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Abstract
Menger’s theorem is one of the cornerstones of graph theory, and Hall’s Marriage Theorem, a
straightforward consequence of Menger’s Theorem, is one of the most applied graph-theoretic results.
Following Göring’s “Short proof of Menger’s Theorem” we give formal proofs of Menger’s theorem
and of some of its consequences, including Hall’s Marriage Theorem and Kőnig’s Theorem, in the
proof assistant Coq. Our proofs make use of the mathematical components library and a library for
reasoning about paths in finite graphs developed previously.
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1 Introduction

Diestel [6, p. 50] calls Menger’s Theorem [19] one of the cornerstones of graph theory and
remarks that Hall’s Marriage Theorem [14], a straightforward consequence of Menger’s
Theorem, is one of the most applied graph-theoretic results [6, p. 42]. Informally, Menger’s
Theorem states that if one needs to remove at least n vertices to disconnect two sets of
vertices A and B of some graph, then there exist n pairwise disjoint paths from A to B.

One particularly useful corollary of Menger’s Theorem allows the construction of n
independent (i.e., internally vertex disjoint) xy-paths, provided one needs to remove at least
n vertices (differenct from x and y) in order to disconnect x and y. For n = 3, such a
collection of independent paths is sometimes referred to as a “theta” [1] (in reference to
the shape of the letter θ) and thetas occur pervasively in graph theory. In fact, our main
motivation for formalizing Menger’s Theorem was the need to construct such a theta in a
larger proof (cf. Section 8).

There are various proofs of Menger’s theorem in the literature [19, 17, 2, 6, 13] – Diestel [6]
alone provides three different proofs. We choose to follow Göring’s “Short proof of Menger’s
Theorem” [13], because it is the simplest and most elegant proof we could find. Since the origi-
nal proof is really short – Göring’s paper is a short note of little more than a page – this allows
us analyze each step of the proof and explain what is required in order to formalize it in Coq.

The formal development builds on a library for reasoning about paths in finite graphs
developed previously [7]. More precisely, the version of the library underlying [7] only
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XX:2 Short proof of Menger’s Theorem in Coq

supports simple (i.e., undirected and self-loop free) graphs. Menger’s Theorem is more
naturally stated and proved in the setting of directed graphs, the version for simple graphs
being an instance of the version for directed graphs. Adapting the aforementioned library to
also support reasoning about paths in directed graphs was straightforward, and we will not
detail it here.

The present work should be seen as a first step towards extending the library in [7] in
the direction of a general-purpose graph library. Currently, there are very few formalizations
of graph theory results in Coq. Gonthier’s formal proof of the Four-Color Theorem [12] is
certainly the most advanced, but it restricts (by design) to planar graphs so that it cannot
be used as a starting point for general graph theory. Similarly, Durfourd and Bertot’s study
of Delaunay triangulation [10] employs a notion of graphs based on hypermaps embedded in
a plane. Other developments (e.g. [11]) only formalize the most basic notions and/or have
never reached the point of general usefulness.

There are more formalizations in other interactive theorem provers. Chou developed some
undirected graph theory in HOL [3]. Euler’s theorem was formalized in Mizar [20]. Planar
graphs were formalized in Isabelle/HOL for the Flyspeck project [21]. Noschinski recently
developed a library for both simple and multi-graphs in Isabelle/HOL [22]. Perhaps closest
to our work is the work of Lammich and Sefidgar [16] who formalize the Edmonds-Karp
algorithm and the max-flow min-cut theorem, a generalization of Menger’s Theorem to flow
networks, in Isabelle/HOL.

The paper is organized as follows. In Section 2, we define some basic notions and notations
corresponding to the part of Coq library we use in the background [7]. In Section 3 we give
the formal statement of Menger’s Theorem and describe what is needed to formalize the
statement in Coq. In Section 4 we present Göring’s proof of Menger’s Theorem and explain
what is needed to formalize it in Coq. In Sections 5 to 7 we derive a number of consequences
of Menger’s Theorem, including Hall’s Marriage Theorem and Kőnig’s Theorem (cf. [6])

2 Preliminaries

A finite type [18] is a type for which there is a (finite) list enumerating its elements. For
instance, the type of booleans B is a finite type. We write In for the finite type of natural
numbers less than n. Arguments of type In are to be thought of as indices and we will
usually write them as subscripts.

