jms(∇φ) + ιC0(φ)

Here we took K = ∇, the gradient operator (linear continuous operator from X = H1(Q)
to Y = (L2(Q))2) and F = Jms(y) = ||y−∇×h||1 which is proper, convex and continuous.
The primal-dual formulation of this primal problem is

min
φ

max
z
〈z.∇φ〉+ ιC0(φ)− J∗ms(z).

Stating the problem in a discrete setting, ||.||1 writes, on a discrete centered bidimensional
grid Gc which will be defined in 4.1: for x = (xk)k∈Gc , xk ∈ R2,

||x||1 =
∑
k∈Gc

|xk| where xk = (x1, x2), |xk| =
√

(x1
k)

2 + (x2
k)

2,

and we have,
proxγ||.||1(x) = (proxγ|.| xk)k∈Gc .

10



For (a, b) = ((ak, bk))k∈Gc and (∇ × hk)k∈Gc the values of respectively ∇φ and ∇ × h on
the grid Gc,

Jms(a, b) = ||(a− ∂xh, b+ ∂th)||1 =
∑
k∈Gc

Jms(ak, bk) =
∑
k∈Gc

|(ak − ∂xhk, bk + ∂thk)|

where Jms(ak, bk) = |(ak−∂xhk, bk+∂thk)|, ∇×hk being known. The following proposition
holds.

Proposition 5. For all c, vector valued on the grid Gc, one has:

proxγJ∗ms
(c) = min(c− γ∇× h, (c− γ∇× h)

|c− γ∇× h|
),

Then we can observe that proxγJ∗ms
is a pointwise Euclidean projection onto a unit ball in

R2p where p is the size of the grid.

Proof. See appendix A

Moreover, since ιC0 is the indicator function on a closed, non empty convex set, its proximal
operator is the projection onto the set C0 (see [17]), which we will denote by PC0 .
Its computation merely corresponds to set the boundary values of φ to zero.
Finally, in this case we obtain the following algorithm:

Algorithm 2 (PDHHMS).
Initialization: τ, σ > 0, θ ∈ [0, 1], (φ0, z0 = ∇φ0, φ̄0 = φ0).
Iterations:

zi+1 = proxJ∗ms
(zi + σ(∇φ̄i −∇× h))

φi+1 = PC0(φi − τ∇.zi+1)

φ̄i+1 = φi+1 + θ(φi+1 − φi).

It has been shown in [11] that for θ = 1 and στ ||∇||2 < 1, φi computed with the above
algorithm, converges to the solution of the discrete version of problem (22):

(23) min
φ

∑
k∈Gc

Jms(∇φk) + ιC0(φk)

for any choice of φ0.

3.2. Primal dual algorithm for the functional Jh. We now want to minimize (13)
whose primal-dual formulation is:

(24) min
φ

max
z
〈Kφ, z〉+ ιC0(φ)− J∗h(z),

with K = ∇×, the curl operator (linear continuous operator from (H1(Q))3 to (L2(Q))3)
and J∗h : (L2(Q))3 → [0,+∞) is a proper, convex, lower semicontinuous function. The

11



discrete objective functional J reads for (ρ,m) defined on the centered tridimensional grid
Gc (defined in section 4.1):

J(ρ,m) =
∑
k∈Gc

J(ρk,mk),(25)

where the functional J is defined in (6), and then,

proxγJ(x) = (proxγJ(xk))k∈Gc .

As proved in [6], the Legendre transform of J is the indicator function of a convex set,
J∗ = iPJ

where {
PJ = {(z1, z2); ∀k ∈ Gc, (z1, z2)k ∈ PnJ }
PnJ = {(t, x) ∈ R× Rn, t+ |x|2

2 ≤ 0}.

This implies that proxγJ∗ is the projection onto the paraboloid PnJ , which we will denote
by PPn

J
. This is a consequence of the fact that J∗ is proper, convex, lower semi-continuous

and 1-homogeneous.

Proposition 6. The projection onto the paraboloid P 2
J = {(a, b) ∈ R× R2, a+ |b|2

2 = 0}
of a point (z1, z2) ∈ R× R2 outside of P 2

J is

PP 2
J
(z1, z2) =

(
−β2

2
,

z2

1 + z1 + β2/2

)
where β is the real positive solution of the cubic equation:

−X3

2
− (1 + z1)X + |z2| = 0 .

