N

N

The resource constrained shortest path problem with
uncertain data: a robust formulation and optimal
solution approach

Luigi Di Puglia Pugliese, Francesca Guerriero, Michael Poss

» To cite this version:

Luigi Di Puglia Pugliese, Francesca Guerriero, Michael Poss. The resource constrained shortest path
problem with uncertain data: a robust formulation and optimal solution approach. Computers and
Operations Research, 2019, 107, pp.140-155. 10.1016/j.cor.2019.03.010 . hal-02086908

HAL Id: hal-02086908
https://hal.science/hal-02086908

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02086908
https://hal.archives-ouvertes.fr

The resource constrained shortest path problem
with uncertain data: a robust formulation and
optimal solution approach

Luigi Di Puglia Pugliese* and Francesca Guerriero!

Department of Mechanical, Energy and Management Engineering,
University of Calabria, Rende, Italy

Michael Poss*
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract

The Resource Constrained Shortest Path Problem (RCSPP) models
several applications in the fields of transportation and communications.
The classical problem supposes that the resource consumptions and the
costs are certain and looks for the cheapest feasible path. These parame-
ters are however hardly known with precision in real applications, so that
the deterministic solution is likely to be infeasible or suboptimal. We ad-
dress this issue by considering a robust counterpart of the RCSPP. We
focus here on resource variation and model its variability through the un-
certainty set defined by Bertismas and Sim (2003,2004), which can model
the risk aversion of the decision maker through a budget of uncertainty.
We solve the resulting problem to optimality through the well-known three
phase approach dealing with bounds computation, network reduction and
gap closing. In particular, we compute robust bounds on the resource
consumption and cost by solving the robust shortest path problem and
the dual robust Lagrangian relaxation, respectively. Dynamic program-
ming is used to close the duality gap. Upper and lower bounds are used
to reduce the dimension of the network and incorporated in the dynamic
programming in order to fathom unpromising states. An extensive com-
putational phase is carried out in order to asses the behavior of the de-
fined strategy comparing its performance with the state-of-the-art. The
results highlight the effectiveness of our approach in solving to optimality

*luigi.dipugliapugliese@unical.it, Corresponding author
Tfrancesca.guerriero@unical.it
fmichael.poss@lirmm.fr

benchmark instances for RC'S PP when I is not too large, tailored for the
robust counterpart. For larger values of I', we show that the most efficient
method combines deterministic preprocesing with the iterative algorithm
from Bertsimas and Sim (2003). We also illustrate the failure probability
of the robust solutions through Monte Carlo sampling.

Keywords: Constrained shortest path, Robust optimization, Budgeted
uncertainty, Dynamic programming.

1 Introduction

The Resource Constrained Shortest Path Problem (RCSPP) is defined over a
directed graph G(N, A) where N is the set of n nodes, and A is the set of m arcs.
The set N contains two special nodes o and d that represent the source node
and the destination node, respectively. A cost k, has to be paid for traversing
the arc a = (4,j) € A, whereas, a quantity of resource 7, has to be used along
the arc a = (i,j) € A. In the following, terms ko and k;; (r, and 7;;) are
used interchangeably. A path p is defined as an ordered sequence of [arcs, i.e.,
p =< (i0,%1),- .., (i4—1,%) > such that (i;_1,74) € A,¢ =1,...,l. The cost of
a path p is defined as k(p) = Z(i,j)e;o Ki;j, whereas the resource consumption
along p is denoted as w(p) = > ; j)e, Tij- The aim of RCSPP is to find a
path p with the smallest cost, such that w(p) < W, where W is the maximum
amount of available resource.

The RCSPP is a classical problem in combinatorial optimization, with nu-
merous applications in telecommunications and transportation, among others.
The RCSPP models, for instance, the problem faced by route guidance sys-
tems for emergency vehicles such as ambulances and fire engines where one
wishes to minimize the cost while making sure the travel time does not exceed
a given threshold. A similar example arises when choosing the cheapest route
using public transportation, where the total travel time is often limited (such
as routes reaching airports or train stations). Other applications arise in mili-
tary aircraft management systems [41], railroad management [16], waste water
management [12], and in communications networks [40], which all involve uncer-
tainty that need to be handled adequately to avoid over-conservatism or worse,
infeasibility.

The resource consumption is typically uncertain in practical applications.
For instance, the travel times mentioned in the previous examples strongly de-
pend on traffic conditions. In maritime transportation, bad weather affects the
travel time while in terrestrial transportation, these are also affected by vehi-
cle breakdowns and road constructions. The uncertainty could also result from
unknown demands that must be picked up along the routes. There exists a
large literature dealing with the stochastic versions of the closely related vehi-
cle routing problems, see [34] and the references therein, where the uncertain
parameters are modeled by random variables and the optimization models rely
on probabilistic constraints or recourse actions. The literature is less abundant
when it comes to the stochastic constrained shortest path problem, see for in-

stance [39]. While stochastic models are quite popular, they suffer from two
important drawbacks: first, they require an accurate knowledge of the uncer-
tain parameters (either their density function or a set of scenarios); second, they
yield very large-scale optimization problems, even for small networks.

An increasingly prominent alternative to stochastic models considers instead
random parameters modeled by convex sets, yielding robust optimization prob-
lems. Different uncertainty sets have been introduced in the literature, such as
ellipsoids (e.g. [4]) or polytopes defined by few knapsack constraints [33]. A par-
ticular polytope that has received a lot of attention is the budgeted uncertainty
polytope, first proposed in [5, 6], and largely used in the robust combinatorial
optimization literature since then. The success of the budgeted uncertainty
polytope can be explained by three main reasons. Firstly, the set benefits from
profound links with probabilistic constraints, see the initial bounds from [6] and
its extension to variable uncertainty in [31]. Secondly, [5] the set very often
leads to robust counterparts that are essentially as easy to solve as their deter-
ministic variants. Thirdly, the set requires little information on the uncertain
parameters to be defined: only their mean values, their peak values, and an ad-
ditional parameter, I', which models the risk-averseness of the decision maker.
This makes the set easy to use in practice when little historical information is
available.

Let us define more precisely the budgeted uncertainty set. Given an integer
I' and two integer vectors 7 and 7, respectively describing the mean values of
the resource consumption and the deviations, the budgeted uncertainty set can
be defined as

UF:{Ta:Ta+6afa:6a€{0’1}’aeA’Zéa§F}.

a€A

Given a fixed r € U", we define the resource consumption along a path p
as w(p,r) and the constraint related to the maximum resource consumption
becomes

max w(p,r) < W. (1)
We denote the robust RC'SPP under budgeted uncertainty set as U'-RCSPP.
Notice that we defined ' as a discrete set rather than a polytope. One could as
well consider the convex hull of ', obtained by replacing the binary restrictions
on ¢ with d, € [0,1] for each a € A (see for instance [6]). One readily verifies
that, because w(p, r) is convex in r (in fact, linear), considering U" or its convex
hull has no impact on the set of paths that satisfy the robust constraint (1).

Contributions The purpose of this paper is to define a solution approach
tailored for UT-RCSPP, by combining the label-setting algorithm proposed
in [30] with new robust bounds inspired by the classical bounds for the problem.
Specifically, our main contribution is to show how the classical graph reduction
algorithms and bounds obtained from the Lagrangian relaxation of the prob-
lem (see [11]) can be extended to the robust context. We conduct extensive

numerical experiments to assess the efficiency of the graph reduction as well as
the reduction in solution times. We compare our approach with the classical
iterative algorithm used previously by [26] and [22], as well as with the dynamic
programming from [22] and the classical dualization approach. Our experiments
also illustrate the robustness of the solution through a Monte Carlo sampling,
showing that the budgeted uncertainty model yields more reliable solutions that
the deterministic model, while not loosing much in terms of cost.

In this paper we focus on the particular case where only one resource is
considered. However, we highlight that the proposed approach can be easily
extended to the more general case with multiple resources.

Structure of the paper The paper is organized as follows. Section 2 further
clarifies the literature related to the problem studied in this paper. In Section
3, we apply to UT-RCSPP two generic algorithms from the literature, the first
based on dualization [6] and the second on the iterative algorithm from [5].
Sections 4-6 contain the main contributions of the paper. In particular, Sec-
tion 4 defines robust Lagrangean relaxation along with hints on how to solve
the dual counterpart. In addition, network reduction procedures based on ro-
bust information are defined. In Section 5, we adapt the label-setting algorithm
proposed in [30] for UT-TW SPP to handle U'-RCSPP, showing how to in-
corporate lower and upper bounds information derived from the resolution of
the dual Lagrangean relaxation to speed up the search process. Section 6 re-
ports computational results on instances inspired by benchmarks for RCSPP.
In addition to assessing the computational times and graph reductions of our
approach, we also present an illustrative example of the robustness of the solu-
tions. Conclusions are given in Section 7. The appendix reports detailed results
on the effect of preprocessing.

2 Related work

We review next the main references related to the problem studied in the paper.
First, we mention the classical works on RC'SPP. We move then to the classical
results on budgeted uncertainty. Finally, we present the previous work on the
UY-RCSPP and some works on the closely related robust CVRP and shortest
path with time windows.

We emphasize that the label-setting algorithm presented in this manuscript
is rather a continuation of the work of [30] (and of [19] as we just discovered
while writing this paper), than an adaptation of [5]. Indeed, our work builds
on known technique for the RC'SP P; the result from [5] and its improvements
are presented for comparison purpose and because of their importance in the
scientific literature.

Constrained shortest path In view of its many applications, the scientific
literature has paid great attention to RCSPP and several papers have pro-
posed efficient optimal solution approaches. Branch-and-bound, path ranking,

and dynamic programming approaches are the most efficient frameworks to
deal with the optimal solution of RCSPP. We cite, [3,8,21] for branch-and-
bound schemes, [11,25] for dynamic programming approaches, and [9,35,37] for
path ranking methods. Lower and upper bounds information, derived from the
resolution of the Lagrangean dual relaxation are useful to speed up the basic
algorithms. In addition, network reduction techniques have been developed to
reduce the dimension of the network eliminating nodes and arcs ensuring the
optimality of the solution. For a complete survey of optimal solution strategies,
lower and upper bounds computation and network reduction procedures, the
reader is referred to [10].

Robust combinatorial optimization with budgeted uncertainty The
seminal work from [5] proposed an iterative algorithm that solves the robust
problem by solving a sequence of deterministic problems. Hence, their result
implies that the budgeted uncertainty set keeps the tractability of the min max
robust counterparts of many combinatorial optimization problems. The itera-
tive algorithm from [5] has been improved in [2,18,20] and extended to prob-
lems with robust knapsack-like constraints (as RC'SPP) independently by [2]
and [13]. Ad-hoc algorithms have also been provided for specific robust combi-
natorial optimization problems with budgeted uncertainty, many of them rely-
ing on dynamic programming algorithms [1,17,27,36]. Other approaches than
dynamic programming have also been considered, see for instance the MILP
reformulation proposed in [7] for the recoverable robust knapsack problem.

Robust constrained shortest path Problem U"-RCSPP has been recently
investigated in the following four works. In [30], the authors addressed U -RC'SPP
as well as the version with time windows constraints (U'-TW SPP). Applying
the approach from [13], they proved that the former problem is weakly ANP-
hard. In contrast, they showed that the latter problem is strongly NP-hard.
They also developed a general label-setting algorithm for 4*-TW SPP, based on
the definition of new robust labels. The algorithm has an exponential running-
time when I' is part of the input. Numerical results have been carried out for
the UT-TWSPP. In [26], the authors study UT-RCSPP as well as the ver-
sion where the uncertainty set is an ellipsoid. For the first problem (budgeted
uncertainty), they extend the iterative algorithm from [5] to U'-RCSPP. For
the second problem (with ellipsoidal uncertainty), they proposed a new iterative
algorithm that is based on a parametric reformulation of the problem. They
also linked the problem with ellipsoidal uncertainty to the chance-constrained
version of RCSPP. They presented numerical results for both problems (with
budgeted and ellipsoidal uncertainty). In [22,24], the authors proposed a label-
setting algorithm and network reduction techniques for U'-RCSPP that is
based on lower bounds derived from the resolution of a modified deterministic
Lagrangean relaxation. In addition, the author also adapted the iterative algo-
rithm from [5] to U'-RCSPP and compared it numerically to the label-setting
algorithm. The authors further considered these methods in [23], where a La-

grangian relaxation has been applied to a robust crew pairing problem ending
up with a subproblem identical to 4Y"-RCSPP. While writing this paper, we
also became aware of the work of [19] where the authors propose a label-setting
algorithm similar to the one from [30].