A digraph is a (dependent) tuple 〈V,E〉 where V is a finite type of vertices and
E : V → V → B is a boolean relation. Let G = 〈V,E〉 be a digraph. We write x : G
to denote that x is a vertex of G, i.e., if a graph appears as a type, it is to be understood as
its type of vertices. For vertices x, y : G, we write xB y for E xy = true. An xy-path is a
nonempty sequence of vertices beginning with x and ending with y, such that uB v for every
pair of adjacent vertices u and v in the sequence (if any). We write x y to denote the type
of xy-paths. If π1 : x y and π2 : y  z, we write π1 ++π2 for the concatenation of π1 and
π2 (which has type x z). A path π is called irredundant, written irredπ, if the underlying
sequence of vertices is duplicate free. If a path occurs as a set, this is to be understood as
the set of vertices on the path.

3 The Statement

In the language of modern graph theory, Menger’s Theorem [19, 13] states that for every
two sets of vertices A and B of some digraph G, the minimum size of an AB-separator is
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the maximum size of an AB-connector. We first give the definitions used in [13] and then
explain how we formalize these notions in Coq.

I Definition 1. Let G be some digraph and let A and B be sets of vertices of G.
An AB-separator is a set S, such that the graph obtained by deleting the vertices in S
contains no path from A to B.
An AB-connector is a subgraph of G such that each of its components is a path1 from A

to B having no inner vertex in A ∪B.
The size of an AB-separator S is the number of vertices in S and the size of an AB-
connector X is the number of components (or paths) in X.

Note that if S is an AB-separator and X is an AB-connector, then S must contain at least
one vertex from every path in X. Consequently, one of the directions of Menger’s Theorem
is trivial. The nontrivial direction of Menger’s Theorem is:2

I Theorem 2 (Menger [19]). Let G be a digraph and let A,B be sets of vertices of G such
that n ≤ |S| for every AB-separator S. Then there exists an AB-connector of size n.

In Coq, we represent (finite) digraphs as dependent records consisting of a finite type
and a decidable (i.e., boolean) relation over this type:

Record digraph := { vertex : finType; edge_rel : vertex → vertex → B. }

Thus, constructing a subgraph requires constructing a new type of vertices and a new edge
relation on this type, making this a relatively “heavy” operation. Consequently, we avoid the
use of subgraphs in the formal definition of separators and connectors.

In the following, let G be a digraph and let x, y, a, b range over vertices of G and let
A,B, S range over sets of vertices of G. For AB-separators we simply require that every
path from A to B must contain a vertex from S.

AB-separatorS := ∀a ∈ A.∀b ∈ B. ∀π : a b. S ∩ π 6= ∅

In the case of AB-connectors, we also use paths to avoid the use of subgraphs. This is
natural since the main use of Menger’s Theorem is the construction of pairwise disjoint paths.
However, the path library we use represents paths using a vertex-indexed family of path
types, i.e., for every two vertices x and y, there is a separate type of xy-paths.3 In order to
form collections of paths with different starting and ending vertex, we require a non-indexed
path type. This can be easily defined using existential quantification (at the type level; using
Σ-types) over the end-points. We define a type of G-paths and projection functions yielding
respectively the first vertex, the last vertex, and the encapsulated path:

G-path := Σ(x, y) : G×G. x y

fst 〈(x, y), π〉 := x

lst 〈(x, y), π〉 := y

pth 〈(x, y), π〉 := π

1 This is relative to the notion of path in [6], where paths are defined as line-shaped subgraphs rather
than as sequences of vertices

2 Note that numbered theorems, lemmas, etc. in this paper are hyperlinked to the corresponding entities
in the Coq development.

