
HAL Id: hal-02086972
https://hal.science/hal-02086972v1

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual navigation tested on a mobile app is predictive
of real-world wayfinding navigation performance

Antoine Coutrot, Sophie Schmidt, Lena Coutrot, Jessica Pittman, Lynn
Hong, Jan M Wiener, Christoph Hölscher, Ruth C Dalton, Michael

Hornberger, Hugo J Spiers

To cite this version:
Antoine Coutrot, Sophie Schmidt, Lena Coutrot, Jessica Pittman, Lynn Hong, et al.. Virtual navi-
gation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS
ONE, 2019, 14 (3), pp.e0213272. �10.1371/journal.pone.0213272�. �hal-02086972�

https://hal.science/hal-02086972v1
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Virtual navigation tested on a mobile app is

predictive of real-world wayfinding navigation

performance

Antoine CoutrotID
1,2*, Sophie Schmidt1, Lena Coutrot1,3, Jessica Pittman1, Lynn Hong1,

Jan M. Wiener4, Christoph Hölscher5, Ruth C. Dalton6, Michael Hornberger7*, Hugo

J. Spiers1*

1 Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and

Language Sciences, University College London, London, United Kingdom, 2 Laboratoire des Sciences du
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Abstract

Virtual reality environments presented on tablets and smartphones have potential to aid the

early diagnosis of conditions such as Alzheimer’s dementia by quantifying impairments in

navigation performance. However, it is unclear whether performance on mobile devices

can predict navigation errors in the real world. We compared the performance of 49 partici-

pants (25 females, 18-35 years old) at wayfinding and path integration tasks designed in our

mobile app ‘Sea Hero Quest’ with their performance at similar tasks in a real-world environ-

ment. We first performed this experiment in the streets of London (UK) and replicated it in

Paris (France). In both cities, we found a significant correlation between virtual and real-

world wayfinding performance and a male advantage in both environments, although

smaller in the real world (Cohen’s d in the game = 0.89, in the real world = 0.59). Results in

London and Paris were highly similar, and controlling for familiarity with video games did not

change the results. The strength of the correlation between real world and virtual environ-

ment increased with the difficulty of the virtual wayfinding task, indicating that Sea Hero

Quest does not merely capture video gaming skills. The fact that the Sea Hero Quest way-

finding task has real-world ecological validity constitutes a step toward controllable, sensi-

tive, safe, low-cost, and easy to administer digital cognitive assessment of navigation ability.

Introduction

Virtual reality (VR) provides a powerful means to study and quantify how humans navigate,

because the properties of a virtual environment can be completely controlled and repeated

across participants. Since the late nineties, it has been a critical tool to understanding how

brain regions support navigation and unveiling the structural and functional neural correlates

PLOS ONE | https://doi.org/10.1371/journal.pone.0213272 March 18, 2019 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Coutrot A, Schmidt S, Coutrot L, Pittman

J, Hong L, Wiener JM, et al. (2019) Virtual

navigation tested on a mobile app is predictive of

real-world wayfinding navigation performance.

PLoS ONE 14(3): e0213272. https://doi.org/

10.1371/journal.pone.0213272

Editor: Laura Zamarian, Medical University of

Innsbruck, AUSTRIA

Received: August 2, 2018

Accepted: February 19, 2019

Published: March 18, 2019

Copyright: © 2019 Coutrot et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We made

available both the processed and raw data

used in this manuscript on Open Science

Framework: https://osf.io/brjyp/?view_only=

3ff88ad76d1c4babaac541d7ca082f1a.

Funding: Deutsche Telekom supported and funded

this research - https://www.telekom.com/en to HS.

Alzheimer’s Research UK funded the analysis -

https://www.alzheimersresearchuk.org/ to HS. The

funders had no role in study design, data collection

http://orcid.org/0000-0001-9569-3548
https://doi.org/10.1371/journal.pone.0213272
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213272&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213272&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213272&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213272&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213272&domain=pdf&date_stamp=2019-03-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213272&domain=pdf&date_stamp=2019-03-18
https://doi.org/10.1371/journal.pone.0213272
https://doi.org/10.1371/journal.pone.0213272
http://creativecommons.org/licenses/by/4.0/
https://osf.io/brjyp/?view_only=3ff88ad76d1c4babaac541d7ca082f1a
https://osf.io/brjyp/?view_only=3ff88ad76d1c4babaac541d7ca082f1a
https://www.telekom.com/en
https://www.alzheimersresearchuk.org/


of spatial navigation [1–4]. VR tests of spatial cognition have proved more sensitive in identify-

ing spatial navigation deficits in patient populations compared to more classic visuospatial

