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AUTOMATICITY AND INVARIANT MEASURES

OF LINEAR CELLULAR AUTOMATA

ERIC ROWLAND AND REEM YASSAWI

Abstract. We show that spacetime diagrams of linear cellular automata

Φ : FZ
p → FZ

p with (−p)-automatic initial conditions are automatic. This ex-
tends existing results on initial conditions which are eventually constant. Each

automatic spacetime diagram defines a (σ,Φ)-invariant subset of FZ
p, where σ

is the left shift map, and if the initial condition is not eventually periodic
then this invariant set is nontrivial. We construct, for the Ledrappier cellular

automaton, a family of nontrivial (σ,Φ)-invariant measures on FZ
3 . Finally,

given a linear cellular automaton Φ, we construct a nontrivial (σ,Φ)-invariant
measure on FZ

p for all but finitely many p.

1. Introduction

In this article, we study the relationship between p-automatic sequences and
spacetime diagrams of linear cellular automata over the finite field Fp, where p is
prime. For definitions, see Section 2.

There are many characterisations of p-automatic sequences. For readers familiar
with substitutions, Cobham’s theorem tells us that they are codings of fixed points
of length-p substitutions. In an algebraic setting, Christol’s theorem tells us that
they are precisely those sequences whose generating functions are algebraic over
Fp(x). In [30], we characterise p-automatic sequences as those sequences that occur
as columns of two-dimensional spacetime diagrams of linear cellular automata Φ :
FZ
p → FZ

p , starting with an eventually periodic initial condition.
We investigate the nature of a spacetime diagram as a function of its initial

condition, when the initial condition is p-automatic. In the special case when the
initial condition is eventually 0 in both directions and the cellular automaton has
right radius 0, this question has been thoroughly studied in a series of articles by
Allouche, von Haeseler, Lange, Petersen, Peitgen, and Skordev [4, 5, 6]. Amongst
other things, the authors show that an N× N-configuration which is generated by
a linear cellular automaton, whose right radius is 0, and an eventually 0 initial
condition, is [p, p]-automatic. In [27], Pivato and the second author have also
studied the substitutional nature of spacetime diagrams of more general cellular
automata with eventually periodic initial conditions.

In Sections 3 and 4 we extend these previous results by relaxing the constraints
imposed on the initial conditions and the cellular automata. We allow initial condi-
tions to be bi-infinite (−p)-automatic sequences or, equivalently, concatenations of
two p-automatic sequences. Iterating Φ produces a Z×N-configuration, and we show
in Theorem 3.10, Theorem 3.14, and Corollary 3.15, that such spacetime diagrams
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are automatic, with two possible definitions of automaticity: either by shearing
a configuration supported on a cone or by considering [−p, p]-automaticity. Our
results are constructive, in that given an automaton that generates an automatic
initial condition, we can compute an automaton that generates the spacetime dia-
gram. We perform such a computation in Example 3.11, which we use as a running
example throughout the article. While the spacetime diagram has a substitutional
nature, the alphabet size makes the computation of this substitution by hand in-
feasible, and indeed difficult even using software.

We can also extend a spacetime diagram backward in time to obtain a Z × Z-
configuration where each row is the image of the previous row under the action
of the cellular automaton. In Lemma 4.2 we show that the initial conditions that
generate a Z × Z-configuration are supported on a finite collection of lines. In
Theorem 4.5, we show that if the initial conditions are chosen to be p-automatic,
then the resulting spacetime diagram is a concatenation of four [p, p]-automatic
configurations.

Apart from the intrinsic interest of studying automaticity of spacetime diagrams,
one motivation for our study is a search for closed nontrivial sets in FZ

p which are
invariant under the action of the both left shift map σ and a fixed linear cellular
automaton Φ. Analogously, we also search for measures µ on one-dimensional
subshifts (X,σ) that are invariant under the action of both σ and Φ.

We give a brief background. Furstenberg [19] showed that any closed subset of the
unit interval I which is invariant under both maps x 7→ 2x mod 1 and x 7→ 3x mod 1
must be either I or finite. This is an example of topological rigidity. Furstenberg
asked if there also exists a measure rigidity, i.e. if there exists a nontrivial measure
µ on I which is invariant under these same two maps. By “nontrivial” we mean
that µ is neither the Lebesgue measure nor finitely supported. This question is
known as the (×2,×3) problem.

The (×2,×3) problem has a symbolic interpretation, which is to find a measure
on FN

2 which is invariant under both σ, which corresponds to multiplication by 2,
and the map u 7→ u + σ(u), which corresponds to multiplication by 3 and where
+ represents addition with carry. One can ask a similar question for σ and the
Ledrappier cellular automaton u 7→ u + σ(u), where + represents coordinate-wise
addition modulo 2. One way to produce such measures is to average iterates, under
the cellular automaton, of a shift-invariant measure, and to take a limit measure.
Pivato and the second author [26] show that starting with a Markov measure, this
procedure only yields the Haar measure λ. Host, Maass, and Martinez [20] show
that if a (σ,Φ)-invariant measure has positive entropy for Φ and is ergodic for the
shift or the Z2-action then µ = λ. The problem of identifying which measures
are (σ,Φ)-invariant is an open problem; see for example Boyle’s survey article [12,
Section 14] on open problems in symbolic dynamics or Pivato’s article [25, Section
3] on the ergodic theory of cellular automata.