In order to prove this proposition we begin by studying the one dimensional case in space.

Proposition 7. The projection onto the paraboloid P 1
J = {(a, b) ∈ R×R, a+ b2

2 = 0} is

PP 1
J
(z1, z2) =

(
−β2

2
, β

)
where β is the real solution of the cubic equation, whose sign is the same as the sign of z2

−X3

2
− (1 + z1)X + z2 = 0 .

Proof. To explicit the projection onto the paraboloid P 1
J , we introduce:

(α, β) = PP 1
J
(z1, z2)

12



Remarking that the normal to the paraboloid at the point (α, β) is the vector (1, β), we
obtain the following equation:

(α, β)− (z1, z2) // (1, β)⇔ (α− z1)β − (β − z2) = 0.

Then we have the following system{
(α− z1)β − (β − z2) = 0

α+ β2

2 = 0
⇔

{
−β3

2 − (1 + z1)β + z2 = 0

α = −β2

2

To obtain the projection we have to solve the cubic equation in (5) which is done by using
Cardano’s method. The solution of the equation we are interested in is the real one whose
sign is the same as the sign of z2.

We are then able to prove proposition 6.

Proof. Let (ã, b̃) be the projection of (z1, z2) onto the paraboloid P 2
J . Since (z1, z2) is

on the normal to the paraboloid at (ã, b̃), of orientation vector (1, b̃) we have:

(z1 − ã, z2 − b̃) = λ(1, b̃).(26)

so λ = z1 − ã. To find the projection in 3D we just have to project in 2D (z1, |z2|) onto
the paraboloid P 1

J , which corresponds to the intersection between the paraboloid P 2
J in 3D

and the plan which contains the time (z1)-axis and (z1, z2). Thus we obtain

(ã, b̃) = PP 2
J
(z1, z2) = PP 1

J
(z1, |z2|) =

(
−β2

2
, β

)
where β is the real positive solution of the cubic equation : −X

3

2 − (1 + z1)X + |z2| = 0.
Then ã = −β2/2 and equation (26) leads to:

λ = z1 − ã = z1 + β2/2 and b̃ =
z2

1 + λ
=

z2

1 + z1 + β2/2
.

Let now check that 1 + λ 6= 0. If 1 + λ = 0 then, from (26): z2 − b̃ = −b̃ and so z2 = 0.
The pair (z1, z2) is outside of P 2

J so z1 + |z2|2/2 > 0 and in this case z1 > 0. On the other
hand, the pair (ã, b̃) is in P 2

J so ã ≤ 0. But from (26) we have

z1 = ã+ λ = ã− 1 < 0

which is not possible. Thus 1 + λ 6= 0.

Remark. Proposition 6 provides an exact and straightforward formula, usefull for the
computation of the proximal operator.

Now, looking at the functional Jh, we have for (a, b) = ∇× φ:

Jh(a, b) = J(a+ ∂th, b+∇xh) =
∑
k∈Gc

Jh(ak, bk) =
∑
k∈Gc

J(ak + ∂thk, bk +∇xhk).

13



with Jh(ak, bk) = J(ak + ∂thk, bk +∇xhk). This enables us to deduce from J∗ the form of
J∗h and the form of proxγJ∗h

from the one of proxγJ∗ . If we denote c = (a, b) we have the
following proposition:

Proposition 8. One has for all c ∈ R1+n

J∗h(c) = J∗(c)− 〈∇h, c〉, and proxγJ∗h
(c) = proxγJ∗(c− γ∇h).

Proof. By definition of the Legendre transform:

J∗h(c) = max
x
〈x, c〉 − Jh(x)

= max
x
〈x, c〉 − J(x+∇h)

= max
x
〈x−∇h, c〉 − J(x)

= J∗(c)− 〈∇h, c〉.

The proximal operator is given by:

proxγJ∗h
(c) = argmin

x

1

2
|x− c|2 + γJ∗h(x)

= argmin
x

1

2
|x− c|2 + γ(J∗(x)− 〈∇h, x〉)

= argmin
x

1

2
|x− γ∇h− c|2 + γJ∗(x)

= proxγJ∗(c+ γ∇h).

Finally, the primal-dual algorithm in our case leads to the PDHH-algorithm.