3 See [7] for a discussion why this is strongly desirable.

https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#connector
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#Menger
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Note that the type of pth is ∀π : G-path. fstπ  lstπ, i.e., the type of pthπ depends on the
value of π. This is mainly useful in combination with predicates that are parametric in the
index-vertices (e.g., in irred(pthπ) where π : G-path and irred : ∀x y : G. x y → Prop). In
the mathematical presentation, we will usually suppress pth, which is merely a type cast,
treating indexed and non-indexed paths as essentially the same.

With this in place, AB-connectors of size n can be defined as predicates on functions
p : In → G-path as follows :

AB-connectorX := ∀i : In. irredXi (1)
∧ ∀i : In. Xi ∩A = {fstXi} (2)
∧ ∀i : In. Xi ∩B = {lstXi} (3)
∧ ∀i j : In. i 6= j → Xi ∩Xj = ∅ (4)

Thus, Menger’s Theorem can be stated formally (and succinctly) as follows:

∀(G : digraph)(AB : set G)(n : N).
(∀S.AB-separatorS → n ≤ |S|)→ ∃X : In → G-path. AB-connectorX

Note that some authors, notably Diestel [6] and Göring [13] (citing Diestel) consider
only irredundant paths. This would be a bad choice for a formal development, because
this would require proving irredundancy whenever one wants to compose paths, even in
contexts where the proof does not rely on the path being irredundant. In the definition of an
AB-connector, we do require irredundancy of the involved paths as this allows us to express
the condition that the internal vertices of every path may occur neither in A nor in B as a
simple equality between sets (Equations (2) and (3)) rather than by splitting off vertices.
We remark that Equation (2) actually ensures that fstXi is the only vertex in A ∩Xi, thus
disallowing two-vertex paths xy linking two distinct vertices x, y ∈ A ∩B (something that
is allowed according to Definition 1). Thus, our formal definition is slightly more strict.
Given that Menger’s Theorem shows the existence of a connector, this constitutes a (minor)
strengthening of the theorem.

4 The Proof

We now turn to the proof of Menger’s Theorem. Göring’s proof is given in Figure 1. As is
typical for graph theory proofs, the proof mostly sketches the construction and elides large
parts of the arguments regarding the correctness of the construction. It should not come
as a surprise that, as it comes to the formalization, the verification effort outweighs the
construction effort. Further, we opted for a slightly different definitions, and this influences
the proof. In the following, we go through Görings proof step-by-step and outline what is
required in order to formalize it.

First of all, Göring leaves implicit that the proof is carried out by induction on the
number of edges in D. In our case, where edges are represented implicitly, we use the measure
m(D) := |{(x, y) : D ×D | xB y}|.

The assumption that D′ contains an AB-separator S with |S| < s is justified by noting
that otherwise we obtain an AB-connector in D′ by induction, and this would provide the
required AB-connector in D. In order to make this case distinction in the constructive logic
of Coq, we need to show that AB-separatorS is a decidable property (i.e., that there exists
a corresponding boolean predicate). This is straightforward since the quantification over
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I Theorem (Menger). Let D be a finite digraph, A and B sets of vertices of D, and s the
minimum number of vertices forming an AB-separator. Then there is an AB-connector
C with |C ∩A| = s.

Proof. If D is edgeless then set C = A∩B. Hence we may assume: D contains an edge e
from x to y, the theorem holds forD′ = D−e, andD′ has an AB-separator S with |S| < s.
Then P = S∪{x} and Q = S∪{y} are AB-separators of D. Thus |P | = |Q| = |S|+1. An
AP -separator (as well as a QB-separator) of D′ is an AB-separator of D. Consequently,
D′ has an AP -connector X containing P and a QB-connector Y containing Q. Since
X ∩ Y = S one can set C = (X ∪ Y ) + e. J

Figure 1 Göring’s “Short proof of Menger’s Theorem” [13]

x yy

A B

S

P Q

Figure 2 Objects occuring the the proof of Menger’s Theorem

all paths can be replaced by quantification over irredundant paths of which there are only
finitely many. Thus, the situation looks as depicted in Figure 2.