In Sections 5 and 6 we apply results of Sections 3 and 4 to find (σ,Φ)-invariant
sets and measures. Spacetime diagrams generate subshifts (X,σ1, σ2), where σ1 and
σ2 are the left and down shifts, and these subshifts project to closed sets in FZ

p that
are (σ,Φ)-invariant. Similarly, we show in Proposition 6.1 that (σ1, σ2)-invariant
measures on X project to (σ,Φ)-invariant measures supported on a subset of FZ

p .
Einsiedler [18] constructs, for each s in the interval 0 ≤ s ≤ 1, a (σ1, σ2)-invariant
set and a (σ1, σ2)-invariant measure whose entropy in any direction is s times the
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maximal entropy in that direction. He builds invariant sets using intersection sets
as described in Section 5.2 and asks if every (σ1, σ2)-invariant set is an intersection
set. He also asks for the nature of the invariant measures. We show in Theorem 5.8
that each automatic spacetime diagram generates a (σ,Φ)-invariant set of small
complexity. If we assume that the initial condition is not spatially periodic and the
cellular automaton is not a shift, we show in Proposition 5.3 that these sets are
nontrivial. The invariant sets we find are not obviously intersection sets.

The quest for nontrivial (σ,Φ)-invariant measures appears to be more delicate.
Let (XU , σ1, σ2) be a subshift generated by a [−p,−p]-automatic configuration U .
Theorem 6.11 states that the measures supported on such subshifts are convex com-
binations of measures supported on codings of substitution shifts. We show in The-
orem 5.2 that U has at most polynomial complexity. Therefore the (σ,Φ)-invariant
measures guaranteed by Proposition 6.1 are not the Haar measure. However they
may be finitely supported: the shift XU generated by a nonperiodic spacetime dia-
gram U can contain periodic points on which a shift-invariant measure is supported.
In Theorems 6.13 and 6.15 we identify cellular automata and nonperiodic initial
conditions that yield two-dimensional shifts containing constant configurations.

We show in Corollary 6.3 that spacetime diagrams that do not contain large
one-dimensional repetitions support nontrivial (σ,Φ)-invariant measures, and in
Theorem 6.2 we show that this condition is decidable. In Theorem 6.4 we show
that for the Ledrappier cellular automaton there exists a family of substitutions all
of whose spacetime diagrams, including our running example, support nontrivial
measures. In Theorem 6.9, we generalise this last proof, showing that for any linear
cellular automaton Φ, nontrivial (σ,Φ)-invariant measures exist for all but finitely
many primes p. Given Φ : FZ

p → FZ
p , to what extent it is the case that a random

p-automatic initial condition generates a nontrivial (σ,Φ)-invariant measure? This
remains open.

We are indebted to Allouche and Shallit’s classical text [3], referring to proofs
therein on many occasions, which carry through in our extended setting. In Sec-
tion 2, we provide a brief background on linear cellular automata, larger rings
of generating functions in two variables, and p- and (−p)-automaticity. In Sec-
tion 3 we prove that Z × N-indexed spacetime diagrams are automatic if we start
with automatic initial conditions. In Section 4 we extend these results to include
Z×Z-indexed spacetime diagrams. In Section 5 we show that automatic spacetime
diagrams for Φ yield nontrivial (σ,Φ)-invariant sets and discuss their relation to
the intersections sets defined by Kitchens and Schmidt [22]. Finally in Section 6,
we study (σ,Φ)-invariant measures supported on automatic spacetime diagrams.

2. Preliminaries

2.1. Linear cellular automata. Let A be a finite alphabet. An element in AZ is
called a configuration and is written u = (um)m∈Z. The (left) shift map σ : AZ →
AZ is the map defined as (σ(u))m := um+1. Let A be endowed with the discrete
topology and AZ with the product topology; then AZ is a metrisable Cantor space.
A (one-dimensional) cellular automaton is a continuous, σ-commuting map Φ :
AZ → AZ. The Curtis–Hedlund–Lyndon theorem tells us that a cellular automaton
is determined by a local rule f : there exist integers ` and r with −` ≤ r and
f : Ar+`+1 → A such that, for all m ∈ Z, (Φ(u))m = f(um−`, . . . , um+r). Let N
denote the set of non-negative integers.
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Definition 2.1. Let Φ : AZ → AZ be a cellular automaton and let u ∈ AZ. If
U ∈ AZ×N satisfies U |Z×{0} = u and Φ(U |Z×{n}) = U |Z×{n+1} for each n ∈ N, we
call U = STΦ(u) the spacetime diagram generated by Φ with initial condition u.

For the cellular automata in this article, A = Fp. The configuration space FZ
p

forms a group under componentwise addition; it is also an Fp-vector space.

Definition 2.2. A cellular automaton Φ : FZ
p → FZ

p is linear if Φ is an Fp-linear
map, i.e. (Φ(u))m = α−`um−` + · · · + α0um + · · · + αrum+r for some nonnegative
integers ` and r, called the left and right radius of Φ. The generating polynomial [5]
of Φ, denoted φ, is the Laurent polynomial

φ(x) := α−`x
` + · · ·+ α0 + · · ·+ αrx

−r.

We remark that our use of φ for the generating polynomial differs from usage
in the literature of φ as Φ’s local rule, which is the map (um−`, . . . , um+r) 7→
α−`um−` + · · ·+ αrum+r.

The generating polynomial has the property that φ(x)
∑

m∈Z umx
m =

∑
m∈Z(Φ(u))mx

m.
We will identify sequences (um)m∈Z with their generating function f(x) =

∑
m∈Z umx

m.
Recall that Fp[x] and FpJxK are the rings of polynomials and power series in the
variable x with coefficients in Fp respectively. Let Fp(x) and Fp((x)) be their
respective fields of fractions: Fp(x) is the field of rational functions and Fp((x))
is that of formal Laurent series; elements of Fp((x)) are expressions of the form
f(x) =

∑
m≥m0

umx
m, where um ∈ Fp and m0 ∈ Z.