The strategy proposed in this manuscript differs from the work realized
in [22,24]. On the one hand, the label-setting algorithm considered in [22,24] is
based on the deterministic labels but uses a different dominance rule. Showing
how the classical dominance cannot be applied in the robust case, the authors
handle the uncertain part of the resource consumption by a conservative bound.
Similarly, the Lagrangean problem proposed in [22,24] relies on deterministic
shortest path computation. The obtained lower bounds are tightened consid-
ering a-priori lower bound on the resource consumption 7. As a consequence,
they perform a network reduction that considers nominal values and take into
account the robust part as a constant. On the other hand, the proposed modified
label-setting algorithm relies on new robust labels whose dimensions depend on
I', extending to these labels the dominance rule used for problems with multiple
resources. Similarly, the Lagrangean problem addressed in the present paper
involves solving robust shortest path problems. Said differently, we do not get
rid of the robustness by using conservative bounds.

The closely related vehicle routing problem with uncertain demands has also
been considered in the robust context. The first works dates back to [38] who
studied conditions under which the robust problems can be reformulated de-
terministically; further work has then considered less restrictive models [28].
Later, the authors of [15] tackled the problem by extending classical compact
formulations to the robust context. They further study empirically the connec-
tion of the robust problem with the ambiguous counterpart, where the capacity
must be satisfied with high probability for all probability distributions in given
ambiguity sets. The authors of [14] proposed a metaheuristic based on adaptive
memory programming, able to provide good solutions in reasonable amounts of
time for many of the instances studied in [15]. More recently, [29] have pro-
posed a branch-and-cut-and-price algorithm able to solve optimally many of
these instances.

3 Generic approaches

We recall below two well-known approaches for solving robust combinatorial
optimization problems. The two approaches rely on a linear programming for-
mulation for U'-RCSPP. Let x € {0,1}™ be a vector of optimization variables
stating which arcs belong to the solution, and let X C {0,1}™ contain all vec-
tors x that correspond to paths from o to d. Hence, the set X is typically
defined by flow conservations constraints and binary restrictions on x. With

these variables, UT-RCSPP can be cast as

min E KaZq

a€A

s.t. Z rata <W, relu" (2)
acA
e X

3.1 Dualization

Let us recall that constraint (2) is equivalent to constraint

Z rate < W, 1€ conv(U"), (3)
acA

where the convex hull of U can be formulated as the following polytope (see [6]
for details)
conV(Z,{F) = {Ta =Ty + 0570 :0<0d, < 1,a€A,Z(5a < F}.
acA

A celebrated result in robust optimization [4] reformulates (3) as

max g roe < W,
re&conv(UT)
a€cA

then dualizes the maximization linear program to obtain

ZFaxa—l-Fz—FZyaSVV, (4)

acA a€A
2+ Yg > Fay, a€ A, (5)
z,y >0 (6)

where z and y are the variables dual to the constraints defining conv(4'). The

resulting linear integer program contains restrictions (4)—(6) together with z €
X.

3.2 Iterative algorithm

An alternative approach, proposed in [5], shows that a combinatorial optimiza-
tion problem with cost uncertainty and the uncertainty polytope U' can be
addressed by solving |I| + 1 deterministic problems, where |I| is the number of
binary variables of the optimization problem. References [2,13,20] have recently
shown how the aforementioned result can be extended to a robust constraint un-
der the uncertainty polytope U, and reduced the number of problems to be
solved. More specifically, the aforementioned works prove the following.

Theorem 1 Let Y C {0, 1}'1| be the feasibility set of a combinatorial optimiza-
tion problem and T' € Z. Moreover, let k € RII| be a cost vector, b € R, and r
be an uncertain vector taking values in UT. Without loss of generality, suppose
that indices are ordered such that t1 > to > -+ > 7q|, let 7|7j41 be 0, and define
L={T+1,T+3T+5,....,T +~,|I| + 1} where v is the largest odd integer
such that T' +~ < |I| + 1. Then, the optimal solution to

{minZﬁ;iyi : Zn—yigb VTEL{F, yéy}

i€l i€l

is equal to the optimal solution of minjc, Z' where

l
Zl = mmZmyl : Z?ﬁyiﬁ*Z(?ﬁJ*?ﬁl)yj Sb*].—‘fl, yey 5
7j=1

il i€l
forle L.

Theorem 1 can be applied to the formulation for 4'-RCSPP provided above,
wich contains only one robust constraint, (2). We denote by SD the algorithm
that applies Theorem 1 to the above formulation, thus solving [(|I| —T')/2] +1
deterministic RCSPP.

4 Bounds and Preprocessing for U'-RCSPP

In this Section, we propose a Lagrangian relaxation for U'-RCSPP. The
bounds information derived from the resolution of the dual problem is used
to perform network reduction procedures and to speed up the search process in
the label-setting procedure described in the Section 5.

4.1 Lagrangean relaxation

The Lagrangean relaxation is an effective technique for obtaining strong lower
bounds to complex integer programs. In addition, the solution process of the
Lagrangean dual problem often provides high quality upper bounds. In order to
define the Lagrangean relaxation problem, we let P denote the set of all paths
from o to d and rewrite problem (2) as

min k(p)
.t <WwW 7
st maxw(p,r) < (7)
p€P.

Taking a Lagrangean relaxation for constraint (7) yields the problem LR(\)

LR(\) =];réi?r)l {n(p) +)\?el% w(p,r) —)\W} , (8)

where A > 0. The solution of problem (8), denoted Zpg()) hereafter, provides
a valid lower bound on the solution of (7), for all A > 0.

For a fixed A\, problem LR(\) is an instance of the robust shortest path
problem with budgeted uncertainty (denoted U*-SPP), with nominal cost equal
t0 Cq = Kq + AT, and deviation equal to é, = A\7. Therefore, problem (8) can be
solved in polynomial time using the label-correcting algorithm from [32], having
a complexity of O(I'n?). In Section 4.2, we need to compute the values of the
robust shortest paths to each node, using each value of 0 < v < T'. The most
efficient way to do that is again the algorithm proposed in [32], which provides
these values at no extra computational cost.

To find the best lower bound, the Lagrangean dual problem LD must be
solved

LD = {I;\lilé(LR(A)} . (9)

Among the different techniques available to solve problem LD, we use here the
hull algorithm proposed in [25], which solves the problem to optimality. Notice
that when only one constraint is relaxed, the algorithm has a polynomial-time
running time; its complexity is open when the Lagrangean problem involves
more than one Lagrangean multiplier. However, in the latter case, one could
still solve (not to optimality) problem (9) by means of the subgradient method.

Let A\ denote the sequence of multipliers generated when solving (9), h =
1,...,H, where H is the number of problems of type LR()) that are solved.
For each value of Ay, a path py from o to d is determined. The cost k(py) =
=MW + k(pn) + A max,cyr w(py,r) is a lower bound on the optimal solution
of UT-RCSPP. In addition, if py, is feasible, i.e., max,¢;r w(pp,r) < W, then
® = k(pp) is a valid upper bound.

Notice that, while solving problem LR()), we obtain at no extra compu-
tational costs, paths from node d to each other node j € N by reversing the
arc directions. In this respect, for each h, v = 1,...,T", and j € N, we can
store the cost fjfhy = /@(p;hv) + A\, max, ey w(p;,w, 1), where Pjp-, is the optimal
path from d to j (using the reversed arcs) at iteration h suffering at most ~
deviations. As proven by [11], the value

o) = max (<MW =)+ €5,) (10)

is the best lower bound on the optimal path from node j to node d which uses
no more resource than W — u, where 0 < p < W is some given value. We call
it backward lower bound.

4.2 Network reduction

Resource-based reductions The reduction is based on lower bounds on
the resource consumption. Such a valid lower bound is given by the minimum
amount of resource consumption from node o to node i and from node i to node
d. Let p?‘ and p; denote the forward and backward paths to node 7, respectively.

Recall that in the deterministic context (obtained by setting 7# = 0), a node ¢
can be removed from the graph if the following condition holds

minw(pj',?) + minw(p; ,7) > W. (11)
p; Py

Since any path from o to d crossing node ¢ can be written as p; U p;r, we
can rewrite (11) as
min w(p; Up;,7) > W,
p; i

whose robust counterpart is

min max w(p; Up;,r) > W. (12)
p;,p;r reu’

The left hand side (lhs) of (12) can hardly be used for preprocessing because
the inner maximization couples the forward and backward paths. We show next
how to replace the lhs of (12) by a value that can be expressed directly from
the robust forward and backward shortest paths, obtaining a weaker but more
easily exploitable removal condition.

. - + _ . — +
i U V) = i, g (0l 1))

= min max | maxw(p;,r)+ max w(p;,7r)
p*,pfr ~=0,...,I' \reu~ retdt—-

i

> max_min | maxw(p;,r)+ max w(p;,r)
'7:07...,Fp;7p;r reu” rel—

= max_ | min maxw(p; ,r) + min max w(p;,r)| > W.
¥=0,....T \ p~ reu” pt reurt—v
k2 K3

(13)

The right hand side (rhs) of (13) involves robust shortest paths from o to i
and from 7 to d, for various values of 7. These can easily be computed in a
preprocessing step and then combined to test the removal of each node 1.

The same rule can be applied to the arcs. In particular, given an arc (i, 7),
if the following condition holds

~ - ~ - o
Jmex (n;}n max w(p;,r)+ rs;nTng{%}EW w(p; ,r)) + 7 > W, (14)

then, arc (7,) can be removed.
Cost-based reductions Nodes and arcs can be removed from the network

by considering the bound information obtained from the resolution of LD. In
particular, letting f;?w be the least cost from o to j with weight n(pjhv) +

10

Ap MaX,cyv w(pjh,y,r), the node j can be removed if the following condition
holds

h:I{lmH (’yi%?.)il" (ngrh’Y + ghr”) B)\hW) > K (15)

For removing the arcs, we proceed as suggested for the resource-based reduc-

tions. In other words, given an arc (4, j), the lhs of condition (15) is modified by
considering the cost k;;. Arc (i,7) is removed if the following condition holds

. + — . —
hzr{l}.r.l,H (vi%?.).(,r (g“w + thrﬂ) - AhW) + Kij > K. (16)

5 Modified label-setting algorithm

Problem U"-RCSPP can be solved by adapting the label-setting algorithm pro-
posed in [30] to address the U -TW SPP. We recall shortly in Section 5.1 their
algorithm, rewritten for problem U"-RCSPP, and refer the interested reader
to [30] for a more detailed description, including a proof of correctness. Sec-
tion 5.2 then presents the new bounds proposed in the present manuscript. The
resulting overall algorithm, tailored for U'-RCSPP, is presented in Section 5.3.

5.1 Robust labels

Given a path p; = (ip = 0,...,4; = j) from o to j, the label of the path is
defined as

(K@), w’(py); .-, w" (py)) (17)
where w?(p;) is defined as the maximum resource consumption along p when
considering up to v € {0,...,T'} deviations when v < |p| and is equal to 0
otherwise, that is,

max Z rq, for each v € {0,...,min(|p;[,T")},
w(p;) = " acp, (18)
0, for each v € {|p;| +1,...,T}.