To show that P and Q are AB-separators, we establish the following case analysis
principle for paths in D′: For every irredundant path π : u v in D there either exists a
path π : u v in D′ using the same sequence of vertices (i.e., the xy-edge is not used) or
there exist two irredundant paths π1 : u  x and π2 : y  v in D′ again using the same
vertices as π. Thus, P and Q are AB-separators since every AB-path in D either has a
corresponding path in D′ and must therefore contain a vertex from S or it uses the edge e
and therefore contains both x and y.

The argument that every AP -separator (or QB-separator) of D′ is an AB-separator of
D (and hence has size at least s), follows a similar pattern: Let T be an AP -separator of D′

and let π : a b be an irredundant path in D with a ∈ A and b ∈ B. If π uses the xy-edge,
the ax-prefix of π contains a vertex in T . Otherwise, π contains some vertex z ∈ π ∩ P (P
is an AB-separator). Splitting π at z yields an az-path in D′ which again must contain a
vertex in T . The connectors X and Y (both of size n) can thus be obtained by induction.

It remains to show that (X ∪ Y ) + e is an AB-connector of the required size. We first
establish that Y + e is an AP -connector and then show how to compose two connectors
along a separator. We prove this as two separate lemmas, each abstracting from the concrete
construction.

https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html
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I Lemma 3. Let G be a digraph, Q and B sets of vertices of G, j : In and Y : In → G-path
an QB-connector. If x /∈

⋃
i Yi, fst (Yj) = y, x B y and x /∈ B, then there exists an

({x} ∪Q \ {y})B-connector of size n

Proof. Follows by prepending x toXj (and verifying that the result is indeed a connector). J

The side condition x /∈ B is required since Yj already contains an element of B. To show
that we indeed have x /∈ B, let i : In be such that lstXi = x. If x ∈ B, then Xi ∩S 6= ∅ (S is
an AB-separator in D′). However, x is the only element in Xi ∩ P (3). So this would yield
x ∈ S contradicting |P | = |S|+ 1.

I Lemma 4. Let G be a digraph, A and B sets of vertices of G, and P an AB-separator
with |P | = n. Further let X : In → G-path an AP -connector and Y : In → G-path a
PB-connector. Then there exists an AB-connector of size n.

Proof. Since all Xi (as well as all Yi) are mutually disjoint and each contain a single vertex
from P , there is for every i : In a unique index m(i) : In such that lst (Xi) = fst (Ym(i)).
Since P is an AB-separator, any Xi and Yj can intersect at most at a single vertex of P (in
this case j = m(i)). Thus, the function Zi := Xi ++Ym(i) is a connector as required.

We sketch argument for (2), i.e., that Zi ∩A = {fst (Zi)}. Assume Xi is an xy-path and
Ym(i) is a yz-path (this is the general case by the definition of m(i)). The inclusion from
right to left is trivial, as is showing that Xi ∩A ⊆ {fst (Zi)}. So assume some u ∈ Ym(i) ∩A.
It suffices to show u = y for then u ∈ Xi. This follows since the uz-part of Ym(i) is an
AB-path and therefore must contain a vertex v ∈ P . But y is the only vertex in P ∩ Ym(i),
so v = y = u since Ym(i) is irredundant. J

Note that in the proof sketch above, the use of “++” in Xi ++Ym(i) is a slight abuse of
notation since “++” is only defined for vertex-indexed paths with matching vertices. In the
formalization, we employ a separate concatenation function on G-path that discards the
second argument in case the end-points don’t match. In the proof of Lemma 4, we then
establish once that in the definition of Z the end-point always match. This ensures that
the reasoning about dependent types does not clutter the verification that the function
Z is indeed a connector. We remark that in the setting of Göring, where connectors are
defined as subgraphs, the matching of indices (i.e., pairing Xi with Ym(i)) would not be
necessary. Nevertheless, one still has to verify that the union of two connectors intersecting
in a separator is again a connector, and this bulk of the work of required to prove Lemma 4.

This finishes the proof of Menger’s Theorem. We remark that by proving Menger’s
theorem for digraphs, which are really just packaged relations, it applies without further
argument to graphs with additional structure such as finite simple graphs (i.e., the restriction
to symmetric and irreflexive edge relations) and finite directed multigraphs.