2.2. Cones. A cone is a subset of Z×Z of the form {v0 + sv1 + tv2 : s ≥ 0, t ≥ 0}
for some v0,v1,v2 ∈ Z×Z such that v1 and v2 are linearly independent. The cone
generated by v1 and v2 is the cone {sv1 + tv2 : s ≥ 0, t ≥ 0}.

If a cellular automaton is begun from an initial condition u satisfying um = 0 for
all m ≤ −1, then the spacetime diagram STΦ(u) is supported on the cone generated
by (1, 0) and (−r, 1). For example, see Figure 1. If r ≥ 1 then this cone contains
points with negative entries, but we would still like to represent STΦ(u) as a formal
power series in some ring. We follow the geometric exposition given by Aparicio
Monforte and Kauers [7].

By definition, a cone C is line-free, that is, for every n ∈ C \ {(0, 0)}, we have
−n 6∈ C. This places us within the scope of [7].

For each cone C, let Fp,CJx, yK be the set of all formal power series in x and y,
with coefficients in Fp, whose support is in C. Then (ordinary) multiplication of
two elements in Fp,CJx, yK is well defined, and the product belongs to Fp,CJx, yK; in
fact Fp,CJx, yK is an integral domain [7, Theorems 10 and 11].

Let � be the reverse lexicographic order on Z×Z, i.e. (m1, n1) � (m2, n2) if n1 <
n2 or if n1 = n2 and m1 ≤ m2. A cone C is compatible with � if (0, 0) � (m,n) for
all (m,n) ∈ C. Every cone contained in the set {(m,n) : n > 0} ∪ {(m, 0) : m ≥ 0}
is compatible with �. Let

Fp,�Jx, yK :=
⋃

C compatible with �

Fp,CJx, yK.

Then Fp,�Jx, yK is a ring contained in the field
⋃

(m,n)∈Z×Z x
mynFp,�Jx, yK [7, Theo-

rem 15]. This field also contains the field Fp(x, y) of rational functions. Researchers
working with automatic sequences have previously worked with Fp,�Jx, yK [1, 2].
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Figure 1. Spacetime diagram STΦ(u) for a cellular automaton
with generating polynomial φ(x) = x−1 + x−3 + x−7 ∈ F2[x]. The
dimensions are 511×256, and time goes up the page. The right half
(um)m≥0 of the initial condition is the Thue–Morse sequence (the
fixed point beginning with 0 of 0 → 01, 1 → 10), and um = 0 for
all m ≤ −1. By Theorem 3.5, this spacetime diagram, restricted
to the cone generated by the vectors (1, 0) and (−7, 1), has an
algebraic generating function.

2.3. Automatic initial conditions. Next we define automatic sequences, which
we will use as initial conditions for spacetime diagrams.

Definition 2.3. A deterministic finite automaton with output (DFAO) is a 6-tuple
(S,Σ, δ, s0,A, ω), where S is a finite set (of states), s0 ∈ S (the initial state), Σ is a
finite alphabet (the input alphabet), A is a finite alphabet (the output alphabet),
ω : S → A (the output function), and δ : S × Σ→ S (the transition function).

In this article, our output alphabet is A = Fp.
The function δ extends in a natural way to the domain S × Σ∗, where Σ∗ is

the set of all finite words on the alphabet Σ. Namely, define δ(s,m` · · ·m1m0) :=
δ(δ(s,m0),m` · · ·m1) recursively. If Σ = {0, . . . , p − 1}, this allows us to feed the
standard base-p representation m` · · ·m1m0 of an integer m into an automaton,
beginning with the least significant digit. (Recall that the standard base-p repre-
sentation of 0 is the empty word.) All automata in this article process integers by
reading their least significant digit first.

A sequence (um)m≥0 of elements in Fp is p-automatic if there is a DFAO (S, {0, . . . , p−
1}, δ, s0,Fp, ω) such that um = ω(δ(s0,m` · · ·m1m0)) for allm ≥ 0, wherem` · · ·m1m0

is the standard base-p representation of m.
Similarly, we say that a sequence (Um,n)(m,n)∈N×N is [p, p]-automatic if there is

a DFAO (S, {0, . . . , p− 1}2, δ, s0,Fp, ω) such that

Um,n = ω(δ(s0, (m`, n`) · · · (m1, n1)(m0, n0)))

for all (m,n) ∈ N × N, where m` · · ·m1m0 is a base-p representation of m and
n` · · ·n1n0 is a base-p representation of n. Here, if m and n have standard base-p
representations of different lengths, then the shorter representation is padded with
leading zeros.
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Figure 2. Spacetime diagram for a cellular automaton with gen-
erating polynomial φ(x) = x+1+x−1 ∈ F2[x]. The dimensions are
511 × 256. The right half (um)m≥0 of the initial condition is the
Thue–Morse sequence, and the left half (u−m)m≥0 is the Toeplitz
sequence (the fixed point of 0 → 01, 1 → 00). By Corollary 3.15,
this spacetime diagram is [−2, 2]-automatic.

As defined, p-automatic sequences are one-sided. To specify a bi-infinite se-
quence, we use base −p. Every integer has a unique representation in base −p with
the digit set {0, 1, . . . , p− 1} [3, Theorem 3.7.2]. For example, 10 is written in base
−2 as

10 = 16− 8 + 4− 2 + 0

= 1 · (−2)4 + 1 · (−2)3 + 1 · (−2)2 + 1 · (−2)1 + 0 · (−2)0,

so its base-(−2) representation is 11110. We say that a sequence (um)m∈Z is
(−p)-automatic if there is a DFAO (S, {0, . . . , p − 1}, δ, s0,Fp, ω) such that um =
ω(δ(s0,m` · · ·m1m0)) for all m ∈ Z, where m` · · ·m1m0 is the standard base-(−p)
representation of m. A sequence (um)m∈Z is (−p)-automatic if and only if the
sequences (um)m≥0 and (u−m)m≥0 are p-automatic [3, Theorem 5.3.2].