‘pencil-and-paper’ tests like the Mental Rotation Test [5]. VR has the added advantage to be a

less costly and safer alternative to real-world navigation tests, which are time and space con-

suming, as well as difficult to administer to a population sometimes less able to walk [6]. Until

recently, most VR used in research was presented on a desktop display and movement con-

trolled via a joystick or keyboard. Such an interface presents difficulties for older people, less

exposed to technology than younger participants [7]. However, with the advent of tablet and

smart-phone touch screen mobile devices, older participants have found engaging in VR

tasks much easier and intuitive than with desktop computers [8, 9]. As a consequence, mobile

devices have recently been used in several fields such as neuropsychological assessment [10],

stroke rehabilitation [11] and mental health [12]. We recently developed a VR navigation task

for mobile and tablet devices—Sea Hero Quest—with the aim that this may provide an early

diagnostic tool for Alzheimer’s Disease (AD) [13]. For this test to be useful it is important that

it has real-world validity, with errors on the VR task predicting errors in real-world navigation

experience.

Past research comparing navigation in real and VR environments has generally found a

good concordance in performance across both environments in the normal population [14–

19], in younger and older age groups [20], in individuals with brain injury [21, 22], in chronic

stroke patients [23], and in patients with Mild Cognitive Impairment (MCI) or early AD [20,

24], for reviews see [25, 26]. However, this consistency seems to be modulated by the type of

spatial navigation task, as a previous study showed that performance in real life and virtual

environments were similar for tasks such as landmark recognition or route distance estimate,

but different for pointing to the beginning and endpoint of the route, or drawing a map of the

route [27].

Most prior studies comparing VR and real-world navigation performance have used desk-

top VR or immersive VR to simulate environments, and paper and pencil tests such as line ori-

entation, road map, or delayed recall when assessing ‘real-world navigation behavior’. A few

studies made use of actual navigation tasks but often in a limited spatial range, like the lobby of

a hospital [20]. A notable exception is [28], where the authors tested 978 military college stu-

dents on a 6 km orienteering task and replicated many laboratory-based findings, including

gender differences. However, the authors did not test their participants in a VR task and were

thus unable directly compare the two environments.

Numerous studies found a male advantage for navigation in VR tasks [13, 29–32], but only

a few looked for gender differences in real-world navigational tasks [28, 33]. This led some

authors to suggest that previously reported gender differences in spatial ability may be driven

by familiarity with technology, men being more comfortable with virtual tasks than women

who are sometimes less exposed video games [34].

Here, for the first time we directly compared in a within-subject design the spatial navi-

gation performance measured on a mobile device with our Sea Hero Quest virtual tasks, and

in a large-scale real-world environment covering a whole neighborhood of London (Covent

Garden, South of the British Museum) and of Paris (South of the Montparnasse cemetery).

We designed the real-world counterparts of the Sea Hero Quest wayfinding and path inte-

gration tasks, which are known to tap into different cognitive processes [13]. The wayfind-

ing task relies on various skills, including interpretation of a map, planning a multi-stop

route, memory of the route, monitoring progress along the route and updating of route

plan, and transformation of birds-eye perspective to an egocentric perspective needed for

navigation [35], while the path integration task typically only requires working memory

processes [36].

Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance
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We hypothesized that performance in the real world in both cities will significantly corre-

late with performance in the virtual environment. Based on our original mobile-based results

[13] and on previous gender differences found in navigational studies in the real world [28],

we hypothesized that males will perform better than females in both environments. Finally, we

predicted that familiarity with video games will not influence performance in either environ-

ment, in line with a previous study showing no effect of computer experience on spatial mem-

ory errors [7]. In particular, the correlation between the real-world wayfinding performance

and the performance at the first training Sea Hero Quest level—where no spatial ability is

required—should be null. Comparing this study to the original large dataset would enable test-

ing whether our results hold true not simply in small cohorts but on a population level.