5 Independent Paths

One often-used corollary of Menger’s Theorem shows the existence of multiple independent
(i.e., internally vertex-disjoint) paths between certain pairs of vertices.

I Definition 5. Let x, y be vertices of some digraph G. A set of vertices S separates x and y
if {x, y} ∩ S = ∅ and every xy-path contains a vertex from S.

Note that the condition {x, y} ∩ S is required to make the notion of a minimal separating
set nontrivial. That is, while {x} is an {x}{y}-separator, it does not separate x and y.

https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#connector_extend
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#connector_cat
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#separates
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I Corollary 6. Let D be a digraph, and let x, y : D such that x 6= y and x 6By. If n ≤ |S|
for every set S separating x and y, then there exist n irredundant and pairwise independent
xy-paths.

Proof. Let D′ := D \ {x, y} be the subgraph of D induced by the complement of {x, y}.
Let A := {z : D′ | xB z} and B := {z : D′ | z B y}. Then every AB-separator of D′ also
separates x and y in D and therefore has size at least n. By Menger’s Theorem, we obtain
an AB-connector X of size n. Appending x at the beginning and y at the end of every path
in X yields n independent xy-paths. J

We remark that the formalization of the proof above does make use of the “++” function
on G-path. Instead, we prove (interactively) that for every i : In, the type

Σ(π : x y). irred(π) ∧ π \ {x, y} = Xi

is inhabited and then define πi to be the first projection of the inhabitant for i. This is
sufficient, because irredundancy of πi and the equation πi\{x, y} = Xi are the only properties
of πi we need. Using proof mode to show that the aforementioned type is inhabited allows
us to use tactics like subst, simplifying the handling of the dependent types involved.

Corollary 6 appears to not have a common name in the graph theory literature. In fact,
Bondy&Murty [2, Theorem 9.9] refer to Corollary 6 as the directed vertex version of Menger’s
Theorem. As the name suggests, there is also an edge version which we prove next. The
edge version is mainly of interest for directed multigraphs.

I Definition 7. A (finite) directed multigraph is a tuple G = 〈V,E, s, t〉 where V is a finite
type of vertices, E is a finite type of edges and s, t : E → V give the source and target of a
given edge.

In a addition to paths, multigraphs also come with a more fine-grained notion of walk that
keeps track of the edges being used.

I Definition 8. Let G = 〈V,E, s, t〉 be a directed multigraph. An xy-walk in G is a list of
successive edges starting at x and ending at y, that is w : listE is an xy-walk if it satisfies
the following recursive predicate:

walk x y [] := x = y

walk x y (e :: w) := s(e) = x ∧ walk (t e) y w

A set of edges F separates two vertices x and y if every xy-walk contains an edge in F .

I Corollary 9. Let G = 〈V,E, s, t〉 be a directed multigraph and let a, b : V be two distinct
vertices such n ≤ |E| for every set of edges separating a and b. Then there exist n pairwise
disjoint ab-walks.

Proof. Let L := 〈E,B〉 with e1 B e2 := t(e1) = s(e2) be the line graph of G (i.e, the graph
whose vertices are the edges of G and whose transition relation reflects adjacency of edges).
Further let A = {e : E | s(e) = a} and B = {e : E | t(e) = b}. Then every AB-separator
(in L) is a set of edges separating a and b in G and must therefore have size at least n. Thus,
we obtain an AB-connector X of size n by Menger’s Theorem. The claim then follows since
every path in X corresponds to an ab-walk in G. J

https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#theta
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.digraph.html#mGraph
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.digraph.html#walk
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#independent_walks
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6 Hall’s Marriage Theorem

We now use Menger’s Theorem to prove Hall’s Marriage Theorem. More precisely, we
first prove a variant of Hall’s Marriage Theorem for bipartite directed graphs that follows
naturally from Menger’s Theorem for directed graphs. As a second step, we derive the usual
formulation of Hall’s Marriage Theorem for bipartite simple graphs.