Then, we extend the label through arc (4, k) with the formula

K(pr) = K(py) + Kjk,

w®(pr) = w°(pj) + Tjr,

w7 (pg) = max (w’y_l(pj) + Tk + T, w(pj) +Tji), foreachye{1,...,T}.

(19)

It is easy to see by induction that extending the label (0,0,...,0), that
corresponds to the empty path, iteratively through formula (19) leads exactly
to definition (18). The worst-case complexity of the resulting algorithm is
O(TmWt+1),

A crucial phase in the label-setting algorithm is the removal of dominated
labels, which reduces significantly the total number of labels searched in the
course of the algorithm.

11

Lemma 1 [30] Consider U -RCSPP and let z = (k,w°,...,w") and 2/ =

(6", w0 ..., w'T) be two labels associated to paths p and p' ending at the same

node. Assume the following conditions hold:
1. k<K
2. wY <w", for eachy=0,...,T
3. and at least one inequality is strict.

then, label 2’ is dominated by label z.

Dominated labels can be discarded from the search that occurs during the
label-setting algorithm.

5.2 Lower bounds in label-setting algorithm
Label (r(p;),w°(p;),...,w"(p;)) can be fathomed if the following condition
holds

W)+ min o (W) > & (20)

It is worth observing that we can fathom labels that will not lead to a feasible
solution. In particular, if the following condition holds

max (uﬂ(pj) + min max w(pj,r)> > W, (21)

v=0,..., Py reut -~

then, the label can be discarded for further consideration.

Given a label (k(p;), w’(p;), ..., w" (p;)), we observe that if max,.c;r w(p; U
p;h,y,,r) < W for some v/ <T,h=1,...,H, then Z7 = x(p;) + /i(p;h,y/) is an
upper bound. Thus, we can improve the upper bound k by introducing the
following step in the label-setting algorithm

% =min (g, Z7) . (22)

The value max,.cyr w(p; Upj_hw,,r) is computed as

w(p; Upjp.) +max{2fa 1S CpiUpjp, S| < I‘} .

a€sS

The computational results suggest that the gain obtained by better bound
in term of generated labels does not compensate the extra effort to compute

max, ey W(p; U Py, 7).

12

5.3 Outline of the proposed solution strategy

The algorithm is composed of two phases. In the first phase, named preprocess-
ing, network reduction procedures based on resource consumption and cost are
performed. The steps of the preprocessing phase are reported in Algorithm 1.
Their computational cost is summarized below.

1. Compute robust shortest paths from o and d to all nodes of the graph,
using twice the dynamic programming algorithm suggested in [32] with
cost r4,Va € A. The time complexity is O(I'n?).

2. Solve the Lagrangean relaxation of '-RCSPP using the hull approach
and the aforementioned dynamic programming algorithm. Applying the
same reasoning as in [25], we obtain a time complexity of O(log(nK (R +

R)I'n3), where R = max,ec 4T, and R = max,e4 7q.

Algorithm 1: Preprocessing algorithm
input : graph G = (N, A)
output : reduced graph G’ = (N', A")

Solve forward U"-S PP obtaining least robust resource consumption;

if min, + Max, ey w(p},r) > W then
L STOP. Unfeasible instances;

else

Solve backward U"-SPP obtaining least robust resource
consumption;

Perform nodes and arcs reduction (13), (14);

Solve forward Lagrangean dual problem:;

if max,.cyr w(pn,r) < W, with A, = 0 then
L STOP. Optimal solution found;

else
Solve backward Lagrangean dual problem;
Perform nodes and arcs reduction (15), (16);

In the second phase, the modified label-setting procedure is run on the re-
duced network G’ = (N’, A’) in order to close the gap between lower bounds and
upper bound derived from the preprocessing phase. The steps of the proposed
strategy are reported below.

Step 1. (Network reduction)

e Perform Algorithm 1 with I' = 0 (deterministic preprocessing).

e Perform Algorithm 1 (robust preprocessing).

13

Step 2. (Solving the problem on the reduced graph)

e Perform the label-setting algorithm described in Section 5 on the
reduced graph, with pruning procedures (20) and (21).

Algorithm 1 is iteratively performed until arcs and nodes are removed in
both deterministic and robust setting.

6 Computational results

In this Section we evaluate the behaviour of the proposed solution strategy. All
algorithms have been coded in Java and the numerical results are carried out on
an Intel(R) Core(TM) i7-4720HQ CPU M620 2.60GHz 8.00 GB RAM machine
under Microsoft Windows 8. We have considered instances inspired by the
scientific literature, which are detailed in the next Section. All computational
times are reported in seconds.

6.1 Algorithms

We compare in this Section the seven following algorithms.

U'LSA denotes the robust label-setting algorithm described in Section 5 that
do not use any bounds information.

dp-UTLSA denotes the algorithm that starts with the deterministic preprocess-
ing and solves the problem on the reduced graph with /"LSA and using
the bounds obtained from the deterministic preprocessing. Specifically,
the algorithm corresponds to the one described in Section 5.3, ommitting
the second item of Step 1.

drp-U"LSA performs deterministic and robust preprocessing and then solves
the problem with &/ LSA, as depicted in Section 5.3.

GD implements the preprocessing and the label-setting algorithm proposed in
[22].

SD solves the problem using the iterative algorithm recalled in Theorem 1 from
Section 3.2. Specifically, SD performs first a deterministic preprocessing
step, which reduces the number of arcs of the network and hence, the
number of iterations in Theorem 1. Then, each deterministic problem
involved in Theorem 1 is solved using the deterministic preprocessing and
label-setting algorithm with I' = 0. Notice that, since SD amounts to solve
a sequence of deterministic problem, the robust preprocessing cannot be
used for SD.

dual solves the dualized problem described in Section 3.1.
dp-dual solves the dualized problem described in Section 3.1 on the graph

obtained after deterministic preprocessing.

14

The listed algorithms are coded in Java language. In order to carry out a
fair comparison among the considered solution strategies, we implemented them
by using the same data structure.

6.2 Instances

We have considered seven different values of I'" in our experiments, namely
I' € {20,15,10,6,3,2,1}. For each value of I", we have generated instances
based on the networks from [3], named b, and a subset of the grid networks
from Class 6 used in [11], referred to as G. Specifically, we have restricted
ourselves to the 12 instances from [3] with 1 resource only, whose details are
summarized in Table 1. For the instances G from [11], we have selected those
with numbers of nodes equal to 625, 2500, 5625, 15625, and numbers of arcs equal
to 2400, 9800, 22200, 62000, respectively, referred to as G1, G2, G3, G4. Prelimi-
nary computational results show that the optimal paths of network b have from
3 to 10 arcs. Thus, in order to generate and test meaningful instances, we
consider I" € {6,3,2,1} for network b.

Test bl b2 b3 b4 b9 b10 b1l b12 b17 b18 b19 b20
Nodes 100 100 100 100 200 200 200 200 500 500 500 500
Arcs 955 955 959 959 2040 2040 1971 1971 4858 4858 4978 4978
Densit
(Arcs/Noées) 9.55 9.55 9.59 9.59 10.20 10.20 9.86 9.86 9.72 9.72 9.96 9.96

Table 1: Characteristics of the networks presented in [3].

For each of the aforementioned network, we have maintained the original cost
and set 7 to the original resource consumption. The value of 7 has been com-
puted as 0.5 7. We have computed W for each value of I'. Specifically, we have
considered a convex combination of max,cy,r w(p®,r) and max,cyr w(p”,r),
that is

_ K T
W= o max w(p®,r)+ (1 —a) max w(p”,r), (23)
where p® and p” are the paths of minimum cost x and of minimum resource
consumption 7, respectively. The higher the value of «, the higher the resource
limit W. In our computational results, we have considered o € {0.25,0.50,0.75}.
Notice that W as defined in (23) increases with the value of T'. Therefore, the
instances generated with a given value 7 are feasible for each I' < .

The computational results for networks G reveal a different behavior of the
proposed solution approach with respect to the value of I'. In particular, for
I € {6,3,2,1}, drp-U"LSA is able to solve all the considered instances. Instead,
for T' € {20, 15,10} not all instances are solved to optimality. For this reason,
we split the discussion by considering the two sets for the values of I" seperately.

6.3 Computational efficiency

We compare below the seven approaches on the two types of instances.

15

Networks G for T' € {6,3,2,1}. Table 2 shows the average execution times
for networks G for each value of I and «, including the times spent in prepro-
cessing. The superscript near the execution time under column U LSA is the
number of instances for which the code runs out of memory. The superscript
in column GD indicates the number of instances for which the code does not
provide a solution within the imposed time limit set to 900 seconds. The rows
AVG slv show the execution time averaged on the instances solved by GD.

a T | U'Lsa dp-UTLSA drp-UTLsA GD SD dual dp-dual

6 | 33.952 377.03 81.49 160.39' 113.42 540.02 420.78

3| 117.421 150.27 31.44 87.261 122.17 185.84 105.89

025 o | 106.781 62.96 27.24 86.351 138.27 113.60 88.93

1| 9867 36.01 2255 69.09' 110.72 57.21 58.25

AVG 89.21 156.57 40.68 121.15 224.17 168.46
AVG slv 32.50 20.10 100.77

6 | 32.392 43.09 44.62 151.721 7043 239.37 49.59

3 | 151.311 33.51 32.908 126.05 58.62 99.38 95.97

05 9| 113.98! 32.02 31.71 109.63 57.56 117.46 41.76

1| 106.561 22.23 24.55 96.98 48.11 119.30 36.21

AVG 101.04 32.71 33.46 58.68 143.88 55.88
AVG slv 23.33 2373 121.10

6 | 33.552 33.29 3355 27.611 59.690 39.34 32.89

3 | 118.84! 31.19 27.43 27.12 60.93 38.22 27.39

075 9 | 95771 28.17 27.59 26.20 49.11 38.71 27.80

1| 107.22! 23.31 27.39 26.75 47.61 37.59 27.95

AVG 88.85 28.99 28.99 54.33 38.47 29.01
AVG slv 21.66 21.66 26.92

6 33.27 151.13 53.22 113.24 81.18 272.91 167.76

3| 129.19 71.66 30.62 80.14 80.57 107.81 76.42

AVG o5 | 10551 41.05 28.85 74.06 81.65 89.92 52.83

1| 104.15 27.18 24.83 64.27 68.81 71.37 40.80

AVG 93.03 72.76 34.38 78.05 135.50 84.45
AVG slv 25.83 21.83 82.93

Table 2: Average computational results for each value of I' and a on networks
G forT € {6,3,2,1}.

On average, the robust preprocessing is useful in terms of computational
cost. Indeed, we see from the last row AVG of Table 2 that drp-U'LSA is
2.12 times faster than dp-U/'LSA. In addition, the higher the value of T, the
higher the speed-up. In particular, drp-U'LSA is 2.84, 2.34, 1.42, and 1.09
times faster than dp-UTLSA. For value of o equal to 0.25, the speed-up is
3.85. For a = 0.50, dp-U'LSA is slightly better. Indeed, dp-U'LSA is 1.02
faster than drp-UT'LSA. For o equal to 0.75, they behave the same. The ta-
ble also shows that the generic approaches SD and dual are less efficient than
drp-U'LSA. Indeed, SD and dp-dual are, on average, 2.27 and 2.46 times slower
than drp-UTLSA, respectively. When only deterministic preprocessing is ap-
plied, however, dp-U/"LSA is only 1.16 times faster than dp-dual, on average.

16

The proposed approaches outperform GD, which is not able to provide a
solution within the imposed time limit for a total of 6 instances out of 48. The
network G4 is not solved for all values of I' when a = 0.25 and for a equals to
0.50 and 0.75 and I' = 6. dp-U'LSA and drp-UTLSA are, on average, 3.21 and
3.80 times faster than GD (see last row AVG slv).