Methods

This study has been approved by UCL Ethics Research Committee. The ethics project ID num-

ber is CPB/2013/015. Written consent was obtained from each participant and the data were

analyzed anonymously. Participants were tested on specific levels from Sea Hero Quest [13]

on a tablet, and then on equivalent tasks in the real world, see Fig 1. Participants were also

asked to answer a few demographic questions. We first ran this experiment in London in sum-

mer/fall 2017. We then replicated it with a different team in Paris in spring 2018. The whole

experiment lasted around three hours.

Participants

In London—We tested a total of 30 participants (15 males) but data from 1 participant was

missing due to a technical problem and real-world wayfinding data from 6 participants (3

males and 3 females) were discarded due to GPS recording issues. Subsequent analyses hence

include 23 participants (11 males), aged 18-30 y.o. (M = 21.52, s.d. = 1.81). Participants had

normal or corrected to normal vision and gave their written consent to participate. Path inte-

gration data was not collected for the first 11 participants as this task was not yet implemented.

Participants received 3 class credits or £20 for their participation.

In Paris—We tested a total of 30 participants (15 males), but real-world wayfinding data

from four participants (1 male and 3 females) were discarded due to GPS recording issues.

Subsequent analyses hence include 26 participants (14 males), aged 18-30 y.o. (M = 23.15,

s.d. = 2.52). Participants had normal or corrected to normal vision and gave their written con-

sent to participate. Participants received 30 euros for their participation.

Virtual tasks

We devised a mobile video game designed to measure human spatial navigation ability

through gameplay—Sea Hero Quest (SHQ, www.seaheroquest.com). This video game involves

navigating a boat in a virtual environment (lake or river networks) and has been extensively

described in [13]. It features two main tasks, which have been designed to tackle different

aspects of spatial navigation.

1- Wayfinding. Participants were required to view a map displaying current position and

goal locations to find (Fig 1A and 1B). Participants could study the map without time restric-

tions and had to navigate to the goal locations in the order indicated, e.g. goal 1 must be found

first, then goal 2, etc. Goals were buoys with flags marking the goal number. The task is com-

plete when all goals have been located. If the participant takes more than a set time, an arrow

indicates the direction along the Euclidean line to the goal to aid navigation. On basis of the

data from the mobile video game, we selected a subset of 5 of the total 75 levels in the game

that varied in difficulty. In order to compare the data recorded in this study to the population-

Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance
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level dataset, we chose three levels of increasing but moderate difficulty appearing quite early

in the game (levels 6, 11 and 16). Indeed, the sample size of the mobile video game logically

dropped rapidly across levels (see [13]). We also included a training level (level 1) and a level

of great difficulty (level43), see S1 Fig. The helping arrow appeared after 80 s in level 1, 70 s in

level 6, 80 s in level 11, 80 s in level 16 and 200 s in level 43.

Performance was quantified with the Euclidean distance travelled in each level (in pixels).

The coordinates of participants’ trajectories were sampled at Fs = 2 Hz. We summed the dis-

tance travelled over levels 6 to 43. We did not include level 1 because it did not require any

spatial ability (the goal was visible from the starting point) and was only designed to assess

Fig 1. Task in real world (bottom row) vs virtual environment (top row). (A-B) Wayfinding task in the video game: participants had to

memorize a map and navigate as fast as possible toward an ordered set of goals. Participants played Sea Hero Quest on a tablet. (C) Path

Integration task in the video game: participants had to navigate in a maze until they find a flare and shoot it back toward their starting

position. (D) Wayfinding task in the real world. Identical as the virtual task, but takes place in the streets of (E) London and (F) Paris. All

other maps are displayed in supporting S1–S4 Figs.

https://doi.org/10.1371/journal.pone.0213272.g001
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participants’ ability to learn to control the boat. We only considered level 1 data in Fig 2C to

compare participants’ performance in real life with the distance they travelled in each level.