Algorithm 3 (PDHH).
Initialization: τ, σ > 0, θ ∈ [0, 1], (φ0, z0 = ∇× φ0, φ̃0 = φ0).
Iterations:

zi+1 = PP 2
J
(zi + σ(∇× φ̃i +∇h))

φi+1 = PC0(φi − τ∇∗ × zi+1)

φ̃i+1 = φi+1 + θ(φi+1 − φi).

As before, for θ = 1 and στ ||K||2 < 1, φi computed with the above algorithm converges
to the solution of the discrete version of problem (21). The computation of PP 2

J
amounts

to solving a cubic equation by grid point, while PC0 merely corresponds to setting the
boundary condition to zero.

Remark. We can observe that analytically the curl operator is self-adjoint but since the
discrete curl operator depends on the discrete derivative, it might be not self-adjoint. That
is why we will keep both notations ∇ and ∇∗.

14



Nonlinear case. In [44], Valkonen proposes to extend the primal-dual algorithm to the
case where K ∈ C2 is allowed to be nonlinear. Introducing this idea in the above algorithm
PDHH leads to: instead of minimizing Jh(K(φ)) with K(φ) = ∇×φ, we minimize J(K(φ))
where K(φ) = ∇× φ+∇h. The extended algorithm reads:

Algorithm 4.
Initialization: τ, σ, θ, (φ0, z0 = Kφ0).
Iterations:

φi+1 := proxτιC0
(φi − τ [∇K(φi)]∗zi),

φ̃i+1 := φi+1 + θ(φi+1 − φi),
zi+1 := proxσJ∗(z

i + σK(φ̃i+1)),

where [∇K] is the linearization of the operator K. Our operator being affine, its lineariza-
tion is just [∇K] = ∇×. Thus this algorithm for nonlinear operator K is in our case
equivalent to Algorithm 3 (PDHH).

4. Numerical applications and comparisons. In this section we first present the dis-
crete setting and then compare our algorithm to state-of-art methods.

4.1. Discrete setting. The discretization on uniform grids follows the discretization
method introduced in [36] and uses uniform staggered grids as in fluid dynamics.

4.1.1. Discrete settings for 1D+t images. We first describe the discrete grids used in
the computations for 1D+t images, which are the same when minimizing the functionals
(13) and (22).

Centered grid. The evaluation of the dual variable z(t, x) is done on a regular grid Gc1

of size M ×N , whereas the one of the primal variable φ(t, x) is done on a regular grid Gc2

of size (M + 1)× (N + 1). These regular grids are defined by

Gc1 = {ti, xj}1≤i≤M, 1≤j≤N ,

Gc2 = {ti−1/2, xj−1/2}1≤i≤M+1, 1≤j≤N+1,

with ti = i
M+1 , xj = j

N+1 the discrete locations in the domain Q = (0, 1)× (0, 1).

Staggered grid. We now introduce the grid Gs1, which provides a discretization coherent
with the divergence of (ρ,m) and which is defined by:

Gs1t = {ti−1/2, xj}1≤i≤M+1, 1≤j≤N ,

Gs1x = {ti, xj−1/2}1≤i≤M, 1≤j≤N+1.

Interpolation operator. To evaluate the values of a vector u = (u1, u2) on the cen-
tered grid Gc1, from the knowledge of its values ū on the staggered grid Gs1, we need an
interpolation operator, whose first component is taken equal to:

∀ 1 ≤ i ≤M, ∀ 1 ≤ j ≤ N, u1
i,j =

1

2
(ū1
i+1/2,j + ū1

i−1/2,j),
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Figure 1: Grids for 1D+t images.

and its adjoint operator to go from v ∈ Gc1 to v̄ ∈ Gs1:

v̄1
i−1/2,j =


v1,j if i = 1
vi,j + vi−1,j if 2 ≤ i ≤M
vM,j if i = M + 1.

Curl, gradient and divergence operators. The curl, gradient and divergence operators
are discretized by using centered finite differences. The discrete gradient, which is a
vector of matrices, and the divergence operator, which is its adjoint, are

∇ =

(
∂t
∂x

)
and ∇∗. =

(
∂∗t
∂∗x

)
. = ∂∗t + ∂∗x.

The discrete partial derivative operator with respect to the first component reads:
∂t : Gc1 → Gs1t , and for v ∈ Gc1:

(∂tv)i+1/2,j = vi+1,j − vi,j , ∀1 ≤ i ≤M − 1,∀1 ≤ j ≤ N.