To better highlight the benefit of using robust preprocessing, Table 3 reports
the execution time of the preprocessing and the label-setting algorithm under
columns prep and LSA, respectively. Notice that the time of robust preprocess-
ing contains the time spent in deterministic preprocessing. Column #L reports
the number of generated labels. Column #LW shows the number of labels fath-
omed with the bounds on the resource consumption. Column #LUB reports
the number of labels discarded by using bounds on the cost.

r prep LSA #L #LW #LUB
Reb 6 | 37.44 1578 46704.33 13412.75 29900.92
obust 3 | 28.02 2.60 9357.67 2309.58 15636.75
2 | 26.69 2.16 7389.50 1937.00 12123.33

bounds 1

23.02 1.81 5942.42 1563.75 9405.92
AVG 28.79 5.59 17348.48 4805.77 16766.73

b .. 6| 2632 124.81 149901.00 29855.83 61110.50
eterministic g | 9338 4828 65502.75 18698.33 60392.33
2 | 2271 1834 37170.83 12454.25 37131.17

bounds 1| 1873 845 19752.08 6531.92 27375.08
AVG 2279 49.97 68081.67 16885.08 46502.27

Table 3: Average computational results for each value of I', considering deter-
ministic and robust preprocessing separately.

Comparing the results of Table 3, the benefit of using robust information
strikes out. Indeed, the execution time of dp-U/'LSA is 8.95 times slower than
drp-UTLSA. This behaviour is justified by the number of generated labels. In
particular, the label-setting with deterministic bounds generates 3.97 times
higher labels than the labeling algorithm with robust bounds. The same trend
is observed for #LW and #LUB. The full robust preprocessing is 1.26 times
slower than the deterministic one, which means that performing only the robust
preprocessing on the graph reduced through deterministic preprocessing is much
faster than the deterministic preprocessing itself.

In order to better explain the behaviour of the label-setting algorithm with-
out preprocessing, in Table 4 we report the average execution time for each
network varying the value of I' when the preprocessing is not applied. The
entries M means that the code runs out of memory.

The results of Table 4 highlight that the label-setting without preprocessing
is not effective in solving the network G. Indeed, the instances generated from
network G4 and that with I" equal to 6 from network G3 are not solved. Con-
sidering the instances solved by U LSA, drp-U/'LSA is, on average, 21.54 times
faster. The speed-up increases when I' increases. In addition, the benefit of
robust bounds is more evident for higher dimension networks. Indeed, T LSA

17

G1 G2 G3

0.69 65.84 M
0.58 40.06 346.93
0.45 31.85 284.23
0.44 2492 287.09

AVG | 0.54 40.67 306.08

—Nowo |
ggeg|e

Table 4: Average computational results of the label-setting algorithm without
preprocessing for each network, varying I'.

is 1.16, 15.02, and 23.64 times slower than drp-U/"LSA for network G1, G2, and
G'3, respectively.

Table 2 highlights that SD is slower than drp-U/'LSA. Indeed, the latter
is 3.21 times faster than the former. The speed-up remains almost the same
varying I'. It increases for « equal to 0.25. In this case, SD is 4.42 slower than
the proposed approach. For a equal to 0.50 and 0.75 the speed-up is 2.55 and
2.54, respectively.

Networks G for T' € {20,15,10}. These instances are more complex so that
all algorithms but SD leave some of them unsolved within the time limit of 900
seconds.

Table 5 shows the average execution time for each value of o and I". The
superscript near the average computational effort indicates the number of in-
stances not solved within the time limit imposed. Table 5 provides the average
execution time for each value of a and solution approach over the instances
solved by both drp-UT'LSA and the corresponding algorithm.

The first observation is that drp-Z/"LSA is not able to solve 2 instances out
of 4 for « equal to 0.25. This situation occurs for all the three values of I'. All
instances are solved to optimality for a equal to 0.50 and 0.75.

The same behaviour is observed for dp-U'LSA for a = 0.25. In addition, for
«a = 0.50, the number of instances not solved is equal to 2, 1, and 1 for values of
I" equal to 20, 15, and 10, respectively. Considering only the instances solved by
both dp-U/"LSA and drp-U/"LSA, the former is 6.26 and 1.46 times slower than
drp-UTLSA for a equal to 0.25, 0.50, respectively. dp-U4'LSA is slightly faster
than drp-U'LSA for a = 0.75. Indeed, drp-U"LSA is 1.03 times slower than
dp-U"LSA. This behaviour reveals the effectiveness of the robust preprocessing
for more constrained instances.

Overall, the preprocessing procedure improves the performance of the la-
belling algorithm. Indeed, considering only the instances solved by both drp-2/"'LSA
and UTLSA, the latter is 12.86, 26.72, and 34.60 times slower than the former
for a equal to 0.25, 0.50 and 0.75, respectively.

The GD approach is not able to solve to optimality 2 instances out of 4 for
each value of @ and I'. Thus, 18 instances can not be solved by GD against
the 6 not solved by drp-U"LSA. Considering only the instances solved by both
GD and drp-U"LSA, the results collected in Table 5, highlight the superiority

18

of drp-U'LSA. Indeed, drp-U'LSA is 29.48, 59.10, and 82.06 times faster than
GD, for a equal to 0.25, 0.50, and 0.75, respectively.

drp-UTLSA is 4.07 times slower than SD (see last row of Table 5). In more
details, the higher the value of « the lower the speed up of SD with respect to
drp-U'LSA. In particular, the former is 4.46, 31.34, and 1.23 times faster than
the latter for a equal to 0.25, 0.50, and 0.75, respectively.

Referring to the dualized approaches, both dual and dp-dual are not able
to solve 9 instances. As expected, dp-dual is more efficient. drp-UTLSA is,
on average, 2.07 times faster than dp-dual, considering the instances solved by
both approaches. More in details, dp-dual is 12.84 and 5.52 times slower than
drp-U'LSA for a equal to 0.25 and 0.50, respectively. The trend is inverted for
a = 0.75, that is, dp-dual is 8.50 times faster than drp-U/"LSA.

a r ulisa ap-ulisa arp-tl'Lsa GD sD dual dp-dual

20 | 59.182 2.652 3.332 202.182 43.59 180.632 17.772

0.25 15 52.622 42.242 4.052 104.372 43.15 99.782 84.022
10 | 43.122 30.482 4.662 48.552 65.49 66.762 52.912

AVG solved by both drp-U! LsA and dp-tT LsA 25.12 4.02

AVG solved by both drp-U!'Lsa and tFLsa 51.64 4.02

AVG solved by both drp-U1'1sA and 6 4.02 118.36

AVG solved by both drp-UL'1sA and sp 4.02 0.90

AVG solved by both drp-t/I'LsA and dual 4.02 115.72

AVG solved by both drp-t/'LsA and dp-dual 4.02 51.57
20 | 65.732 2.912 155.74 207.262 40.34 160.541 134.891

0.5 15 50.652 13.771 85.90 106.932 39.84 99.361 12.831
10 | 43.302 9.451 69.28 39.042 59.28 52.251 13.581

AVG solved by both drp-UT LSA and dp-U! LsA 9.44 6.44

AVG solved by both drp-U!'Lsa and tF'Lsa 53.22 1.99

AVG solved by both drp-UT'LsA and 6 1.99 117.74

AVG solved by both drp-UT'LsA and sp 103.64 3.31

AVG solved by both drp-UL'LsA and dual 9.74 104.05

AVG solved by both drp-U!'LsA and dp-dual 9.74 53.77
20 | 58.882 42.14 47.39 211592 24.23 102.96 9.19

0.75 15 | 50.622 41.11 37.64 109.222 24.16 56.26 3.22
10 | 42.422 31.73 33.23 39.482 47.52 46.59 1.51

AVG solved by both drp-t1 LsA and dp-tT Lsa 38.33 39.42

AVG solved by both drp-t/I'Lsa and t/FLsa 50.64 1.46

AVG solved by both drp-t/L LsA and » 1.46 120.10

AVG solved by both drp-t1 LsA and sp 39.42 31.97

AVG solved by both drp-t/'LsA and dual 39.42 68.60

AVG solved by both drp-UI'LsA and dp-dual 39.42 1.64
20 61.26 15.90 17.53 207.01 32.29 131.75 72.04

AVG 15 51.29 32.37 16.21 106.84 32.00 77.81 8.03
10 42.95 23.88 15.62 42.35 53.40 49.42 7.55

AVG solved by both drp-UT LsA and dp-U! LsA 24.29 16.62

AVG solved by both drp-U!'Lsa and tF'Lsa 51.83 2.49

AVG solved by both drp-UT'LsA and 6 2.49 118.73

AVG solved by both drp-UT'LsA and sp 49.02 12.06

AVG solved by both drp-U!'LsA and dual 17.72 96.13

AVG solved by both drp-U!'LsA and dp-dual 17.72 36.66

Table 5: Average computational results for each value of I' and « on networks
G for T € {20,15,10}.

As many of the instances are not solved within the time limit, we give an
alternative perspective on the behaviour of the solution approaches considered
Figure 1. The later highlights the superiority of SD for these instances. That
algorithm is indeed the fastest for roughly two thirds of the instances and it
is the only one to solve all of them within the time limit. Its performance is

19

100 ' — - —y—
Qe il K4 o e
’ e ®--¢ -o— -+ T
g e 3
° 80 ¥ //"’ g
g S
8 - _/'/
7
2 60 :7‘ g |
o Ry
o) L7
[S L ¢
S s 7
c A % ulLsA ——
S . ¥ dp-UTLSA -+
5 So7 Ao drp-U'LSA =t
g 2} & el -
~ S dual —+—
T A dp-dual - -
0 ¥ v L | . .
0 5 10 15 20

Not more than 1.5* times worst than the best
Figure 1: Performance profile.

followed by dp-dual and drp-U/"LSA, the former being the fastest approach for
roughly one third of the instances. While dp-dual solve many instances faster
than drp-UTLSA, the intersection of the two curves indicates that drp-U/"LSA
suffer less on the hardest instances than dp-dual.

Networks b. Table 6 shows average results for each value of I' varying a.
The results highlight that dp-U/TLSA outperforms slightly drp-U/"LSA. In order
to understand this behaviour, Table 7 reports the execution time of the prepro-
cessing (prep) and the label-setting algorithm (LSA), the number of generate
labels (#L), the number of labels fathomed with resource bounds (#LW), and
the number of labels fathomed with cost bounds (#LUB) when deterministic
and robust bounds are considered, respectively.

The label-setting algorithm with robust preprocessing is faster than that
with the deterministic one. Indeed, the latter is 4.39 times slower than the
former. This behaviour is justified by the number of generated labels. In par-
ticular, #L with deterministic bounds is 2.39 time higher than #L with robust
bound. The same trend is observed for #LW and #LUB. However, the benefit
of robust bounds in label-setting algorithm does not suffice the extra effort in
the preprocessing phase. Indeed, prep in the deterministic case is 1.58 times
lower than prep when robust bounds are computed. The main result is that the
approach with deterministic bounds is 1.40 times faster than that with robust
ones.