In this article, we use (−p)-automatic sequences in FZ
p as initial conditions for

cellular automata. For example, the spacetime diagram in Figure 2 is of a linear
cellular automaton begun from a (−2)-automatic initial condition.

3. Algebraicity and automaticity of spacetime diagrams

In this section we show that a spacetime diagram obtained by evolving a lin-
ear cellular automaton from a (−p)-automatic initial condition u is automatic in
several senses. There is a natural notion of the [p, p]-kernel of a two-dimensional
configuration extending the usual definition. First, if we consider bi-infinite initial
conditions that satisfy um = 0 for all m ≤ −1, we show in Theorem 3.5 that the
generating functions of these cone-indexed configurations are algebraic and that
they have finite [p, p]-kernels. Then in Section 3.2 we show that the shear of an
algebraic cone-indexed configuration is [p, p]-automatic. Finally, in Section 3.3 we
study the [−p, p]-automaticity of spacetime diagrams, where the coordinates (m,n)
are processed by reading m in base −p. Specifically, we prove in Corollary 3.15
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that a spacetime diagram obtained by evolving a linear cellular automaton from a
general (−p)-automatic initial condition is [−p, p]-automatic.

3.1. Algebraicity and finiteness of the [p, p]-kernel. Define the [p, p]-kernel of
U = (Um,n)(m,n)∈Z×N to be the set{

(Upem+i,pen+j)(m,n)∈Z×N : e ≥ 0, 0 ≤ i ≤ pe − 1, 0 ≤ j ≤ pe − 1
}
.

The [p, p]-kernel of a cone-indexed sequence (Um,n)(m,n)∈C is defined by extending
Um,n = 0 for all (m,n) ∈ (Z× N) \ C.

Given i, j ∈ {0, 1, . . . , p− 1}, the Cartier operator Λi,j : Fp,�Jx, yK→ Fp,�Jx, yK
is defined as

Λi,j

 ∑
(m,n)∈C

Um,nx
myn

 :=
∑

(m,n):(mp+i,np+j)∈C

Ump+i,np+jx
myn.

Let C be a cone. The [p, p]-kernel of a power series F (x, y) =
∑

(m,n)∈C Um,nx
myn ∈

Fp,CJx, yK is the set

{Λi`,j` · · ·Λi0,j0 (F (x, y)) : ` ≥ 0 and 0 ≤ ik, jk ≤ p− 1 for 0 ≤ k ≤ `} .

If the sequence (Um,n)(m,n)∈C is indexed by a cone, then its [p, p]-kernel is the
set of all sequences (Vm,n)(m,n)∈C∗ where

∑
(m,n)∈C∗ Vm,nx

myn belongs to the [p, p]-

kernel of
∑

(m,n)∈C Um,nx
myn. We show in Lemma 3.2 that such C∗ are compatible

with �.
We can define analogously the one-dimensional Cartier operator Λi : FpJxK →

FpJxK and also the p-kernel of a one-dimensional power series. Eilenberg’s the-
orem [3, Theorem 6.6.2] states that a sequence (um)m≥0 is p-automatic precisely
when its p-kernel is finite; the same is true for a [p, p]-automatic sequence (Um,n)(m,n)∈N×N [3,
Theorem 14.4.1].

A power series f(x) ∈ FpJxK is algebraic over Fp(x) if there exists a nonzero
polynomial P (x, z) ∈ Fp[x, z] such that P (x, f(x)) = 0. Similarly, the cone-indexed
series f(x, y) ∈ Fp,�Jx, yK is algebraic over Fp(x, y) if there exists a nonzero poly-
nomial P (x, y, z) ∈ Fp[x, y, z] such that P (x, y, f(x)) = 0. We recall Christol’s
theorem for one-dimensional power series [14, 15], generalised to two-dimensional
power series by Salon [31].

Theorem 3.1.

(1) A sequence (um)m≥0 of elements in Fp is p-automatic if and only if
∑

m≥0 umx
m

is algebraic over Fp(x).
(2) A sequence of elements (Um,n)(m,n)∈N×N in Fp is [p, p]-automatic if and

only if
∑

(m,n)∈N×N Um,nx
myn is algebraic over Fp(x, y).

We refer to [3, Theorems 12.2.5 and 14.4.1] for the proof of Theorem 3.1, where it
is shown that the algebraicity of a power series over a finite field is equivalent to the
automaticity of its sequence of coefficients, which is equivalent to the finiteness of its
p- or [p, p]-kernel. In related work, Allouche, Deshouillers, Kamae, and Koyanagi [2,
Theorem 6] show that the coefficients of an algebraic power series in Fp((x))JyK is
p-automatic.

In the next lemma we show that the image of Fp,�Jx, yK under Λi,j is indeed
contained in Fp,�Jx, yK. We show more: although elements of the [p, p]-kernel of
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F (x, y) ∈ Fp,CJx, yK do not necessarily belong to Fp,CJx, yK, their indexing sets are
one of a finite set of translates of C.

Lemma 3.2. Let r ≥ 0 be an integer, let C be the cone generated by (1, 0) and
(−r, 1), and let F (x, y) ∈ Fp,CJx, yK. Then every element of the [p, p]-kernel of
F (x, y) is supported on C − (t, 0) for some 0 ≤ t ≤ r.