2- Path Integration. During path integration, participants integrate perceived ego motion

while they move to update their position and orientation. It is a more basic navigation mecha-

nism than wayfinding, which typically only requires working memory processes [36]. A well-

established tool in the study of path integration is the triangle completion task, where partici-

pants move along the first two sides of a triangular pathway, and then are asked to return to

their starting position, thus completing the triangle [37, 38]. The task we designed here is a

direct implementation of this paradigm. Participants were required to navigate along a river

Fig 2. Spatial ability at a wayfinding task in real world vs virtual environment. (A) Correlation between the distance navigated in the video game and the

normalized distance navigated in the real-world wayfinding task in London (skipped Pearson’s r = 0.46, p = 0.01) and (B) in Paris (skipped Pearson’s

r = 0.57, p = 0.001). Real-world normalized distance is the distance travelled by participants divided by the number of goals they reached. Outliers have been

determined with skipped-correlation. (C) Skipped correlation coefficients between the distance navigated in each video game level and the total normalized

distance navigated in the real world. Video game levels are sorted by increasing difficulty according to Table 1. (D) Gender differences at the wayfinding task

in the video game (right) and in the real world (left). Distances have been standardized (zscore) to allow a direct comparison between environments. Black

dots represent individual data points. Error bars represent standard errors.

https://doi.org/10.1371/journal.pone.0213272.g002
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with bends until they find a flare and shoot it back toward their starting position. Participants

could choose among three directions, as shown in Fig 1C. We selected a subset of 5 levels that

varied in difficulty: level 14 had one bend, level 34 three, level 44 two, level 54 four and level 74

five, see S4A Fig.

Performance was measured with the number of stars obtained by the player. Stars were

awarded based on participant’s choice between 3 proposed directions: 3 stars for the correct

answer (their starting point), 2 stars for the second closest direction, and 1 star for the third

closest direction.

Real-world task

1- Wayfinding. The real-world wayfinding task consisted of 6 wayfinding trials which varied

in difficulty in terms of the number of streets to be navigated, the number of goals and the rela-

tive location of the goals to each other. Each trial consisted of a different starting point and

required exploration through different street networks South of the British Museum in Lon-

don (Covent Garden area) and South of the Montparnasse cemetery in Paris. We chose less

busy streets to avoid traffic and made sure the participants were not familiar with them. Before

each trial, participants were shown a map that only indicated the facing direction, the network

of the local streets and the location and the order of the goals (in London see S2 Fig, in Paris

see S3 Fig). Maps were displayed on a tablet (IPad MP24B/A, 9.7 inches). The goals were doors

and gates with distinct features (e.g. specific colour, size, or material). Participants had up to

1 min to memorize the map. Once the minute was up, the map was removed and they were

asked to go locate the goals. During navigation they were provided with colour photographs of

the goal. To calibrate the time limit of each route, we pilot tested 3 participants in London and

2 participants in Paris, not included in the analyses. We chose these time limits to allow for a

few mistakes at a reasonable walking pace. Pilot testing indicated that if participants required

any longer than that these time restraints they were likely guessing and had failed to remember

the goal locations or street layout. To take into account the fact that some participant did not

finish some routes, we divided this distance by the number of goals reached by the participant

plus 1. We added 1 to cope with cases where the participant didn’t reach any goal (this only

happened once). We refer to this as the metric normalized distance, and summed it over routes

1 to 6. If participants reached the limits of the defined region shown in the map they had stud-

ied then they were told by the experimenter that they had reached the edge of the search area

and should turn back. In London, route one: 6 minutes, route two: 6 minutes, route three: 6:30

minutes, route four: 6:30 minutes, route five: 12 minutes, route six: 14 minutes. In Paris, route

one: 5 minutes, route two: 8 minutes, route three: 8 minutes, route four: 9 minutes, route five:

16 minutes, route six: 20 minutes.

The coordinates of participants’ trajectories were sampled at Fs = 1 Hz with the experiment-

er’s smartphone GPS via the Beeline app. We visually inspected all recorded GPS trajectories

to deal with potential losses of signal. For losses of signal where the participant did not make

any turn, we linearly interpolated between the first and the last missing points. When we

couldn’t reconstruct the trajectory because the participant changed direction during the loss of

signal, we discarded the data (5 trials out of 180 in Paris, 6 out of 180 in London). Performance

was quantified with the Euclidean distance travelled in each route (in meters).

2- Path Integration. The real-world path integration task consisted of 4 path integration

trials which varied in difficulty in terms of the number of turns they featured (1, 2, 3 and 4

turns, see S4B Fig). To avoid familiarity effect, path integration routes were chosen not to

intersect with any wayfinding route. Participants were informed when they were at a starting

point then they were asked to follow the experimenter to an endpoint where they were

Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance
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instructed to point back toward the starting point. We used a numeric compass to precisely

record the direction. Performance was defined as the inverse of the angle between the direction

pointed toward by the participant and the ground-truth, in degrees. We then summed the

absolute values of the path integration error angles.