Comparing the average results of column drp-24"LSA and U LSA of Table 6,
it is observed that the approach with preprocessing is 4.55 times faster than
the label-setting algorithm without bound information. SD is, on average, 7.41

20

a T | U'usa dp-U'LsA drp-UTLsSA GD SD dual dp-dual
6 | 0.219 0.066 0.107 0.116 0.114 0.477 0.449

3| 0.186 0.077 0.098 0.138 0.192 0.887 0.534
025 o | 0.168 0.068 0.090 0.132 0.244 0.979 0.727
1| 0155 0.057 0.070 0.078 0.283 0.958 0.380
AVG 0.182 0.067 0.091 0.116 0.208 0.825 0.522
6 | 0.257 0.078 0.120 0.139 0.391 1.219 1.263

3| 0214 0.066 0.095 0.109 0.737 1.182 0.452

05 2| o0.202 0.059 0.086 0.090 0.967 0.951 0.497
1| o0.181 0.056 0.072 0.099 0.186 0.720 0.482
AVG 0.213 0.065 0.093 0.109 0.570 1.018 0.674
6 | 0.208 0.076 0.118 0.251 0.632 0.574 0.197

3| 0.249 0.066 0.094 0.190 1.173 0.447 0.215
0.75 o | 0.238 0.066 0.086 0.115 1.493 0.397 0.165
1| 0219 0.060 0.079 0.103 1.845 0.353 0.148
AVG 0.251 0.067 0.094 0.165 1.286 0.443 0.181
6 | 0.258 0.073 0.115 0.169 0.379 0.757 0.636

3| 0216 0.070 0.095 0.146 0.701 0.839 0.400
AVG 9 | 0.203 0.064 0.087 0.112 0.902 0.776 0.463
1| 0185 0.058 0.074 0.093 0.771 0.677 0.337
AVG 0.215 0.066 0.093 0.130 0.688 0.762 0.459

Table 6: Average computational results for each value of I" and « on networks
b.

times slower than drp-U"LSA. The lower the value of ', the higher the speed-
up. Indeed, the proposed approach is 3.29, 7.34, 10.33, and 10.45 times faster
than SD for I" equal to 6, 3, 2, and 1, respectively. A strong relation is observed
with the value of «. In particular, the higher «, the slower SD. Our approach is
2.28, 6.13, and 13.62 times faster than SD for « equal to 0.25, 0.50, and 0.75,
respectively. The comparison with dual and dp-dual is similar to the one with
SD, dp-U"LSA and drp-UTLSA being significantly faster than the algorithms
based on dualizations.

The results collected in Table 6 highlight the better behaviour of our ap-
proaches than that of GD. Indeed, dp-U/"LSA and drp-U"LSA are, on average,
1.96 and 1.40 times faster than GD.

6.4 Benefit of robustness

On the one hand, the paths returned by the robust algorithms are more expen-
sive than the deterministic paths. Moreover, the cost increases with the value
of T" since the latter characterizes the volume of the uncertainty set. On the
other hand, the robust paths are more protected against deviations of the re-
source consumption than the deterministic paths, and the degree of protection
increases with the value of I'. A natural way to visualize this trade-off considers
the resource consumptions as random variables and computes the probability
that the paths returned by the robust algorithms do not satisfy the resource

21

r prep LSA #L #LW #LUB

6 | 0.112 0003 9856 5544 32.67
Robust 300094 0001 5444 7522 8.67

2 | 0.085 0.003 9422 111.56 56.78
bounds 1

0.072 0.001 47.22 31.72 62.06
AVG 0.091 0.002 73.61 68.49 40.04

b 60065 0008 241.94 29722 34.11
eterministic 3 | 5050 0.010 186.61 388.22 73.28
2| 0052 0013 16222 413.44 92.94

bounds 1] 0054 0004 113.06 159.00 90.50
AVG 0.058 0.009 175.96 314.47 72.71

Table 7: Average computational results for each value of I', considering deter-
ministic and robust preprocessing separately.

constraint.

We suppose in what follows that each resource consumption r, follows a
random variables that takes values 7,, 7, + 7¢, Tq — 7q With probabilities g,
(1 —4¢q)/2, and (1 — ¢)/2, respectively. For simplicity, we assume that these
random variables are independent. We would like to compute the probability
that the path p returned by each model is unfeasible, that is

P (Z To > W) : (24)

aep

Since computing (24) exactly can be cumbersome for paths having 50 edges
or more, we rely on Monte Carlo sampling. We generate randomly 10 m-uples
r’ following the above probabilities, and compute the proportion of scenarios
for which the capacity is not satisfied, that is

{z‘e{l,...,loﬁ}:zr;>w}‘. (25)

acp

107% x

Let us denote by P(v) (resp. x(7)) the value of (25) (resp. the cost) com-
puted for the optimal solution p obtained for the robust model with I' = . In
particular, P(0) (resp. x(0)) is the probability (resp. cost) obtained for the
deterministic solution. Next we analyze the value of P for the different robust
models on the instance G1 from [11] that is generated for I' = 6 (recall from
Section 6.2 that the generation of the robust instances depends on I'). We also
compare P with the theoretical upper bound for the failure probability provided
by [6], denoted P(+) hereafter.

In Figure 2, we report P(v), P(v), and x(v) for v ranging from 0 to 10 and
q = 0.5. Comparing P and P, we see that the empirical bound is much better
than the theoretical one, since the latter is valid for any independent and sym-
metrically distributed random variables. We see on the figure that the failure
probability P can be as low as 0.01 by setting v = 10. However, that robust

22

0.6 T T

Py | 5000
05 |-, P ¥ /
v / 1 2000
0.4 s

v
A\ 1 3000

Failure probability

@
0.3 *> ’
L e ; R 4))
. v. 2000
0.2 R)
"v...”‘
N ‘..‘vm Y-..4 1000
A O
Y-
0 AAREIE SO yY__Y
L - . P 8 10
Y

Figure 2: P(7), P(vy) and () on the instance G1 created for I" = 6.

0.3
l P(6) ——
0.25 Frmiund: PO) =
3 0.2 R
< -
s
5 015 m.
QL A
= 0.1
T
w []
0.05 —
0 \\ff\
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
q

Figure 3: P(0) and P(6) for different values of ¢ on the instance G1 created for
I'=6.

23

model leads to a solution almost twice as expensive as the deterministic one
(4897 vs 2627). This being said, the deterministic solution is highly unreliable
since it fails with probability 0.26. As it is always the case when dealing with
uncertainty, the problem involves multiple and conflicting objectives and the
best solution will depend on the specific application and the risk averseness of
the decision maker. If the decision maker is satisfied with a failure probability
of 0.05, then he/she might choose the solution obtained for I' = 6, which costs
only 11% more than the deterministic one (2917 vs 2627).

Let us now focus on the choice of ¢, which should in practice be estimated
from expert knowledge or historical data. For instance, we compare in Figure 3
the failure probability of the paths obtained for v = 6 and v = 0 (the deter-
ministic model). The figure illustrates that the failure probability of the robust
solution falls down to less than 0.001 when ¢ = 0.9 while the deterministic
solution still has a failure probability of more than 0.075.

7 Conclusions

In this paper, we address a variant of RC'S PP where the resources consumptions
are uncertain parameters. We consider the budgeted uncertainty set introduced
by Bertsimas and Sim [5]. Being weakly AP-hard, the problem can be solved
in pseudo-polynomial time using a label-setting algorithm [30]. We study here
the effect of incorporating a preprocessing phase in the solution algorithm. The
preprocessing generalizes the classical deterministic preprocessing, by comput-
ing valid lower and upper bounds on the optimal cost and to reduce the original
network and removing nodes and arcs that cannot be part of any feasible and/or
optimal solutions. The proposed strategy is tested on instances inspired from
the scientific literature. In particular, we have considered the benchmarks pro-
posed in [3] and [11] for RCSPP. We have generated several robust instances
by considering different level of risk aversion of the decision maker.

The computational results show a good behaviour of the preprocessing phase.
Indeed, the computed lower and upper bounds can remove up to 92% and 99%
of nodes and arcs, respectively. The information derived from the preprocessing
phase has an high impact on the gap closing procedure. Indeed, when I" is not
too large (not greater than 6) the label-setting algorithm outperforms the algo-
rithm implementing the well-known iterative algorithm proposed by Bertsimas
and Sim in [5] and previously used in [23,26] as well as the classical dualized
integer programming reformulation and the preprocessing and label-setting pro-
cedures described in [22]. For larger values of ', however, the iterative algorithm
is the fastest approach. This difference follows naturally from the fact that the
complexity of the label-setting algorithm is exponential in I', while the one of
the iterative algorithm is only linear in I'. Finally, we illustrate the benefit of
robustness by considering one of the instances from [11]. Our results show that
the robust models provide solutions that are more reliable than the determin-
istic for a reasonable cost increase. They also illustrate empirically how I' = 6
can lead to reliable solutions for problems defined on graphs having thousands

24

of nodes.

Appendix: Detailed numerical results

In the following, we give detailed information on the numerical behavior.

Preprocessing phase evaluation

The subsequent tables show the average results over the considered instances.
In particular, columns tw and t£ report the execution time for obtaining lower
bounds on the resource consumption and cost, respectively. Columns trw and
tré show the average execution times to perform network reduction based on
resource consumption and cost, respectively. Columns %nw (resp %aw) and
%n¢ (resp %af) report the percentage of nodes (resp arcs) reduced using lower
bounds on resource consumption and cost, respectively. Columns %n and %a
show the average percentages on nodes and arcs removed from the original
networks after the network reductions. Column gap reports the average gap
between the upper bounds computed during the resolution of the Lagrangean
dual problem and the optimal cost. Column #OPT reports the number of
instances for which the optimal solution is found when solving the Lagrangean
dual problem.

Networks G for T' € {6,3,2,1}. Tables 8 shows the average results for net-
work G. As expected, the lower the value of I', the lower the execution time.
Indeed, the preprocessing procedure for I' = 1is 1.16, 1.22, and 1.63 times faster
than the preprocessing for the instances with I" equal to 2, 3 and 6, respectively.
Referring to the effectiveness, no difference in term of percentage of reduced
nodes and arcs are shown (see column %n ans %a). However, considering only
the resource-based reduction, the preprocessing is more effective for lower value
of T (see rows AVG of columns %nw and %aw).

A substantial differences in terms of nodes and arcs reduction is observed
varying the value of a. Considering the resource-reduction procedure, the higher
a, the lower the percentage of nodes and arcs reduced (see columns %nw and
%aw). This is an expected trend. Indeed, the least resource consumption is the
same for each value of a but W increases when « increases. An inverted trend
is observed for cost-based reduction. In that case, the lower bound decreases
when « increases, but the quality of the upper bound suffices the worsening in
the lower bounds. Indeed, higher quality upper bounds are obtained for higher
values of « (see column gap).

This behaviour justifies the trend of the execution time for determining lower
bounds on resource consumption. Indeed, the higher «, the lower the computa-
tional effort (see column tw of Table 8). In Table 9 we show the average results
for the deterministic and robust network reduction separately. The execution
time for computing lower bounds on the resource consumption during the deter-
ministic preprocessing (first column) is almost the same for each value of «. The

25

T o tw trw 173 tré Yonw Yoaw %né Yoal Yon Yoa gap
0.25 1.94 1.30 23.37 9.12 7.11% 10.00% 34.48% 37.24% 41.59% 47.24% 9.33%

6 0.50 1.09 0.15 24.04 17.79 3.89% 2.96% 75.75% 81.04% 79.64% 84.00% 0.36%
0.75 0.59 0.04 14.80 18.10 0.26% 0.46% 90.27% 95.17% 90.53% 95.63% 0.07%
AVG 1.20 0.50 20.73 15.00 3.75% 4.48% 66.83% 71.15% 70.59% 75.63% 3.25%
0.25 1.16 1.69 13.84 8.19 13.79% 18.89% 27.27% 30.32% 41.05% 49.21% 2.80%

3 0.50 0.68 0.18 15.00 15.89 4.71% 3.58% 74.21% 79.46% 78.93% 83.04% 0.57%
0.75 0.45 0.04 12.62 14.31 0.31% 0.61% 90.40% 95.23% 90.71% 95.84% 0.04%
AVG 0.76 0.64 13.82 12.80 6.27% 7.69% 63.96% 68.34% 70.23% 76.03% 1.14%
0.25 0.93 1.87 11.11 8.08 15.84% 22.29% 25.82% 27.79% 41.66% 50.08% 2.30%

2 0.50 0.61 0.22 12.45 17.21 5.02% 4.02% 73.18% 78.54% 78.20% 82.56% 0.83%
0.75 0.44 0.05 10.56 16.54 0.60% 0.53% 90.43% 95.44% 91.03% 95.98% 0.04%
AVG 0.66 0.71 11.38 13.94 7.15% 8.95% 63.14% 67.26% 70.29% 76.20% 1.06%
0.25 0.69 2.05 7.70 7.72 19.79% 27.24% 22.43% 23.37% 42.22% 50.61% 1.82%

1 0.50 0.54 0.25 9.49 13.24 6.21% 5.76% 72.40% 76.93% 78.61% 82.69% 0.83%
0.75 0.41 0.06 10.07 16.85 0.67% 0.69% 90.36% 95.30% 91.03% 95.99% 0.04%

AVG 0.54 0.79 9.09 12.60 8.89% 11.23% 61.73% 65.20% 70.62% 76.43% 0.90%

Table 8: Average computational results of the preprocessing phase varying the

parameters I' and « for networks G with T" € {6,3,2,1}.

deterministic robust
tw %n %a tw
0.38 26% 28% 0.80
0.39 71% 74% 0.34
0.39 91% 94% 0.08

Table 9: Average computational results of the deterministic and robust prepro-

cessing phase varying the parameter « for networks G.

percentage of nodes and arcs removed in the deterministic preprocessing raises
with «, thus in the robust preprocessing, smaller size networks are considered
for higher value of a. The last column shows the execution time for determining
the robust lower bounds on the resource consumption. One can observe that

the computational effort reduces for higher values of a.