Proof. Let 0 ≤ i ≤ p − 1, and 0 ≤ j ≤ p − 1. We abuse notation and define

Λi,j(C) :=
{(

m−i
p , n−jp

)
: (m,n) ∈ C, m ≡ i mod p, n ≡ j mod p

}
. Let 0 ≤ s ≤

r. Then we claim that Λi,j(C − (s, 0)) = C − (t, 0) for some 0 ≤ t ≤ r. The
statement of the lemma follows from the claim. Let (m,n) ∈ Z × Z be a point
satisfying n ≥ 0, −m− rn ≤ s, m ≡ i mod p, and n ≡ j mod p. Then Λi,j maps

(m,n) to
(

m−i
p , n−jp

)
, which satisfies n−j

p ≥ 0 and

−m−i
p − r · n−jp ≤ i+s+rj

p ≤ (p−1)+r+r(p−1)
p = r + 1− 1

p .

Since −m−i
p − r · n−jp is an integer, this implies −m−i

p − r · n−jp ≤ t :=
⌊
i+s+rj

p

⌋
and t ≤ r. �

Example 3.3. If p = 2 and C is generated by (1, 0) and (−3, 1), then Λ0,0 and
Λ1,0 map C to itself. The other Cartier operators map Λ0,1(C) = C − (1, 0) and
Λ1,1(C) = C − (2, 0). The cone C − (3, 0) arises from Λ1,1Λ1,1(C) = C − (3, 0).

We now state Christol’s theorem for Fp,�Jx, yK. The case r = 0 is Salon’s
theorem (Part (2) of Theorem 3.1). We omit the proof, since it is a straightforward
generalisation of the proofs in [3, Theorems 12.2.5 and 14.4.1].

Theorem 3.4. Let F (x, y) ∈ Fp,�Jx, yK. Then F (x, y) is algebraic over Fp(x, y) if
and only if F (x, y) has a finite [p, p]-kernel.

Next we prove that a linear cellular automaton begun from a p-automatic initial
condition produces an algebraic spacetime diagram. A special case appears in
Allouche et al. [5, Lemma 2], when the initial condition is eventually 0 in both
directions. The proof in the general case is similar.

Theorem 3.5. Let Φ : FZ
p → FZ

p be a linear cellular automaton. If u ∈ FZ
p is

such that (um)m≥0 is p-automatic and um = 0 for all m ≤ −1, then the generating
function of STΦ(u) is algebraic and so has a finite [p, p]-kernel.

Proof. Let the generating polynomial of Φ be φ(x) := α−`x
`+· · ·+α0+· · ·+αrx

−r.
Let fu(x) ∈ FpJxK be the generating function of u. The n-th row of STΦ(u) is the
sequence whose generating function is the Laurent series φ(x)nfu(x). Let C be the
cone generated by (1, 0) and (−r, 1). Note that U := STΦ(u) is identically 0 on
(Z× N) \ C, so its generating function satisfies FU (x, y) ∈ Fp,CJx, yK ⊆ Fp,�Jx, yK.
Also,

FU (x, y) =

∞∑
n=0

φ(x)nfu(x)yn =
fu(x)

1− φ(x)y
.

Since (um)m≥0 is p-automatic, Part (1) of Theorem 3.1 guarantees the existence
of a polynomial P (x, z) ∈ Fp[x, z] such that P (x, fu(x)) = 0. Let Q(x, y, z) :=
P (x, (1− φ(x)y)z). Then

Q(x, y, FU (x, y)) = P (x, (1− φ(x)y)FU (x, y)) = P (x, fu(x)) = 0,
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so FU (x, y) is algebraic. By Theorem 3.4, U = (Um,n)(m,n)∈C has a finite [p, p]-
kernel. �

In Figure 1 we have an illustration of a spacetime diagram satisfying the condi-
tions of Theorem 3.5.

Let C be the cone generated by (1, 0) and (−r, 1). An interesting question is the
following. Given a polynomial equation Q(x, y, z) = 0 satisfied by z = F (x, y) ∈
Fp,CJx, yK, is it decidable whether F (x, y) is the generating function of STΦ(u) for
some linear cellular automaton Φ? The initial condition u is determined by F (x, 0),
so it would suffice to obtain an upper bound on the left radius `.

3.2. Automaticity by shearing. If r ≥ 1, then the cone generated by (1, 0) and
(−r, 1) contains points (m,n) where m ≤ −1. In this section, we feed these indices
into an automaton by shearing the sequence so that it is supported on N× N.

Definition 3.6. Let C be the cone generated by (1, 0) and (−r, 1), and let s ≥ 0.
The shear of a sequence (Um,n)(m,n)∈C−(s,0) is the sequence (Vm,n)(m,n)∈N×N defined
by Vm,n = Um−s−rn,n for each (m,n) ∈ N× N.

The next lemma enables us to move between the [p, p]-kernel of the generat-
ing function

∑
(m,n)∈C Um,nx

myn of a cone-indexed sequence and the generating

function
∑

(m,n)∈N×N Vm,nx
myn of its shear.

Lemma 3.7. Let F (x, y) ∈ Fp,�Jx, yK. Let 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1. Then

Λi,j

(
x`F (x, y)

)
= x−b

i−`
p cΛ(i−`) mod p,j(F (x, y)).

Proof. Let `′ = −
⌊
i−`
p

⌋
. Let m,n ∈ Z. We prove the result for the monomial

F (x, y) = xmyn; the general result then follows from the linearity of Λi,j . If n 6≡ j
mod p, then both sides are 0. If n ≡ j mod p, we have

Λi,j

(
x` · xmyn

)
= Λi,j

(
x`+myn

)
=

{
x

`+m−i
p y

n−j
p if `+m ≡ i mod p

0 otherwise

=

{
x`
′+

m−(i−`+p`′)
p y

n−j
p if m ≡ i− `+ p`′ mod p

0 otherwise

= x`
′
Λi−`+p`′,j(x

myn)

= x`
′
Λ(i−`) mod p,j(x

myn). �

Note here that for each fixed `, the map i 7→ (i− `) mod p is a bijection.