Results

Table 1 reports the difficulty of each wayfinding route in the real-world task as the percentage

of goals reached by the participants before the time limit. This goes from 99% in London

(100% in Paris) for route 1 down to 74% in London (84% in Paris) for route 6. Table 1 also

reports the difficulty of each wayfinding level in the video game task as the percentage of par-

ticipants that managed to complete the level before the helping arrow appeared. 100% partici-

pants successfully completed the first training level while only 47% participants in London

(40% in Paris) completed level 43. Interestingly, level 11 seemed harder than level 16, which

might be due to level 11 requiring participants to turn back to meet the goals in order, which

was not the case in level 16 (see S1 Fig).

Table 2 reports the difficulty of each path integration route in the real-world task in Paris

and London as the mean absolute error angle, and the difficulty of each path integration level

in the video game task in Paris as the percentage of correct answers (i.e. the percentage of par-

ticipants that received three stars). London data is fragmentary (based on 19 participants, no

real-world route with 4 turns) since the path integration task was not fully implemented yet.

Further analyses are only based on path integration data recorded in Paris.

Correlation between performance in real world and virtual environments

To visualize participants’ raw data in real world and virtual environments we created a video

showing on the left side the trajectories of participants in London’s route 6 and on the right

side the trajectories of the same participants in the 43rd level of Sea Hero Quest (S1 Video).

Table 1. Difficulty of the virtual and real-world wayfinding task. Left: Real-world wayfinding task. For each route, percentage of the goals reached by the participants in

London (23 participants) and in Paris (26 participants) within the time limit. Right: Video game wayfinding task. For each level, percentage of participants who completed

the level before the helping arrow appeared.

Real-world routes London Paris Video game levels London Paris

1 (3 goals) 99% 100% 1 (1 goal) 100% 100%

2 (3 goals) 93% 98% 6 (3 goals) 97% 97%

3 (3 goals) 92% 99% 11 (3 goals) 67% 67%

4 (3 goals) 91% 96% 16 (3 goals) 90% 90%

5 (3 goals) 88% 94% 43 (4 goals) 47% 40%

6 (4 goals) 74% 84%

https://doi.org/10.1371/journal.pone.0213272.t001

Table 2. Difficulty of the virtual and real-world path integration task in Paris (30 participants) and in London (19 participants). Left: Real-world path integration

task. For each route, average of the absolute value of the error angle (M ± SE, in degree). Right: Video game path integration task. For each level, we show the percentage of

correct answers (3 stars).

Real-world routes London Paris Video game levels London Paris

1 (1 turn) 16.5˚ ± 4.3 19.8˚ ± 4.5 14 (1 turn) 79% 87%

2 (2 turns) 19.3˚ ± 4.3 21.7˚ ± 2.8 34 (2 turns) 53% 43%

3 (3 turns) 23.1˚ ± 4.1 19.5˚ ± 2.4 54 (3 turns) 68% 70%

4 (4 turns) 25.6˚ ± 4.4 44 (4 turns) 63% 73%

74 (5 turns) 16% 20%

https://doi.org/10.1371/journal.pone.0213272.t002
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The relationship between the wayfinding performance in the real world and in the video game

is shown Fig 2A (in London) and Fig 2B (in Paris). One can notice a few outliers in the upper

right corner of the scatter plots. Traditional Pearson’s correlation measure is known to be

highly sensitive to outliers, which can severely bias the estimation of the strength of the associ-

ation among the bulk of the points [39]. To deal with this, we used skipped-correlation, which

protects against outliers by taking into account the overall structure of the data [40]. Outliers

are detected using a projection method, removed, and Pearson’s correlation is computed using

the remaining data. Hence, Pearson’s skipped correlation is a direct reflection of Pearson’s r.

We used an implementation of this algorithm available in a free toolbox [41]. The detected

outliers are tagged in Fig 2A and 2B with black edges, and discarded from further analysis.