The adjoint partial derivative operator for ū = (ū1, ū2) ∈ Gs1 is defined by

(∂∗t v̄)i,j =


−v̄1

1+1/2,j if i = 1

v̄1
i−1/2,j − v̄

1
i+1/2,j if 2 ≤ i ≤M − 1

v̄1
M−1/2,j if i = M.

Regarding the curl operator and its adjoint, we consider:

∇× =

(
∂x
−∂t

)
and ∇∗× =

(
∂∗x
−∂∗t

)
= ∂∗x − ∂∗t .
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On the second centered grid Gc2, the discrete partial derivative operator with respect
to the first component reads: ∂t : Gc2 → Gs1x , and for ṽ ∈ Gc2:

(∂tṽ)i,j−1/2 = ṽi+1/2,j−1/2 − ṽi−1/2,j−1/2, 1 ≤ i ≤M, 1 ≤ j ≤ N + 1,

and the adjoint partial derivative operator for ū = (ū1, ū2) ∈ Gs1 is defined by

(∂∗t ū
2)i−1/2,j−1/2 =


−ū2

1,j−1/2 if i = 1

ū2
i−1,j−1/2 − ū

2
i,j−1/2 if 2 ≤ i ≤M

ū2
M,j−1/2 if i = M + 1.

4.1.2. Discrete settings for 2D+t images. We now describe the discrete grids used
in the computations for 2D+t images.

Centered grid. The regular grid

Gc = {ti, xj , yk}1≤i≤M, 1≤j≤N, 1≤k≤P ,

with ti = i
M , xj = j

N , yk = k
P the discrete locations in the domain Q, is used to evaluate

ρ(t, x, y) and m(t, x, y), to calculate the functional, and to evaluate the dual variable z.

Staggered grid. We introduce two staggered grids to evaluate the divergence and the curl
operators. The grid Gs1 provides a discretization coherent with the divergence of (ρ,m)
and is defined by:

Gs1t = {ti−1/2, xj , yk}1≤i≤M+1, 1≤j≤N, 1≤k≤P ,

Gs1x = {ti, xj−1/2, yk}1≤i≤M, 1≤j≤N+1, 1≤k≤P ,

Gs1y = {ti, xj , yk−1/2}1≤i≤M, 1≤j≤N, 1≤k≤P+1.

Our staggered grid Gs2 is used to evaluate φ such that ∇×φ, because (ρ,m) = ∇×φ+∇h,
leaves on the staggered grid Gs1 :

Gs2t = {ti, xj−1/2, yk−1/2}1≤i≤M, 1≤j≤N+1, 1≤k≤P+1,

Gs2x = {ti−1/2, xj , yk−1/2}1≤i≤M+1, 1≤j≤N, 1≤k≤P+1,

Gs2y = {ti−1/2, xj−1/2, yk}1≤i≤M+1, 1≤j≤N+1, 1≤k≤P .

Interpolation, gradient and divergence operators. These operators are the same
as those described for 1D+t images.

Curl operators. Regarding the curl operator, in order to use the primal dual algorithm,
we need to define the discrete adjoint operator of the curl. Because the curl operator is
given by the following matrix

∇× =

 0 −∂y ∂x
∂y 0 −∂t
−∂x ∂t 0


17
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Figure 2: Staggered grids for 2D+t images

the appropriate adjoint curl operator has to be the opposite of the curl derived from the
adjoint partial derivative operators:

∇∗× =

 0 ∂∗y −∂∗x
−∂∗y 0 ∂∗t
∂∗x −∂∗t 0

 .

4.2. Numerical tests and comparisons. In order to evaluate the performances of our
methods, we need to define the choice of the parameter σ used in the first step of the
primal-dual algorithm. To that end, we first have to compute a reference solution (ρs,ms)
of the discrete problem by computing 106 iterations. We then choose σ such that the errors
on m and ρ are minimal after a given number of iterations (<< 106) for our algorithm
(PDHH, alg. 3). We also take the same σ for the minimal surface formulation (PDHHMS,
alg. 2) and for the algorithm developed in [36] that we will denote PDPOP in the following:
more precisely, PDPOPgh will denote the code available on github1, whereas PDPOP will
denote the same method where we modified the computation of the proximal operator of
J∗, to be more efficient, as seen later.