Example 3.8. Let p = 3, and let F (x, y) ∈ F3,�Jx, yK. For each j, we have

Λ0,j(x
−1F (x, y)) = Λ1,j(F (x, y)),

Λ1,j(x
−1F (x, y)) = Λ2,j(F (x, y)),

Λ2,j(x
−1F (x, y)) = x−1Λ0,j(F (x, y)).

We prove a version of Eilenberg’s theorem for cone-indexed automatic sequences.
We show there exists an explicit automaton representation of the shear of a cone-
indexed p-automatic sequence using its [p, p]-kernel.
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Theorem 3.9. Let C be generated by (1, 0) and (−r, 1) for some r ≥ 0. A C-indexed
sequence (Um,n)(m,n)∈C of elements in Fp has a finite [p, p]-kernel if and only if its
shear is [p, p]-automatic.

Proof. Let (Vm,n)(m,n)∈N×N be the shear of (Um,n)(m,n)∈C . By [3, Theorem 14.2.2],
V is [p, p]-automatic if and only if its [p, p]-kernel is finite. Hence we show that U
has a finite [p, p]-kernel if and only if V has a finite [p, p]-kernel.

By Lemma 3.2, every element of the [p, p]-kernel of U is supported on C −
(s, 0) for some 0 ≤ s ≤ r. Let W be an element of the [p, p]-kernel of U , sup-
ported on C − (s, 0). Let F (x, y) =

∑
(m,n)∈C−(s,0)Wm,nx

myn. Let Gn(x, y) =

xs+rn
∑

m≥−s−rnWm,nx
myn, so that G(x, y) =

∑
n≥0Gn(x, y) is the generating

function of the shear of W . Similarly write Fn(x, y) =
∑

m≥−s−rnWm,nx
myn;

then Gn(x, y) = xs+rnFn(x, y). Fix n ≡ j mod p, and write n = j + kp where
k ≥ 0. By Lemma 3.7, we have

Λi,j(Fn(x, y)) = Λi,j

(
x−s−rnGn(x, y)

)
= x−b

i+s+rn
p cΛ(i+s+rn) mod p,j(Gn(x, y))

= x−b
i+s+rj

p c−rkΛ(i+s+rj) mod p,j(Gj+kp(x, y)).

Summing over k ≥ 0 gives

Λi,j(F (x, y)) = x−b
i+s+rj

p c∑
k≥0

x−rkΛ(i+s+rj) mod p,j(Gj+kp(x, y)).

Therefore the shear of xb
i+s+rj

p cΛi,j(F (x, y)) is

∑
k≥0

Λ(i+s+rj) mod p,j(Gj+kp(x, y)) = Λ(i+s+rj) mod p,j

∑
n≥0

Gn(x, y)


= Λ(i+s+rj) mod p,j (G(x, y)) .

Inductively, suppose G(x, y) is the generating function of an element of the kernel

of V . Then the shear of xb
i+s+rj

p cΛi,j(F (x, y)) is an element of the [p, p]-kernel of

V . Note that Λi,j(F (x, y)) is supported on C −
(⌊

i+s+rj
p

⌋
, 0
)

.

We set up a map κ from the [p, p]-kernel of U to the [p, p]-kernel of V . Let
κ(U) = V , and define κ recursively as follows. For each W in the [p, p]-kernel of
U , let κ(Λi,j(W )) = Λ(i+s+rj) mod p,j(κ(W )) where W is supported on C − (s, 0).
Since the map i 7→ (i + s + rj) mod p is a bijection on Fp, κ maps {Λi,j(W ) : 0 ≤
i, j ≤ p− 1} surjectively onto {Λi,j(κ(W )) : 0 ≤ i, j ≤ p− 1}. It follows inductively
that κ is a surjection from the [p, p]-kernel of U to the [p, p]-kernel of V .

If the [p, p]-kernel of U is finite, then the surjectivity of κ implies that the [p, p]-
kernel of V is finite. By Lemma 3.2, κ is at most (r + 1)-to-one. Therefore if the
[p, p]-kernel of V is finite then the [p, p]-kernel of U has at most r+1 times as many
elements and is also finite. �

We can now extend Theorem 3.5.

Theorem 3.10. Let Φ : FZ
p → FZ

p be a linear cellular automaton. If u ∈ FZ
p is such

that (um)m≥0 is p-automatic and um = 0 for all m ≤ −1, then the shear of STΦ(u)
is [p, p]-automatic.
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Figure 3. Automata from Example 3.11. The automaton on the
left generates the initial condition u, and the automaton on the
right generates the spacetime diagram STΦ(u).

Proof. By Theorem 3.5, STΦ(u) has a finite [p, p]-kernel. By Theorem 3.9, we
conclude that the shear of STΦ(u) is [p, p]-automatic. �

Example 3.11. Let p = 3, and let φ(x) = x + 1 ∈ F3[x]. Let (um)m≥0 be
the 3-automatic sequence generated by the automaton on the left in Figure 3,
whose first few terms are 001001112 · · · . The size of this automaton makes later
computations feasible. Let um = 0 for all m ≤ −1; then the spacetime diagram
U = STΦ(u) is supported on N× N. See Figure 4. We compute an automaton for
the [3, 3]-automatic sequence U |N×N. By Part (1) of Theorem 3.1, we can compute
a polynomial P (x, y) such that P (x, fu(x)) = 0. We compute

P (x, y) = x28y + 2
(
x12 + x21 + x24 + x27 + x28 + x29

)
y3

+
(
1 + 2x9 + x12 + x15 + x18 + x21 + 2x24 + 2x27 + x30

)
y9

+ 2
(
1 + x27 + x54

)
y27.