Table 10 shows the behaviour of the preprocessing procedure for each value
of T varying v (see the end of Section 6.2).

r tw trw € tre Ynw Yoaw %ne %at %n %a gap
6 | 1.20 050 2073 15.00 | 3.75% = 4.48% = 66.83% 71.15% | 70.59% 75.63% | 3.25%
3 | 0.81 023 17.42 13.06 | 0.85% 0.89% 67.07% 71.39% | 67.92% 72.28% | 1.81%
6 2 | 068 0.17 1557 1450 | 0.61% 0.62% 67.18% 71.52% | 67.79% 72.15% | 1.48%
1 0.55 0.14 14.21 13.83 0.40% 0.42% 67.19% 71.53% 67.59% 71.95% 1.47%
3 | 078 062 1485 12,96 | 6.27% 7.69% 63.96% 68.34% | 70.23% 76.03% | 1.14%
5 2 | 064 0.53 13.07 13.52 | 3.38% 3.65% 63.10% 68.09% | 66.48% 71.74% | 1.68%
1 0.62 0.48 11.80 14.11 2.06% 2.10% 63.09% 68.12% 65.14% 70.22% 1.52%
2 | 0.64 072 11.68 12.89 | 7.15% 8.95% 63.14% 67.26% | 70.29% 76.20% | 1.06%
2 1 | 053 056 10.16 10.84 | 3.93% 4.67% 62.57% 67.17% | 66.50% 71.84% | 1.26%

Table 10: Average computational results of the preprocessing phase varying I'
for each value of « for networks G.

The bounds computed with lower values of v are less likely to remove nodes
and arcs (see columns %n and %a). However a gain in term of computational

26

effort is observed as reported in column tw and t§.

Networks G for I" € {20,15,10}. Table 11 reports the average computational
results over the network G1 and G2 which are solved by drp-U'LSA for each
value of I and «, whereas Table 12 shows the computational results averaged
over all networks G for a € {0.50,0.75}.

T e tw trw t& tré Y%onw Yoaw Y%né Yoal Y%on Yoa gap
0.25 0.33 0.04 2.19 0.59 3.90% 0.21% 76.54% 3.45% 80.44% 3.65% 1.08%

20 0.50 0.29 0.05 2.34 0.65 1.50% 0.14% 76.54% 3.45% 78.04% 3.59% 4.04%
0.75 0.08 0.01 0.97 0.66 0.18% 0.22% 89.16% 3.27% 89.34% 3.49% 0.15%

AVG 0.23 0.03 1.83 0.63 1.86% 0.19% 80.75% 3.39% 82.61% 3.58% 1.76%
0.25 1.05 0.18 6.21 0.44 6.32% 2.38% 68.20% 3.00% 74.52% 5.38% 1.06%

15 0.50 0.27 0.04 1.94 0.58 3.02% 0.05% 76.54% 3.45% 79.56% 3.50% 4.04%
0.75 0.24 0.04 1.83 0.63 0.60% 0.11% 87.64% 4.32% 88.24% 4.43% 0.26%

AVG 0.52 0.09 3.33 0.55 3.31% 0.85% 77.46% 3.59% 80.77% 4.44% 1.79%
0.25 0.77 0.30 3.09 0.41 11.24% 3.89% 44.34% 4.70% 55.58% 8.59% 4.86%

10 0.50 0.21 0.05 1.59 0.73 4.06% 0.62% 70.26% 4.94% 74.32% 5.56% 3.81%
0.75 0.12 0.03 0.78 0.78 0.24% 0.42% 88.16% 5.74% 88.40% 6.15% 0.29%

AVG 0.36 0.13 1.82 0.64 5.18% 1.64% 67.59% 5.13% 72.77% 6.77% 2.99%

Table 11: Average computational results of the preprocessing phase varying the
parameters I' and « for networks G1 and G2 with T" € {20, 15, 10}.

The solution times collected in Table 11 do not reveal a trend for the compu-
tational overhead when varying I'. Indeed, the preprocessing requires 2.73, 4.48,
and 2.95 seconds, on average, for I' equal to 20, 15, and 10, respectively. The
average results varying « are more interesting. In this case, the higher «, the
lower the computational effort. Indeed, the average execution time for solving
the networks G'1 and G2 with o = 0.75 is 1.41, and 2.53 times faster than solv-
ing the same networks with a equal to 0.50 and 0.25, respectively. In addition,
the higher «, the higher the percentage of both nodes and arcs removed from
the networks. The average %n is 70.18%, 77.31%, and 88.66% for « equal to
0.25, 0.50, and 0.75, whereas the %a is 5.87%, 4.21%, and 4.69%. The better
performance for high value of « is mainly due to the network reduction based
on cost (see column %né and %ag).

r e tw trw t& tré Yonw Yoaw J%ong Yoat Yon Yoa gap
0.50 7.66 0.36 114.29 20.80 1.49% 0.18% 71.41% 2.96% 72.90% 3.13% 4.09%

0.75 1.41 0.03 35.54 13.96 0.11% 0.11% 89.44% 2.54% 89.55% 2.66% 0.66%
AVG 4.54 0.19 74.91 17.38 0.80% 0.14% 80.43% 2.75% 81.22% 2.89% 2.37%
0.50 3.79 0.09 81.51 24.77 1.73% 0.03% 75.35% 2.80% 77.08% 2.83% 3.71%

0.75 1.11 0.05 27.56 16.05 0.31% 0.08% 89.97% 3.15% 90.28% 3.22% 0.13%
AVG 2.45 0.07 54.54 20.41 1.02% 0.06% 82.66% 2.97% 83.68% 3.03% 1.92%
0.50 2.75 0.09 49.04 13.23 2.48% 0.37% 69.25% 3.50% 71.73% 3.87% 3.82%

0.75 0.85 0.04 21.39 16.32 0.13% 0.22% 89.91% 3.90% 90.04% 4.12% 0.21%
AVG 1.80 0.07 35.22 14.78 1.31% 0.29% 79.58% 3.70% 80.89% 3.99% 2.01%

Table 12: Average computational results of the preprocessing phase varying the
parameters I' and « € {0.50,0.75} for networks G with I" € {20,15,10}.

Table 12 gives more insight on the preprocessing behaviour for the considered
instances. We observe an increase of the execution time when the value of I'

27

increases. The preprocessing for I' = 10 is, on average, 1.49 and 1.87 times
faster than for I' equal to 15 and 20, respectively. The values of %n and %a
remain almost the same for each value of I'. The preprocessing for o = 0.75 is
2.37 times faster than for a = 0.50 and the average reduction of both nodes and
arcs is higher for o = 0.75 than for & = 0.50. This behaviour can be justified by
the gap. Indeed, for the instances with a equal to 0.50 the gap is 3.87%, while
it decreases to 0.33% for o equal to 0.75.

Table 13 shows the average results for each combination of I' and v varying
a. We display the number of networks solved under column slv.

a r v | slv tw trw tg trg Yonw Yoaw %ng %ag %n %oa gap
20 2 | 0.33 0.04 2.19 0.59 3.90% 0.21% 76.54% 3.45% | 80.44% 3.65% 1.08%

15 2 | 0.20 0.03 1.95 0.57 0.44% 0.01% 76.54% 3.45% | 76.98% = 3.45% 1.08%

10 2 | 0.16 0.02 1.55 0.51 0.10% 0.01% 76.54% 3.45% | 76.64% 3.46% 1.08%

20 6 2 | 009 001 1.06 0.53 0.00% 0.00% 76.54% 3.45% | 76.54% 3.45% | 31.83%
3 2 | 0.06 0.00 1.15 0.55 0.00% 0.00% 76.54% 3.45% | 76.54% 3.45% | 31.83%

2 2 | 0.05 0.00 0.97 0.51 0.00% 0.00% 76.54% 3.45% | 76.54% = 3.45% | 31.83%

1 2 | 0.04 0.01 1.05 0.52 0.00% 0.00% 76.54% 3.45% | 76.54% 3.45% | 31.83%

15 2 | 091 0.6 6.15 0.48 6.32% 2.38% 68.20% 3.00% | 74.52% 5.38% 1.06%

10 2 | 0.56 0.07 4.45 0.51 0.00% 0.02% 69.24% 4.86% | 69.24% 4.88% 2.08%

0.25 6 2 0.29 0.02 2.87 0.49 0.00% 0.00% 70.26% 5.07% 70.26% 5.07% 1.49%
15 3 2 | 014 0.02 2.01 0.51 0.00% 0.00% 70.26% 5.07% | 70.26% 5.07% 1.49%
2 2 | 012 0.02 1.77 0.55 0.00% 0.00% 70.26% 5.07% | 70.26% 5.07% 1.49%

1 2 | 0.09 0.00 1.38 0.00 0.00% 0.00% 0.96% 0.13% 0.96% 0.13% | 94.42%

10 2 | 0.66 0.27 3.09 0.38 | 11.24% 3.89% 44.34% 4.70% | 55.58% 8.59% 4.86%

6 2 | 030 0.03 1.55 0.48 0.14% 0.04% 32.82% 0.74% | 32.96% 0.78% | 37.60%

10 3 2 | 015 0.01 1.47 0.00 0.00% 0.00% 0.96% 0.13% 0.96% 0.13% | 87.73%
2 2 | 013 0.01 1.10 0.01 0.00% 0.00% 0.96% 0.13% 0.96% 0.13% | 87.73%

1 2 | 0.08 0.01 1.05 0.02 0.00% 0.00% 0.96% 0.13% 0.96% 0.13% | 87.73%

20 4 | 7.66 0.36 114.29 20.80 1.49% 0.18% 71.41% 2.96% | 72.90% 3.13% 4.09%

15 3 | 1.64 0.08 16.92 2.21 0.21% 0.02% 74.33% 2.80% | 74.55% = 2.82% 4.98%

10 3 | 1.03 0.05 12.45 2.08 0.00% 0.00% 77.77% 2.88% | 77.77% = 2.88% 3.47%

20 6 3 | 0.64 0.04 8.17 2.17 0.00% 0.00% 80.19% 3.31% | 80.19% 3.31% 1.85%
3 2 | 0.08 0.01 1.13 0.52 0.00% 0.00% 79.24% 3.99% | 79.24% 3.99% 2.47%