All our code is available for download on GitHub2. The σ we obtain depends on the
initialization, the densities ρ0 and ρ1, and the chosen number of iterations. The algorithm
(modified PDPOP of [36]) to which we compare is the resolution of the dynamic optimal
transport using the primal-dual algorithm. The only difference between this algorithm and
the PDHH algorithm is the decomposition (ρ,m) = ∇ × φ +∇h, which allows to remain
in the divergence-free space, and therefore the second step of the algorithm which is the
projection onto the divergence-free constraint and the boundary conditions. In PDHH, we
only need the projection onto the boundary conditions.

All our computations have been performed on Intel Core i7 (Dual core, 2.8GHz).

1https://github.com/gpeyre/2013-SIIMS-ot-splitting
2https://github.com/MorganeMartinHenry/Primal-dual-formulation-optimal-transport-Helmholtz-Hodge-decomposition
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4.2.1. Algorithms for 1D+t images. In the following we will use the parameters σ = 1,
τ = 0.99/Lσ and θ = 1. We chose σ such that the errors on m and ρ are minimal after 50
iterations for the PDHH code. We computed 106 iterations in the case of the transport

Figure 3: Display of different views of the density ρ(t, x) obtained after 106 iterations, for
ρ0 and ρ1 two Gaussians of the same variance.

between two isotropic Gaussians of the same variance, and we plot the estimated density
in Figure 3. The solution, which will be denoted (ρs,ms), is displayed in black and gray,
black being 0 and white being 1, in the left image and displayed at different time values
superimposed in the right image. We use a grid of N = 128 discretization points for ρ0

and ρ1 and M = 128 points for the time t.
Figure 4 displays, for the example of Figure 3, the L2-errors between ρ and ρs and between
m and ms, the functional J, and the numerical complexity as function of the grid size
N , for 5000 iterations, for the three algorithms: modified PDPOP, PDHH and PDHHMS.
We choose 5000 iterations because this number allows to reach an accurate solution with
all of the algorithms. The curves show that despite PDHH has not the best convergence
rate during the first iterations, it still converges as quickly as the PDPOP algorithm,
while PDHHMS algorithm needs relatively more iterations than both these algorithms.
Indeed, the decrease of the functional in the constraint set has not the same behavior as
in the PDPOP algorithm, where one has to project onto the divergence-free constraint
space. Figure 4 also displays the computation time with respect to the number M = N of
discretization points in one direction. It shows that the complexity of the three algorithms
is linear in the number of discretization points M2, and that the PDHH algorithm is 42%
faster than the PDPOP algorithm, and that PDHHMS is 78% faster than the PDPOP
algorithm in terms of cputime.
We compare in Table 1 the number of iterations and the cputime required for the error on
ρ to drop under a given error. We observe that PDHH and PDHHMS need more iterations
to converge, but since each iteration runs faster, we need less cputime to reach the desired
errors. The explanation for this better cputime is that we don’t have to solve a Poisson
equation at each iteration in both algorithms. Moreover, the PDHHMS algorithm uses a
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Figure 4: Comparison at each iteration of the L2-error between ρ and ρs (top left) and
between m and ms (top right), the functional J (bottom left) and the numerical complexity
(bottom right), for 5000 iterations, between PDPOP [36], PDHH (algo.3) and PDHHMS
(algo.2) algorithms in the case of Figure 3.

simple projection onto a L2-ball while PDHH uses a projection onto a paraboloid which
requires the resolution of a cubic function, as in PDPOP.

Test between an oscillating and a compactly supported density.
Applications of the 1D optimal transport can include analysis of audio signals via Fourier

analysis. As an example in 1D we compute the density ρ(t, .) for an oscillating density ρ1

(Figure 6). The results presented in Figure 5 are obtained for images discretized on a grid
2562 grid, taking ρ0 a triangular signal and ρ1 the absolute value of a sinc function. We
observe on Figure 5 that each point of ρ0 is pushed forward to ρ1 along a straight line.