Note that this is not the minimal polynomial for fu(x), but it is in a convenient
form for the subsequent computation. As in the proof of Theorem 3.5, the gener-
ating function FU (x, y) of U satisfies P (x, (1 − φ(x)y)FU (x, y)) = 0. By Part (2)
of Theorem 3.1, we can use this polynomial equation to compute an automaton for
U |N×N. The resulting automaton has 486 states; minimizing produces an equiva-
lent automaton with 54 states. This automaton is shown without labels or edge
directions on the right in Figure 3. These computations were performed with the
Mathematica package IntegerSequences [29].

3.3. Automaticity in base [−p, p]. Instead of shearing, we may evaluate an au-
tomaton at negative integers by using base −p. This approach gives a variant of
Theorem 3.9 and a notion of automaticity of STΦ(u) for a general (−p)-automatic
initial condition u.

Definition 3.12. A sequence (Um,n)(m,n)∈Z×N is [−p, p]-automatic if there is a

DFAO (S, {0, . . . , p− 1}2, δ, s0,Fp, ω) such that

Um,n = ω(δ(s0, (m`, n`) · · · (m1, n1)(m0, n0)))
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Figure 4. Spacetime diagram for a cellular automaton with gen-
erating polynomial φ(x) = x + 1 ∈ F3[x]. The initial condition
is generated by the automaton in Example 3.11. The line n = m
separates the diagram into two regions; the upper region contains
arbitrarily large white patches, and the lower region does not. This
is because the left half of the initial condition is identically 0. The
dimensions are 511× 256.

for all (m,n) ∈ N×N, where m` · · ·m1m0 is the standard base-(−p) representation
of m and n` · · ·n1n0 is the standard base-p representation of n, padded with zeros
if necessary, as in Section 2.3.

Theorem 3.13. A sequence (Um,n)(m,n)∈Z×N has a finite [p, p]-kernel if and only
if it is [−p, p]-automatic.

Proof. Define the [−p, p]-Cartier operator Λ̄i,j by

Λ̄i,j

(
(Wm,n)(m,n)∈Z×N

)
:= (W−pm+i,pn+j)(m,n)∈Z×N.

Define the [−p, p]-kernel of U = (Um,n)(m,n)∈Z×N to be the smallest set containing

U that is closed under Λ̄i,j for all i, j ∈ {0, 1, . . . , p − 1}. We show that the [p, p]-
kernel of U is finite if and only if the [−p, p]-kernel of U is finite.

For a sequence (Wm,n)(m,n)∈Z×N, define ρ(W ) := (W−m,n)(m,n)∈Z×N and σ−1(W ) :=
(Wm−1,n)(m,n)∈Z×N. Let K be the union, over all elements W in the [p, p]-kernel of
U , of the set {

W, ρ(W ), σ−1(W ), ρ(σ−1(W ))
}
.

We claim that the [−p, p]-kernel of U is a subset of K. One verifies that Λ̄i,j(K) ⊆
K:

Λ̄i,j(W ) = ρ(Λi,j(W ))

Λ̄i,j(ρ(W )) =

{
Λ0,j(W ) if i = 0

σ−1(Λp−i,j(W )) if i 6= 0

Λ̄i,j(σ
−1(W )) =

{
ρ(σ−1(Λp−1,j(W ))) if i = 0

ρ(Λi−1,j(W )) if i 6= 0

Λ̄i,j(ρ(σ−1(W ))) = σ−1(Λp−1−i,j(W )).
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For example, if i 6= 0 we have

Λ̄i,j(ρ(W )) = Λ̄i,j

(
(W−m,n)(m,n)∈Z×N

)
= (W−(−pm+i),pn+j)(m,n)∈Z×N

= (Wp(m−1)+p−i,pn+j)(m,n)∈Z×N

= σ−1
(
(Wpm+p−i,pn+j)(m,n)∈Z×N

)
= σ−1(Λp−i,j(W ));

the other identities follow similarly. Since U ∈ K, it follows that the [−p, p]-kernel
of U is a subset of K. Therefore there are at most four times as many elements
in the [−p, p]-kernel as in the [p, p]-kernel, so if the [p, p]-kernel is finite then the
[−p, p]-kernel is also finite.

Similarly, we can emulate Λi,j by taking the four states W,ρ(W ), σ(W ), σ(ρ(W ))
for each element W in the [−p, p]-kernel of U , where σ(W ) := (Wm+1,n)(m,n)∈Z×N:

Λi,j(W ) = ρ(Λ̄i,j(W ))

Λi,j(ρ(W )) =

{
Λ̄0,j(W ) if i = 0

σ(Λ̄p−i,j(W )) if i 6= 0

Λi,j(σ(W )) =

{
σ(ρ(Λ̄0,j(W ))) if i = p− 1

ρ(Λ̄i+1,j(W )) if i 6= p− 1

Λi,j(σ(ρ(W ))) = σ(Λ̄p−1−i,j(W )).

It follows that there are at most four times as many elements in the [p, p]-kernel
as in the [−p, p]-kernel, so if the [−p, p]-kernel is finite then the [p, p]-kernel is also
finite.

Now we show that the [−p, p]-kernel of U is finite if and only if U is [−p, p]-
automatic. The proof is similar to the usual proof of Eilenberg’s characterisation, as
in [3, Theorem 6.6.2]. If the [−p, p]-kernel of U is finite, then the automaton whose
states are the elements of the [−p, p]-kernel and whose transitions are determined
by the action of Λ̄i,j is finite; moreover, this automaton outputs Um,n when fed the
base-[−p, p] representation of (m,n). Conversely, if there is such an automaton,
then the [−p, p]-kernel is finite since it can be embedded into the set of states of
the automaton. �

Theorem 3.14. Let Φ : FZ
p → FZ

p be a linear cellular automaton. If u ∈ FZ
p is

such that (um)m≥0 is p-automatic and um = 0 for all m ≤ −1, then STΦ(u) is
[−p, p]-automatic.