2 2 | 0.05 0.02 1.06 0.59 0.00% 0.00% 81.58% 4.47% | 81.58% 4.47% 1.10%

1 2 | 0.04 0.00 0.95 0.52 0.00% 0.00% 81.58% 4.47% | 81.58% 4.47% 1.10%

15 4 | 357 0.08 68.84 13.94 1.73% 0.083% 75.35% 2.80% | 77.08% 2.83% 3.71%

10 4 | 227 0.07 45.36 12.92 0.15% 0.01% 75.39% 2.80% | 75.54% 2.82% 1.67%

0.50 6 3 0.20 0.02 2.70 2.51 0.01% 0.00% 77.87% 2.78% 77.88% 2.78% 22.48%
15 3 3 | 017 0.02 2.72 2.12 0.00% 0.00% 80.19% 3.31% | 80.19% 3.31% | 21.51%
2 3 | 0.14 0.02 2.65 2.15 0.00% 0.00% 79.67% 3.14% | 79.67% 3.14% | 21.85%

1 3 | 011 0.01 2.20 2.13 0.00% 0.00% 79.67% 3.14% | 79.67% 3.14% | 21.85%

10 4 | 255 0.10 45.32 12.63 2.48% 0.37% 69.25% 3.50% | 71.73% 3.87% 3.82%

6 4 | 1.60 0.07 37.59 16.44 0.29% 0.01% 71.93% 3.87% | 72.23% 3.88% 3.11%

10 3 3 | 024 0.03 2.52 2.26 0.11% 0.00% 69.74% 3.87% | 69.84% 3.87% 5.20%
2 3 | 019 0.03 2.02 2.26 0.07% 0.00% 69.74% 3.87% | 69.80% 3.87% 5.20%

1 3 | 013 0.01 1.95 2.07 0.03% 0.01% 70.38% 4.21% | 70.40% 4.22% 4.79%

20 4 | 141 0.03 35.54 13.96 0.11% 0.11% 89.44% 2.54% | 89.55% 2.66% 0.66%

15 4 | 111 0.03 35.72 17.23 0.00% 0.00% 89.07% 2.54% | 89.07% 2.54% 0.83%

10 4 | 081 0.02 29.77 16.96 0.00% 0.00% 89.07% 2.54% | 89.07% 2.54% 0.83%

20 6 4 | 056 0.02 27.53 15.98 0.00% 0.00% 89.07% 2.54% | 89.07% 2.54% 0.83%
3 4 | 047 0.01 2413 17.77 0.00% 0.00% 89.07% 2.54% | 89.07% 2.54% 0.83%

2 4 | 047 0.02 23.99 15.80 0.00% 0.00% 89.07% 2.54% | 89.07% 2.54% 0.83%

1 4 | 044 0.02 23.06 16.49 0.00% 0.00% 89.07% 2.54% | 89.07% 2.54% 0.83%

15 4 | 1.14 0.03 27.52 16.61 0.31% 0.08% 89.97% 3.15% | 90.28% 3.22% 0.13%

10 4 | 085 0.02 24.15 17.23 0.04% 0.01% 90.15% 3.15% | 90.19% 3.15% 0.17%

0.75 6 4 | 061 0.02 20.63 18.41 0.00% 0.00% 89.04% 2.80% | 89.04% 2.80% 0.62%
15 3 4 | 050 0.02 19.67 17.21 0.00% 0.00% 84.89% 2.74% | 84.89% 2.74% 2.75%
2 4 | 045 0.02 17.16 15.89 0.00% 0.00% 84.50% 2.62% | 84.50% 2.62% 3.01%

1 4 | 042 o0.01 16.15 15.59 0.00% 0.00% 84.50% 2.62% | 84.50% 2.62% 3.01%

10 4 | 079 0.02 20.87 17.08 0.13% 0.22% 89.91% 3.90% | 90.04% 4.12% 0.21%

6 4 | 059 0.02 20.41 16.41 0.00% 0.00% 90.13% 3.90% | 90.13% 3.90% 0.89%

10 3 4 | 046 0.01 16.45 16.39 0.00% 0.00% 86.24% 3.23% | 86.24% 3.23% 2.34%
2 4 | 050 0.04 17.78 16.18 0.00% 0.00% 86.24% 3.23% | 86.24% 3.23% 2.34%

1 4 | 041 o0.01 15.64 13.51 0.00% 0.00% 86.24% 3.23% | 86.24% 3.23% 2.34%

Table 13: Average computational results of the preprocessing phase varying I'
for each value of « for networks G with T € {20, 15, 10}.

Table 13 highlights the strong effect of v. Indeed, the lower v, the lower

28

the benefits of preprocessing. This is an expected trend, since the lower 7, the
lower the quality of the bounds. The reduction of both nodes and arcs reaches
zero for several value of . It follows that a lower number of networks are solved
for lower value of «. This behaviour is clearly observed for the instances with
a = 0.50.

Networks b. Table 14 shows the value of preprocessing on networks b. We
report the number of instances solved to optimality by the preprocessing under
column #OPT. Each row of the table report average results over 12 instances.
51% of the instances are solved to optimality. In particular, the lower the value
of T, the higher the number of instances the preprocessing solves to optimality.
The execution time is limited and the procedure is more efficient for lower value
of T.

r o tw trw t€ tré Yonw Toaw Ton€ Yoat Yon Yoa gap #OPT
0.25 0.02 0.03 0.03 0.03 44.47% 34.55% 39.20% 61.99% 83.67% 96.54% 27.27% 5

6 0.50 0.03 0.02 0.04 0.03 29.42% 22.91% 44.62% 70.82% 74.03% 93.73% 26.01% 4
0.75 0.02 0.01 0.04 0.04 18.28% 13.78% 52.50% 77.74% 70.78% 91.52% 35.85% 4

AVG 0.02 0.02 0.03 0.03 30.72% 23.75% 45.44% 70.18% 76.16% 93.93% 29.71% 13
0.25 0.02 0.02 0.03 0.03 31.98% 36.10% 51.27% 58.73% 83.25% 94.84% 2.38% 7

3 0.50 0.02 0.01 0.04 0.02 26.18% 21.95% 55.93% 74.55% 82.12% 96.50% 2.08% 5
0.75 0.02 0.01 0.03 0.03 14.15% 12.55% 66.27% 83.76% 80.42% 96.31% 0.00% 7
AVG 0.02 0.01 0.03 0.03 24.11% 23.53% 57.82% 72.35% 81.93% 95.88% 1.49% 19
0.25 0.01 0.02 0.03 0.02 26.12% 44.03% 39.53% 45.22% 65.65% 89.26% 9.07% 6

2 0.50 0.02 0.02 0.02 0.03 28.80% 25.44% 55.72% 71.96% 84.52% 97.40% 0.00% 6
0.75 0.02 0.01 0.03 0.03 15.05% 16.40% 53.93% 72.46% 68.98% 88.87% 14.58% 7

AVG 0.01 0.02 0.03 0.02 23.32% 28.62% 49.73% 63.21% 73.05% 91.84% 7.88% 19
0.25 0.01 0.02 0.02 0.03 44.87% 46.09% 47.93% 53.04% 92.80% 99.14% 0.00% 8

1 0.50 0.01 0.02 0.02 0.02 37.50% 29.63% 47.60% 67.91% 85.10% 97.54% 0.00% 6
0.75 0.01 0.01 0.02 0.03 23.30% 21.01% 45.65% 68.62% 68.95% 89.63% 14.58% 8

AVG 0.01 0.02 0.02 0.02 35.22% 32.24% 47.06% 63.19% 82.28% 95.44%

4.86%

22

Table 14: Average computational results of the preprocessing phase varying the
parameters I and « for networks b.

The execution time is not affected by the value of a. However, for higher
values of «, we observe a lower percentage of both nodes and arcs removed with
lower bounds on resource consumption (see columns %nw and %aw). This is
an expected trend. Indeed, the lower bounds are the same for each value of «,
but a higher number of feasible paths is present for higher values of a.

An inverted trend is observed for the network reduction based on cost. This
behaviour is justified by considering the fact that being the network after re-
source reductions bigger for higher value of a, a greater number of nodes and
arcs are removed during the cost-based reductions. However, the overall effec-
tiveness of the network reductions is reduced for high value of « as shown in
columns %n and %a. We remark that the quality of the lower bounds, derived
from the resolution of the Lagrangean dual problem, decreases for high values
of o and, consequently for high values of W. Indeed, given a multiplier A, the
cost of the Lagrangean problem is decreased by the constant AW.

In Table 15, we show the performance of the preprocessing on instances with
a given value of I' considering lower bounds computed for v <T.

29

T v tw trw t& tré Yonw Yoaw %né Y%oal Yon Yoa gap
6 0.02 0.02 0.03 0.03 30.72% 23.75% 45.44% 70.18% 76.16% 93.93% 29.71%
3 0.01 0.01 0.02 0.02 24.66% 21.04% 51.71% 73.21% 76.37% 94.25% 6.57%
6 2 0.01 0.00 0.02 0.02 19.84% 18.78% 49.83% 71.81% 69.67% 90.59% 6.57%
1 0.01 0.00 0.01 0.02 14.02% 15.49% 51.56% 71.80% 65.58% 87.29% 19.65%
3 0.01 0.01 0.02 0.02 24.11% 23.53% 57.82% 72.35% 81.93% 95.88% 1.49%
3 2 0.01 0.01 0.02 0.02 20.11% 21.06% 50.38% 68.51% 70.49% 89.57% 8.15%
1 0.01 0.00 0.02 0.02 13.65% 16.60% 49.89% 68.17% 63.54% 84.77% 7.68%
2 0.01 0.01 0.02 0.02 23.32% 28.62% 49.73% 63.21% 73.05% 91.84% 7.88%
2 1 0.01 0.01 0.02 0.02 16.41% 22.81% 46.36% 62.18% 62.77% 84.99% 8.20%

Table 15: Average computational results of the preprocessing phase varying I'
for each value of v for network b.

As expected, for each value of T', the percentage of removed nodes and arcs
decreases for lower values of . The execution time is not strongly affected
by the different value of « due to the limited computational effort and to the
dimension of networks b.

Gap closing phase evaluation

Tables 16-22 show average results. The execution time of the preprocessing
and that of the label-setting procedure are reported under column prep and
LSA, respectively. Column #L reports the number of generated labels. Column
#LW shows the number of labels fathomed with the bounds on the resource
consumption. Column #LUB reports the number of labels discarded by using
bounds on the cost.

Networks G for I € {6,3,2,1}. Table 16 shows average results on instances
derived from networks G. As expected, the higher I', the higher the execution
time (see column LSA). This behaviour is justified by the number of generated
labels. Indeed, #L is 7.86, 1.57, and 1.24 times higher for I" equal to 6, 3, and 2
than the number of labels generated for the instances with I' = 1, respectively.
The same trend is observed for #LW and #LUB.

prep LSA #L #LW #LUB

37.44 15.78 46704.33 13412.75 29900.92
28.02 2.60 9357.67 2309.58 15636.75
26.69 2.16 7389.50 1937.00 12123.33
23.02 1.81 5942.42 1563.75 9405.92

AVG | 28.79 5.59 17348.48 4805.77 16766.73

— NN wo |

Table 16: Average computational results of the gap closing phase varying I' for
networks G.

The average results, varying the parameter «, are reported in Table 17.
Considering the instances with o equal to 0.75 and 0.50, the labeling algorithm
is 1549.00 and 12.29 times faster than when solving instances with a = 0.25,
respectively. This is justified by the number of generated labels. Indeed, #L for
a equal to 0.25 and 0.50 is 180.75 and 18.79 times higher than #L for o = 0.75.

30

In addition, the number of fathomed labels, i.e. #LW+#LUB, for « equal to
0.25 and 0.50 is 376.51 and 64.63 times higher than that with o = 0.75. This
justifies the computational overhead for a = 0.25. Indeed, a higher number of
labels has to be managed.