95% Confidence Intervals (CI) were computed via bootstrap: pairs of observations were resam-

pled with replacement and their correlation values obtained and sorted. Values between the

2.5 and 97.5 percentiles yielded the 95% CI. Skipped correlation were significant both in Lon-

don (r = 0.46, 95% CI = [0.14, 0.68], p = 0.01) and in Paris (r = 0.57, 95% CI = [0.37, 0.76],

p = 0.001).

To confirm that our virtual task captured participants’ wayfinding ability, we checked

whether the strength of the correlation between performance in real world and in the video

game was modulated by the difficulty of the virtual task. Under this hypothesis, the correlation

should be null between real world and level 1 performance, since level 1 is a training level

where no spatial ability is required: the end goal is visible from the starting point. The correla-

tion should then increase with the difficulty of the level. We broke down the global correlation

score for each Sea Hero Quest level, comparing participants’ performance in real life with

the distance they travelled in each level. To increase the sample size, we combined the data

recorded in both London and Paris. In order to take into account the difference in route length

between cities (the task in Paris being slightly longer than the one in London), we calculated

zscores of the performance for each level before combining the data of the two cities. In the

following we work with this cross-city normalized metric, called Standardized Distance. The

skipped correlation coefficient between the Standardized Distance in the real world and in

level 1 is close to 0 (r = 0.06), confirming that this instruction level does not measure spatial

ability. We sorted the game levels by increasing difficulty based on the results of Table 1: level

1, 6, 16, 11 and 43. As shown in Fig 2C, the skipped correlation coefficient increases with level

difficulty, from r = 0.06 in level 1 to r = 0.44 in level 43.

The skipped correlation between real world and video game path integration score in Paris

was not significant, r = -0.23, 95% CI = [-0.51, 0.08], p = 0.11. However, the sign of the correla-

tion is logical since higher scores mean better performance in the game (number of stars) but

not in the real-world task (error angle). In London, the first 11 participants were not tested on

path integration as this task was not yet designed. The skipped correlation based on the other

19 participants is consistent with Paris data: r = -0.40, 95% CI = [-0.73, 0.07], p = 0.05. How-

ever, correlational analyses with small sample size can lead to strongly biased correlation esti-

mates and this result should be considered with caution.

Gender differences

For the wayfinding task, we found that in both environments male participants had an advan-

tage, although smaller in the real world (Fig 2D). In the real world, Cohen’s d = 0.59, 95% CI =

[0.02 1.15], t(47) = -2.08, p = 0.04; in the video game, Cohen’s d = 0.89, 95% CI = [0.35 1.42],

t(56) = -3.43, p = 0.001.

For the path integration task in Paris, we did not find a significant gender difference. How-

ever, the tendency was similar to the wayfinding results, with male having a small advantage in
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both environments, smaller in the real world, see S5 Fig. In the real world, Cohen’s d = -0.21,

95% CI = [-0.91 0.49], negative values correspond to a male advantage; in the video game,

Cohen’s d = 0.29, 95% CI = [-0.40 0.99], positive values correspond to a male advantage. The

gender effect size is much smaller for path integration than for wayfinding and is not significa-

tive, as shown by the wide 95% CIs.

Influence of familiarity with video games

We showed that the correlation between performance in real world and in the training level of

the virtual environment was weak, indicating that gaming ability does not predict navigation

ability in the real world (Fig 2C). To further test this claim, we asked participants the average

duration they play video games per week and used this variable along with gender to predict

performance in the real-world and in the virtual environment. On average, females played

video games 2.99 ± 8.38 hours per week and males played 2.95 ± 4.21 hours per week. To con-

trol for the influence of familiarity with video games on real-world and virtual spatial abilities,

we computed a multiple linear regression to predict performance based on gender and on the

time participants spent playing video game (VGT), in hours per week.

With standardized distances recorded in the real-world wayfinding task, gender was a sig-

nificant predictor (t(47) = −2.22, p = 0.03), but not VGT (t(47) = 0.31, p = 0.76). Similarly,

with standardized distances recorded in the virtual wayfinding task, gender was a significant

predictor (t(55) = −3.44, p = 0.001), but not VGT (t(55) = −0.99, p = 0.32).