4.2.2. Algorithm for 2D+t images. We now consider the transport of two isotropic
Gaussians of same variance in two dimensions, and we plot the estimated density in Figure
7: the solution is displayed in black and gray, and will be denoted by (ρs,ms). We use a
grid of N ×P = 64×64 discretization points for ρ0 and ρ1 and M = 64 points for the time
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||ρi − ρs|| PDPOP PDHH Speedup PDHHMS Speedup

10−2 1557 (20”) 2241 (15”) 25% 2803 (6”) 67%
10−3 7986 (1’46”) 9408 (1’6”) 38% 12676 (30”) 71%
10−4 56002 (12’36”) 69894 (8’30”) 33% 114295 (4’36”) 63%

Table 1: Performance evaluation in the case of Figure 3. The entries refer to: number of
iterations (cputime) and the speedup of PDHH (algo.3) and PDHHMS (algo.2) algorithms
compared to PDPOP algorithm [36].

Figure 5: Display of the density ρ(t, .) obtained after 106 iterations for ρ0 a triangular
signal and ρ1 the absolute value of a sinc function.

t.
Using σ = 20, Figure 8 presents the results for the evolution of the functional, and

the errors for m and ρ of the example of Figure 7. We first observe that we obtain the
O(1/i) convergence rate proved by Chambolle and Pock [12] for the errors on m and ρ,
and also that the algorithm has the same behavior than in 1D. Figure 8 shows that even if
our algorithm has not the best convergence rate at the beginning, it still converges really
quickly until we obtain the O(1/i) convergence rate of the algorithm. Having to remain
in the constraint set, the decreasing along the functional is not the same as if we had
to project. Figure 8 also displays the computational time with respect to the number of
discretization points on a side (M = N = P ), which shows that the numerical complexity
of the two algorithms is O(M3), i.e. linear in the number of discretization points. Beside
it shows that, on average, PDHH is 28% faster than PDPOP algorithm. This can be
explained by the fact that we don’t have to solve a 3D Poisson equation at each iteration.
But unlike PDPOP, we have to evaluate a curl operator, which is slightly time consuming.
We compare in Table 2 the number of iterations and the cputime required for the error on ρ
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 6: Display of cross sections of the density ρ(t, x) obtained after 106 iterations for
ρ0 a triangular signal (t = 0) and ρ1 the absolute value of a sinc function (t=1).

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 7: Display of the density ρ(t, .) obtained after 106 iterations.

to drop under a given error for PDHH, PDPOP (the code we implemented) and PDPOPgh

which we took on the github page of Peyre 3. There are two methods to compute the
proximal operator of J∗. The first one calculates the proximal operator of J and then
uses the Moreau identity to obtain the proximal operator of J∗, which is the method
used in PDPOPgh. The second method calculates directly the proximal operator of J∗,
which is done in PDHH and is less time consuming. Therefore we implemented PDPOP
(like PDHH) with the second method. Then, (modified) PDPOP and PDHH only differs
because of the Helmholtz-Hodge decomposition (ρ,m) = ∇ × φ + ∇h, and we can really
compare its influence on the method.
We observe that PDHH algorithm needs more iterations to converge, but is faster to run
one iteration, so it needs less cputime to reach the expected error, while PDPOP and
PDPOPgh algorithms need the same number of iterations. Indeed, these last two algorithms
use equivalent projections. In PDPOP we first test if (ρ,m) is already in the paraboloid
and we use the proximal operator of J∗ while in PDPOPgh the proximal operator of J
is used without test before projecting. Thanks to this new projection and the use of the
Helmholtz-Hodge decomposition, an iteration of PDHH is on average 51% faster than an
iteration of PDPOPgh.

Test on non convex densities.. The next example of transport considers the case of
irregular, non convex and non connected densities with compact supports. Figure 9 shows

3https://github.com/gpeyre/2013-SIIMS-ot-splitting
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Figure 8: Comparison at each iteration of the functional J (bottom left), the minimum
value of ρ (bottom right), the L2-errors between ρ and ρs (top left) and between m and ms

(top right) between PDPOP (modified algorithm of [36]), PDHH algorithm (algo.3), and
also PDPOPgh for the last figure (algo [36] on github), in the case of Figure 7.

the ability of our method to estimate the density ρ(t, .) for such initial and final densities.
Test on real life images. As last example we compute the density ρ(t, .) for images

representing clouds in different positions. The results presented in Figure 10 are obtained
for images discretized on a grid M = 68 for the time dimension and N × P = 120× 68 for
the space dimension.

5. Implementation in C++. The implementation in Matlab is slow and can not be
used for large images. To overcome this problem we implemented the PDHH algorithm for
2D images in C++ using the PDPOP code developed by Nicolas Boneel, parallelized in
OpenMP, that can be downloaded at http://liris.cnrs.fr/∼nbonneel/FastTransport/.