I Definition 10. Let G be a digraph. We define N(A) := {y ∈ A | xB y} (with A being the
complement of A in G) to be the neighborhood of A. A bipartition of G is set A of vertices
of G, such that for every edge of G exactly one of the ends is in A (i.e., (x ∈ A)⊕ (y ∈ A)
whenever xBy). A directed matching of G is a set M of directed edges (i.e., a set of pairs of
vertices (x, y) such that xB y for all pairs) in G such that no two edges in M share a vertex.

We observe that an AA-connector in a graph with bipartition A is essentially a matching.

I Proposition 11. Let G be a digraph with bipartition A and let X : In → G-path be an
AA-connector. Then {(fstXi, lstXi) | i : In} is a directed matching of size n.

I Corollary 12. Let G be a digraph with bipartition A such that |N(S)| ≥ |S| for all A ⊆ S.
Then there exists a directed matching M (of G) such that A = {x | ∃y. (x, y) ∈M}

Proof. By Proposition 11, it suffices to show that every AA-separator has size at least |A|
and obtain an AA-connector of size |A| using Menger’s Theorem. Let S be an AA-separator.
Then |A| = |A ∩ S| + |A \ S| ≤ |A ∩ S| + |N(A \ S)| ≤ |S|. The first inequality holds by
assumption, the second inequality holds since the two sets are disjoint and (because S is an
AA-separator) also included in S. J

In order to state Hall’s Marrage Theorem for simple bipartite graphs, we need an
appropriate notion of matching. The notions of neighborhood and bipartition remain the same.

I Definition 13. Let G be a simple graph (i.e., a digraph with a symmetric and irreflexive
edge relation). Then an (undirected) matching of G is a set M of edges in G (i.e., a set of
sets {x, y} such that xB y) that is pairwise disjoint.

Note that for every directed matching M of some graph G, the set {{x, y} | (x, y) ∈M} is a
matching of size |M | covering the same vertices as M . Thus, the usual formulation of Hall’s
Marriage theorem follows immediately with Corollary 12.

I Theorem 14 (Hall). Let G be a simple graph with bipartition A such that |N(S)| ≥ |S| for
all A ⊆ S. Then there exists a matching M (of G) such that A ⊆

⋃
M .

One motivation for distinguishing between directed and undirected matchings is that this
allows for a slightly stronger statement for Corollary 12. Moreover, one sometimes wants
to count the number of matchings in a graph (i.e., compute the Hosoya index [15]), and in
simple graphs the two directions of an edge are considered to be the same edge.

7 Kőnig’s Theorem

Kőnig’s Theorem states that the size of a minimum vertex cover and a maximum matching are
the same. This is is another well-known and widely-used consequence of Menger’s Theorem.

I Definition 15. Let G be a simple graph. A set V of vertices of G is called a vertex cover
if every edge in G has at least one end in V . A vertex cover is minimum if no vertex cover
has fewer vertices. A matching of G is maximum if no matching has more edges.

https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#N
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#connector_dimatching
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#diHall
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#matching
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#Hall
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#vcover
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I Lemma 16. Let G be a simple graph, let V be a vertex cover of G and let M be a matching
of G. Then |M | ≤ |V |. Moreover, if |M | = |V | we also have V ⊆

⋃
M .

Proof. The edges in M are pairwise disjoint and each share a vertex with V . Thus there
exists an injective function f from M to V . This yields |M | ≤ |V |. If |M | = |V |, then f must
also be surjective and we obtain V ⊆

⋃
M . J

I Corollary 17. Let G be bipartite and let V be a minimum vertex cover. Then there exists
a matching of G with |V | ≤ |M |.

Proof. Let A be a bipartition of G. It is easy to see that every AA-separator is also a vertex
cover. Thus, the claim follows with Menger’s Theorem and Proposition 11. J

I Theorem 18 (Kőnig). Let G be bipartite, let V a minimum vertex cover, and let M be a
maximum matching. Then |V | = |M |.