With error angles recorded in the real-world path integration task, gender was not a signifi-

cant predictor (t(55) = −0.65, p = 0.52), nor was VGT (t(55) = 1.09, p = 0.28). Similarly, with

standardized flare accuracy recorded in the virtual path integration task, gender was not a sig-

nificant predictor (t(55) = −0.17, p = 0.87), nor was VGT (t(55) = 0.09, p = 0.92).

Correlation between wayfinding and path integration

The skipped correlation between path integration and wayfinding scores is not significant in

the real world (Paris data): r = -0.06, 95% CI = [-0.34 0.44], nor in the virtual environment: r =

-0.18, 95% CI = [-0.49 0.15]. Higher scores mean better performance in the path integration

task in the game (number of stars) lower score mean better performance in the path integra-

tion task in the real-world task (error angle), and in the wayfinding tasks in both environments

(distance).

Comparison to the population-level original dataset

To check whether the 60 participants we recruited for this experiment were representative of

the much larger dataset recorded with the mobile version of Sea Hero Quest [13], we plotted

in Fig 3 the performance of the participants at this study (vertical red dotted lines) against the

corresponding distribution of the performance of the French and British Sea Hero Quest play-

ers from the original dataset. Since the number of players per level drops rapidly, we focused

on level 11 to maximise the difficulty / number of players ratio (N = 78,724, see [13] for full

data). Fig 3 clearly shows that the performance of the participants recruited for this study

closely follows the performance distribution of the original dataset. Gender differences fol-

lowed the same direction in this study (Cohen’s d = 0.81, 95% CI = [0.28 1.33]) as in the

subsample of the original dataset (Cohen’s d = 0.40, 95% CI = [0.39 0.42], positive values corre-

spond to a male advantage.
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Discussion

We report evidence that wayfinding navigation performance on a mobile app-based VR navi-

gation task (Sea Hero Quest) is significantly correlated with performance in a real-world city

street wayfinding task. We directly compared participants performance at a subset of Sea Hero

Quest wayfinding levels with their performance at an equivalent task in the Covent Garden

area, London. We found a strong correlation between the distance participants travelled in

the video game (in pixels) and in the real-world street network (in meters, measured by a GPS

device). We replicated this result with another set of participants in the Montparnasse area,

Paris. The high similarity of the results in the two cities is a strong indicator of the robustness

of the results presented above. Our findings are consistent with a number of studies that

showed that spatial navigation assessment in a desktop VR [15, 16, 18, 20, 22, 23, 27] and

immersive VR [17, 42] environments transferred well to the real world, and extend them to

tablet device presentation and real-world spatial task spanning complex street networks. How-

ever skill assessment don’t always generalize from VR to the real world. For instance reading

Fig 3. Comparison with the large scale video game dataset. Distance in the Video Game (level 11) of the French and British participants

tested in the original Sea Hero Quest database (N = 78,724, blue histogram), see [13] for full data. The red dotted vertical lines represent the

performance of the participants recorded in the current study.

https://doi.org/10.1371/journal.pone.0213272.g003
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skills assessed in a digital device can be partially predicted by participant’s ability to perform

basic computer tasks [43]. The similarity both in term of performance and of gender difference

of this study with the original large scale Sea Hero Quest study [13] suggests that our findings

hold true not simply in small cohorts but on a population level.

We found a significant male advantage in the wayfinding task in both real world and virtual

environments, although weaker in the real world. This difference in effect size between the two

environments couldn’t be explained by males being more familiar with video games, as sug-

gested in a previous study [34] for three reasons. First, our male and female participants

reported playing video games the same average duration per week (2.95 vs 2.99 hours per

week). Second, when using gender and time playing video games (VGT) as covariates in a lin-

ear model to predict wayfinding performance in the real world (resp. in the virtual environ-

ment), gender came out as a significant predictor, but not VGT. Third, we found a very weak

correlation coefficient (skipped Pearson’s r = 0.06) between the performance at the real-world

wayfinding task and at the first training Sea Hero Quest level, which did not require any spatial

ability (the endpoint being visible from the start). The strength of the correlation increased

with the difficulty of the video game level (up to r = 0.44 in level 43), indicating that Sea Hero

Quest does not merely capture video gaming skills. The discrepancy with [34] might stem

from the difference between tasks, Richardson et al.’s task being closer to the path integration

task than to the wayfinding task discussed in this paragraph. The underlying causes of gender

differences in spatial ability are still debated in the literature and include sex hormones varia-

tion, evolution, differences in self-confidence and anxiety [18]. In a previous paper based on

the global video game dataset, we showed that gender differences in spatial ability measured in

the game correlate with gender differences in the society measured with the Gender Gap Index

(World Economic Forum) [13].