If we consider again the table 2 and the real (wall time) execution time of Matlab
and C++ implementations for the algorithm PDHH, we obtain:
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||ρi − ρs|| PDHH PDPOP Speedup PDPOPgh Speedup

10−2 1250 (3’15”) 1140 (3’58”) 18% 1140 (7’10”) 55%
10−3 7763 (21’27”) 7382 (26’07”) 18% 7382 (45’48”) 53%
10−4 62616 (3:08’12”) 60860 (3:35’55”) 13% 60860 (6:18’18”) 50%

Table 2: Performance evaluation in the case of Figure 7. The entries refer to: number of
iterations (cputime) and the speedup of PDHH algorithm (algo. 3) compared to modified
PDPOP and PDPOPgh algorithms [36].

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

Figure 9: Display of the density ρ(t, .) obtained after 106 iterations of a non-convex, non
connected density with compact support.

||ρi − ρs|| Matlab C++ Speedup

10−2 2’37” 13” ×12
10−3 8’10” 40” ×12
10−4 1:27’14” 5’44” ×15

Table 3: Comparison of the execution time of the C++ and Matlab codes in the case of
algorithm PDHH.

6. Conclusion. In this article, we introduced a new algorithm for the dynamic optimal
transport problem between 1D or 2D images, which respects the divergence-free constraint
throughout the iterations, and therefore gets rid of solving a 3D Poisson equation at each
iteration in the case of 2D images. We also proved some convexity properties, on the
constraint set, of the functional used in this formulation. Besides, this algorithm is easy to
implement, faster than state of the art methods for this kind of formulation, and efficient for
real-sized images, thanks to a parallelized implementation in C++. Moreover we explained
that in 1D+time, it is equivalent to the resolution of a minimal surface equation. Further
improvements of the method will include other divergence-free decomposition [27], or other
formulations of the primal-dual algorithm.

7. Acknowledgment. We would like to thank Nicolas Papadakis for his kind help.
This work was funded by the French Agence Nationale de la Recherche (ANR, Project
TOMMI) under reference ANR-11-BS01-014-01.

Appendix A. Calculation of the proximal operator of ||.−∇×h||1. In this appendix
we compute the proximal operator of Jms(x) = ||x − ∇ × h||1. On the discrete grid Gc1
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t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

Figure 10: Display of the density ρ(t, .) of an image of clouds. The first line represents
ρ(t, .) obtained after 106 iterations of PDHH algorithm while the second line represents the
L2 -interpolation.

defined in 4.1, ||.||1 is written

||x||1 =
∑
k∈Gc1

|xk| where |xk| =
√

(x1
k)

2 + (x2
k)

2,

and we will denote F (x) = |x−∇× h|. Then we have for σ > 0,

proxσJms
(x) = proxσ||.−∇×h||1(x) = (proxσ|.−∇×h| xk)k∈Gc1 .

We have to compute

y′ = proxF (x) = argminy
1

2
|y − x|2 + F (y) = argminy

1

2
|y − x|2 + |y −∇× h|.(27)

We know that the proximal operator of the `1-norm N(x) = |x| is given by:

proxN (x) = argminy
1

2
|y − x|2 + |y| = x max(0,

1

|x|
)

Since F (x) = N(x−∇× h) one obtains:

proxF (x) = ∇× h+ proxN (x−∇× h)

= ∇× h+ (x−∇× h) max(0,
1

|x−∇× h|
)(28)

For σ > 0

proxσF (x) = argmin
y
|x− y|2 + σ|y −∇× h|,

= ∇× h+ (x−∇× h) max(0, 1− σ

|x−∇× h|
).
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Thanks to Moreau’s identity [35] we then obtain

proxγF ∗(x) = x− γ proxF/γ(x/γ)

= x− γ
(
∇× h+ (x/γ −∇× h) max(0, 1− 1

γ|x/γ −∇× h|
)

)
= x− γ∇× h− (x− γ∇× h) max(0, 1− 1

|x− γ∇× h|
)

= x− γ∇× h+ (x− γ∇× h) min(0,
1

|x− γ∇× h|
− 1)

= min(x− γ∇× h, (x− γ∇× h)

|x− γ∇× h|
)
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