« prep LSA #L #LW #LUB

0.25 | 25.19 15.49 44031.13 14058.00 41053.00
0.50 | 32.20 1.26 7609.44 324.19 9135.94
0.75 | 28.98 0.01 404.88 35.13 111.25

AVG | 28.79 5.59 17348.48 4805.77 16766.73

Table 17: Average computational results of the gap closing phase varying « for
networks G.

Networks G for T" € {20,15,10}

Table 18 reports average results varying I'. As observed for the instances
with T" € {6,3,2,1}, the higher I, the higher the execution time. The time
required by the preprocessing and the label-setting procedures for the instances
with I' = 10 is 1.19 and 1.93 times lower than the computational effort for the
instances with I' equal to 15 and 20, respectively. This trend is mainly due to
the computational overhead of the preprocessing. Indeed, it represents the 82%
of the execution time required by drp-Z/'LSA.

On the one hand, the fathoming rule that considers the resource consumption
is more effective for lower value of T' (see column #LW). On the other hand, the
number of labels discarded by using bounds on cost remains almost unchanged
for the three different values of I'. However, the fathoming by cost is more
effective than the fathoming by resource.

r prep LSA #L #LW #LUB

20 | 58.66 10.16 48008.08 2674.42 28922.58
15 | 31.62 10.91 54179.75 3021.50 28089.25
10 | 30.16 5.57 43312.42 6206.00 20733.25

AVG | 40.15 8.88 48500.08 3967.31 25915.03

Table 18: Average computational results of the gap closing phase varying I' for
networks G.

Table 19 reports the average results over the networks G1 and G2 by varying
a. The performance of drp-U!'LSA is strongly affected by «. In particular, we
observe an evident reduction of the execution time of the label-setting algorithm
for an increase of « (see column LSA). This behaviour is justified by the number
of generated labels. Indeed, the label-setting algorithm explores 28.67 and 16.03
times as many labels for a equal to 0.25 and 0.50 as the number of labels explored
by the algorithm for a@ = 0.75.

The same trend is observed considering all the solved networks G for «
equal to 0.50 and 0.75. The related average results are reported in Table 20.

31

In particular, the execution time for solving the instances with @ = 0.75 by
drp-UTLSA is 2.63 times lower than the execution time required by drp-UTLSA
for solving the instances with o = 0.50.

« | prep LSA #L #LW #LUB

0.25 2.29 1.73 26145.00 6495.00 8959.83
0.50 1.36 0.63 14620.00 1822.83 22123.33
0.75 1.46 0.01 911.83 63.50 463.50

AVG 1.70 0.79 13892.28 2793.78 10515.56

Table 19: Average computational results of the gap closing phase varying « for
networks G1 and G2 with I" € {20, 15,10}.

« prep LSA #L #LW #LUB

0.50 | 84.22 19.42 76768.92 4125.00 59909.25
0.75 | 33.93 549 42586.33 1281.92 8876.00

AVG | 59.08 1245 59677.63 2703.46 34392.63

Table 20: Average computational results of the gap closing phase varying o €
{0.50,0.75} for networks G with I" € {20,15,10}.

Network b. The labeling algorithm is very fast in solving the instances de-
rived from network b. Table 21 shows the average results of the label-setting
algorithm after the preprocessing. Considering the percentage of #L (%L) over
the total number of labels, i.e. #L+#LW+#LUB, it is observed a decreasing
trend for lower value of T'. Indeed, %L is 53%, 39%, 36%, and 33% for I" equal
to 6, 3, 2, and 1, respectively. The fathoming rule based on resource bound
is more effective than that based on cost bound. Indeed, the average #LW is
1.71 times higher than #LUB. The only exception is observed for I' = 1 where
#LUB is 1.96 higher than #LW.

prep LSA #L #ILW #LUB

0.112 0.003 98.56 55.44 32.67
0.094 0.001 54.44 75.22 8.67
0.085 0.003 94.22 111.56 56.78
0.072 0.001 47.22 31.72 62.06

AVG | 0.091 0.002 73.61 68.49 40.04

— o wo |

Table 21: Average computational results of the gap closing phase varying I' for
networks b.

Table 22 shows average results varying the value of a. The higher «, the
higher #L. Similar values are observed for a equal to 0.25 and 0.50. For o = 0.75
#L grows to 107.96. In particular, #L is 1.83 times higher than #L for a = 0.25.
The percentage of #LW over the total number of labels (%LW) increases for

32

lower values of «. Indeed, %LW is 61%, 37%, and 24% for « equal to 0.25, 0.50,
and 0.75, respectively. An inverted trend is observed for %LUB. In particular,
%LUB is 2%, 17%, and 36% for a equal to 0.25, 0.50, and 0.75, respectively.

« prep LSA #L #LW #LUB

0.25 | 0.090 0.001 58.96 96.75 3.33
0.50 | 0.091 0.002 53.92 4217 19.25
0.75 | 0.092 0.003 107.96 66.54 97.54

AVG | 0.091 0.002 73.61 68.49 40.04

Table 22: Average computational results of the gap closing phase varying « for
networks b.

References

1]

A. Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss, and
C. Requejo. The robust vehicle routing problem with time windows. Com-
puters € Operations Research, 40(3):856 — 866, 2013.

E. Alvarez—l\/_[iranda, I. Ljubi¢, and P. Toth. A note on the bertsimas & sim
algorithm for robust combinatorial optimization problems. 4OR, 11(4):349-
360, 2013.

J. E. Beasley and N. Christofides. An algorithm for the resource constrained
shortest path problem. Networks, 19(4):379-394, 1989.

A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear pro-
grams. Operations Research Letters, 25:1-13, 1999.

D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Mathematical Programming, 98:49-71, 2003.

D. Bertsimas and M. Sim. The price of robustness. Operations Research,
52:35-53, 2004.

C. Biising, A. M. C. A. Koster, and M. Kutschka. Recoverable robust
knapsacks: I'-scenarios. In Network Optimization - 5th International Con-
ference, INOC 2011, Hamburg, Germany, June 13-16, 2011. Proceedings,
pages 583-588, 2011.

W. M. Carlyle, J. O. Royset, and R. K. Wood. Lagrangian relaxation
and enumeration for solving constrained shortest-path problems. Networks,
52(4):256-270, 2008.

L. Di Puglia Pugliese and F. Guerriero. A reference point approach for
the resource constrained shortest path problems. Transportation Science,
47(2):247-265, 2013.

33

[10]

[11]

[19]

[20]

L. Di Puglia Pugliese and F. Guerriero. A survey of resource constrained
shortest path problems: Exact solution approaches. Networks, 62(3):183—
200, 2013.

I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling
algorithms for the weight-constrained shortest path problem. Networks,
42:135 — 153, 2003.

A. Elimam and D. Kohler. Two engineering applications of a con-
strained shortest-path model. Furopean Journal of Operational Research,
103(3):426-438, 1997.

K.-S. Goetzmann, S. Stiller, and C. Telha. Optimization over integers with
robustness in cost and few constraints. In WAOA, pages 89-101, 2011.

C. E. Gounaris, P. P. Repoussis, C. D. Tarantilis, W. Wiesemann, and
C. A. Floudas. An adaptive memory programming framework for the robust
capacitated vehicle routing problem. Transportation Science, 50(4):1239—
1260, 2016.

C. E. Gounaris, W. Wiesemann, and C. A. Floudas. The robust capacitated
vehicle routing problem under demand uncertainty. Operations Research,
61(3):677-693, 2013.

J. Halpern and I. Priess. Shortest path with time constraints on movement
and parking. Networks, 4(3):241-253, 1974.

0. Klopfenstein and D. Nace. A robust approach to the chance-constrained
knapsack problem. Oper. Res. Lett., 36(5):628-632, 2008.

C. Lee, K. Lee, K. Park, and S. Park. Technical note - branch-and-price-
and-cut approach to the robust network design problem without flow bi-
furcations. Operations Research, 60(3):604-610, 2012.

C. Lee, K. Lee, and S. Park. Robust vehicle routing problem with deadlines
and travel time/demand uncertainty. Journal of the Operational Research
Society, 63(9):1294-1306, 2012.

T. Lee and C. Kwon. A short note on the robust combinatorial optimization
problems with cardinality constrained uncertainty. 4OR, 12(4):373-378,
Dec 2014.

L. Lozano and A. Medaglia. On an exact method for the constrained
shortest path problem. Computers & Operations Research, 40:278-284,
2013.

D. Lu. Robust optimization for airline scheduling and vehicle rout-
ing. PhD thesis, University of Waterloo, 2014. Available at
https:/ /uwspace.uwaterloo.ca/handle/10012/8964.

34

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Lu and F. Gzara. The robust crew pairing problem: model and solution
methodology. Journal of Global Optimization, 62(1):29-54, 2015.

D. Lu and F. Gzara. Models and algorithms for the robust resource con-
strained shortest path problem, 2018. Available at Optimization Online.

K. Mehlhorn and M. Ziegelmann. Resource constraint shortest paths. In
8" Ann Bur Symp on Algorithms (ESA2000), LNCS 1879, pages 326-337,
2000.

S. Mokarami and S. M. Hashemi. Constrained shortest path with uncertain
transit times. Journal of Global Optimization, 63(1):149-163, 2015.

M. Monaci, U. Pferschy, and P. Serafini. Exact solution of the robust
knapsack problem. Computers € OR, 40(11):2625-2631, 2013.

F. Ordoénez. Robust vehicle routing. TUTORIALS in Operations Research,
pages 153-178, 2010.

A. Pessoa, M. Poss, R. Sadykov, and F. Vanderbeck. Branch-and-cut-and-
price for the robust capacitated vehicle routing problem with knapsack
uncertainty, 2018. Available at Optimization Online.

A. A. Pessoa, L. D. P. Pugliese, F. Guerriero, and M. Poss. Robust con-
strained shortest path problems under budgeted uncertainty. Networks,
66(2):98-111, 2015.

M. Poss. Robust combinatorial optimization with variable budgeted uncer-
tainty. 4O0R, 11(1):75-92, 2013.

M. Poss. Robust combinatorial optimization with variable cost uncertainty.
European Journal of Operational Research, 237(3):836 — 845, 2014.

M. Poss. Robust combinatorial optimization with knapsack uncertainty.
Discrete Optimization, 27:88-102, 2018.

U. Ritzinger, J. Puchinger, and R. F. Hartl. A survey on dynamic and
stochastic vehicle routing problems. International Journal of Production

Research, 54(1):215-231, 2016.

L. Santos, J. Coutinho-Rodrigues, and J. R. Current. An improved solution
algorithm for the constrained shortest path problem. Transport Res B-
Meth, 41(7):756-771, 2007.

M. C. Santos, A. Agra, M. Poss, and D. Nace. A dynamic programming
approach for a class of robust optimization problems. SIAM Journal on
Optimization, 3:1799-1823, 2016.

A. Sedeno-Noda and S. Alonso-Rodriguez. An enhanced k-sp algorithm
with pruning strategies to solve the constrained shortest path problem.
Applied Mathematics and Computation, 265:602—618, 2015.

35

[38] 1. Sungur, F. O. nez, and M. Dessouky. A robust optimization approach
for the capacitated vehicle routing. ITE Transactions, 40(5):509-523, 2008.

[39] L. Wang, L. Yang, and Z. Gao. The constrained shortest path problem with
stochastic correlated link travel times. Furopean Journal of Operational
Research, 255(1):43-57, 2016.

[40] G. Xue. Primal-dual algorithms for computing weight-constrained shortest
paths and weight-constrained minimum spanning trees. In Performance,
Computing, and Communications Conference, 2000. IPCCC’00. Confer-
ence Proceeding of the IEEE International, pages 271-277. IEEE, 2000.

[41] M. Zabarankin, S. Uryasev, and P. Pardalos. Optimal risk path algorithms.
Applied Optimization, 66:273-296, 2002.

36