Proof. We have |V | ≥ |M | by Lemma 16. Since M is maximum, it suffices to obtain some
matching M ′ with |V | ≤ |M ′|. Thus, the claim follows with Corollary 17. J

8 Conclusion

We have given proofs of Menger’s Theorem and some of its most well-known consequences.
Not counting the library for reasoning about paths developed for [7], the formal development4
consists of about 260 lines of specification and about 530 lines of proofs. The library for
reasoning about paths in digraphs adds another 600 lines. The library for simple graphs is
almost twice as large, but little of it is being used here.

One motivation for this work was to see how well the infrastructure developed in [7]
adapts to graph-theory results we had not initially planned on. In this context, Menger’s
Theorem is interesting for two reasons.

First, the theorem applies to various notions of graphs and we wanted to prove it in a way
that the effort of transferring the result to the different instances is minimal. This prompted
us to make explicit the notion of digraph (i.e., packaged relations) and prove the theorem in
this setting. Undirected simple graphs and directed multigraphs, the two notions of graphs
considered in [7], can then be defined in such a way that they coerce to digraphs and inherit
both the notion of paths and various properties – including Menger’s Theorem – through
this coercion.

Second, the use of heterogeneous collections of paths in the definition of AB-connectors
goes slightly “against the grain” of the path library in which the type of paths is actually
a vertex-indexed family of types.5 Thus, we were faced with the choice of working with the
underlying sequences of vertices (i.e., removing a layer of abstraction) or abstracting from the
end-points using Σ-types (i.e., adding another layer of abstraction). We choose to add a layer
since this allows us to reuse the lemmas for typed paths. While the added layer of abstraction
incurs some overhead in the proofs, we managed to confine the reasoning about dependent
types to a few short lemmas and not have it intersperse with the more high-level arguments.

As mentioned initially, this work was originally motivated by the need to construct a theta
in a larger proof. More precisely, the need for constructing a theta arose in trying to simplify

4 available at: https://perso.ens-lyon.fr/christian.doczkal/menger
5 The development accompanying [7] includes several thousand lines of arguments about paths, and this
issue never came up.

https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#cover_matching
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#min_vcover_matching
https://perso.ens-lyon.fr/christian.doczkal/menger/html/graphs.menger.html#Konig
https://perso.ens-lyon.fr/christian.doczkal/menger
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the proof of the excluded-minor characterization of treewidth-two graphs [9] (i.e., that the
graphs of treewidth-two are precisely those excluding K4, the complete graph with four
vertices, as a minor) obtained in [7]. There, excluded-minor characterization was obtained as
a side-product of a complicated process extracting term-descriptions for K4-free multigraphs.
Originally, this was intended as a milestone towards the construction of a free graph-model
for a certain class of algebras [5]. Only after formalizing a significant portion of the proof
in [5], we realized that the proof can be simplified significantly – at the mathematical level –
by replacing the complicated top-down extraction function by bottom-up graph rewriting [8].
The new proof no longer mentions minors at all and, in particular, does not reprove the
minor exclusion property. Hence, we want to obtain a simpler more-direct proof of the minor
exclusion property. This new proof is work in progress and makes use of Corollary 6.

We conclude that, while the library could profit from some additional cleanup (e.g., more
consistent naming conventions and additional documentation), it is already quite usable. In
order to establish the library as generally useful, more diverse case studies would need to be
carried out. In addition to the more direct proof of the excluded-minor characterization of
treewidth-two graphs currently in progress, we also plan to verify the graph-rewriting based
completeness proof for 2p-algebras [8]. Further, we would like to carry out a comparative
case study with the work of Noschinski [22] who formalized the characterization of Eulerian
graphs in terms of vertex degrees and a verified a checker for certificates of non-planarity
based on Kuratowski graphs. This should provide insights into the trade-offs between the
higher degree of proof automation in Isabelle/HOL and the more expressive type theory of
Coq as it comes to reasoning about graphs. Beyond the aforementioned checker for non-
planarity, the verification of (abstract) graph algorithms using the library (whose definitions
are proof-centered and not intended for computation) and the refining them to efficient
implementations along the lines of [4] seems a promising direction.
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