We did not find a significant correlation between the performance at the real world and the

Sea Hero Quest path integration task. At least three reasons could account for this null result.

First, as mentioned in the introduction, the consistency between spatial navigation ability in

the real world and in a virtual environment task depends on the type of navigational task [27].

In particular, the aforementioned study reported a poor concordance for a task involving

pointing to the beginning and endpoint of the route, which is quite close to our path integra-

tion task. This hypothesis is consistent with the weak correlations we found between wayfind-

ing and path integration performances, both in the real world and in the virtual environment:

the two tasks involve different cognitive processes, which don’t generalize similarly from one

environment to the other. The wayfinding task requires quite elaborate processing, while the

path integration only requires working memory processes (see Introduction). Second, this null

result could be caused by the low sensitivity of our virtual path integration task. Indeed, while

in the real-world performance was a continuous variable defined as the inverse of the error

angle, in Sea Hero Quest it could only take three values: one, two, or three stars. This ternary

metric might not be sensitive enough to capture subtle differences in the moderate sample size

used in this study (60 participants), unlike the original Sea Hero Quest study on mobile and

tablet (2.5m participants) [13]. Third, one could argue that path integration in a city is differ-

ent from path integration in a controlled virtual environment, as there are environmental

structures (e.g. street grid) and landmarks (e.g. buildings), which may help to judge distances

and directions. This would explain the small difference in mean error angle captured by the

real-world path integration routes between supposedly easy (one turn) and difficult (four

turns) routes, see Table 2.

Altogether, these results constitute a step toward the ability to remotely test people. This is

particularly valuable when certain categories of the population have difficulties in mobility,

like older people. Currently our results focused on young university students, and it will be
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useful to extend to a broader population including elderly participants. Spatial ability assess-

ment provides the potential to act as an early stage diagnostic tool for Alzheimer’s dementia

(AD), because spatial disorientation is one of the earliest symptoms [24, 44–48]. Currently

there is no standardized test for navigation deficits with AD patients, as diagnostics measures

are still focused on episodic memory deficits, despite their low sensitivity and specificity for

identifying at-risk individuals [26]. Sea Hero Quest wayfinding task having real-world ecologi-

cal validity holds future promise for controllable, sensitive, safe, low-cost, and easy to adminis-

ter digital cognitive assessment.

Supporting information

S1 Fig. Wayfinding virtual task. Maps of wayfinding Sea Hero Quest levels 1, 6, 11, 16 and

43. Starting position and facing direction are indicated by a pale blue arrow, ordered goals by

red flags. Participants must memorize the map, and then navigate towards the goals in the

right order as quick as possible.

(PDF)

S2 Fig. Wayfinding real-world task in London (UK). Maps of real-world wayfinding routes

(top). Starting position and facing direction are indicated by a yellow arrow, ordered goals by

red dots. Participants must memorize the map, and then walk towards the goals in the right

order as quick as possible. Goals are materialized by remarkable doors (bottom).

(PDF)

S3 Fig. Wayfinding real-world task in Paris (France). Maps of real-world wayfinding routes

(top). Starting position and facing direction are indicated by a green arrow, ordered goals by

yellow dots. Participants must memorize the map, and then walk towards the goals in the right

order as quick as possible. Goals are materialized by remarkable facade (bottom).

(PDF)

S4 Fig. Path integration task in the virtual and real-world environments. A—Maps of Sea

Hero Quest path integration levels 14, 34, 44, 54 and 74. B—Itineraries of the path integration

task in Paris (France). Each color corresponds to a different itinerary.

(PDF)

S5 Fig. Path integration gender effect. Gender differences for the path integration task in the

video game (right) and in the real world (left) in Paris. In the real world, path integration per-

formance is the opposite of the average error angle. In the video game, path integration perfor-

mance is the average number of stars. Both measures have been standardized for comparison.

Black dots represent individual data points. Error bars represent standard errors.

(PDF)

S1 Video. Visualization of the wayfinding task in London and in the video game. Credits to

OpenStreetMap contributors.

(MP4)
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