Proof. By Theorem 3.5, STΦ(u) has a finite [p, p]-kernel. By Theorem 3.13, STΦ(u)
is [−p, p]-automatic. �

Corollary 3.15. Let Φ : FZ
p → FZ

p be a linear cellular automaton. If u ∈ FZ
p is

(−p)-automatic, then STΦ(u) is [−p, p]-automatic.

Proof. Consider the two initial conditions · · ·u−2u−1 · 00 · · · and · · · 00 · u0u1 · · · .
By Theorem 3.14, STΦ(· · · 00 · u0u1 · · · ) is [−p, p]-automatic. A straightforward
modification of Theorem 3.14 shows that STΦ(· · ·u−2u−1 · 00 · · · ) is also [−p, p]-
automatic. Since Φ is linear, STΦ(u) is the termwise sum of these two spacetime
diagrams. The sum of two [−p, p]-automatic sequences is automatic; therefore
STΦ(u) is [−p, p]-automatic. �
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Figure 5. Spacetime diagram for the linear cellular automaton
with generating polynomial φ(x) = x + 1 ∈ F3[x] begun from
the 3-automatic initial condition described in Example 3.16. The
dimensions are 511× 256.

Example 3.16. As in Example 3.11, let p = 3, let φ(x) = x + 1 ∈ F3[x], and
let (um)m≥0 be 3-automatic sequence generated by the automaton on the left in
Figure 3. We extend (um)m≥0 to a (−3)-automatic sequence (um)m∈Z by setting
um = u−m for all m ≤ −1. The resulting spacetime diagram is shown in Figure 5.
By Corollary 3.15, STΦ(u) is [−3, 3]-automatic.

To compute an automaton for STΦ(u), we start with the 54-state automaton
computed in Example 3.11 for the right half (Um,n)(m,n)∈N×N of the spacetime
diagram in Figure 4. We convert this [3, 3]-automaton using Theorem 3.13 to a
[−3, 3]-automaton for the spacetime diagram (Um,n)(m,n)∈Z×N in Figure 4 whose
left half is identically 0; minimizing produces an automaton M with 204 states.

We also need an automaton for the Z×N-indexed spacetime diagram with initial
condition · · ·u−2u−1000 · · · , shown in Figure 6. The symmetry x−1φ(x) = φ(x−1)
implies that a shear of this diagram is the left–right reflection (U−m,n)(m,n)∈Z×N
of the diagram in Figure 4. Since (U−m,n)(m,n)∈Z×N is an element of the [−3, 3]-
kernel of U , we obtain an automaton for (U−m,n)(m,n)∈Z×N simply by changing
the initial state in M to be the state corresponding to this kernel sequence; hence
(U−m,n)(m,n)∈Z×N is generated by an automaton M′ with 204 states. Shearing
(U−m,n)(m,n)∈Z×N produces (U−m+n,n)(m,n)∈Z×N, the spacetime diagram in Fig-
ure 6. Using a variant of Theorem 3.9 for the [−p, p]-kernel of a Z × N-indexed
sequence, we compute an automaton with 204 states for this spacetime diagram.

Finally, since u0 = 0, the product of the automata for (Um,n)(m,n)∈Z×N and
(U−m+n,n)(m,n)∈Z×N is an automaton for the sum STΦ(u) of the spacetime diagrams
in Figures 4 and 6, which is the diagram in Figure 5. The product automaton has
2042 states, but minimizing reduces this to 1908 states.

4. Automaticity of Z× Z-indexed spacetime diagrams

In Corollary 3.15, we showed that if u is (−p)-automatic then the Z × N-
configuration STΦ(u) is [−p, p]-automatic. Our aim in this section is to extend
Corollary 3.15 to Z× Z-configurations. We remark that the results of this section
can be further extended to statements about two-dimensional linear recurrences
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Figure 6. Spacetime diagram whose sum with the diagram in
Figure 4 is the diagram in Figure 5.

with constant coefficients. We also note that Bousquet-Mélou and Petkov̌sek [11]
prove similar results, with different proofs, for linear recurrences on N × N over
fields of characteristic 0.

Definition 4.1. If U ∈ FZ×Z
p satisfies Φ(U |Z×{n}) = U |Z×{n+1} for each n ∈ Z, we

call U a spacetime diagram for Φ.

Note that if Φ : FZ
p → FZ

p is a linear cellular automaton with left and right

radii ` and r respectively, then it is surjective, and every sequence in FZ
p has p`+r

preimages. Hence if ` + r ≥ 1 there are infinitely many Z × Z-indexed spacetime
diagrams U such that U |Z×{0} = u.

Let Φ have generating polynomial φ(x) = α−`x
` + · · · + α0 + · · · + αrx

−r. A
configuration U = (Um,n)(m,n)∈Z×Z is a spacetime diagram for Φ if and only if

(1− φ(x)y)
∑

(m,n)∈Z×Z

Um,nx
myn = 0.

In the following lemma we identify which initial conditions determine a spacetime
diagram for Φ.

Lemma 4.2. Let Φ : FZ
p → FZ

p be a linear cellular automaton with generating

polynomial φ(x) = α−`x
` + · · ·+ α0 + · · ·+ αrx

−r. Let

I = (Z× {0}) ∪
`+r−1⋃
i=0

({i} × −N).

Then every U ∈ FI
p can be uniquely extended to a spacetime diagram U ∈ FZ×Z

p for
Φ.

Proof. Note that U |Z×{0} uniquely determines a Z×N-indexed spacetime diagram
for Φ. Next we observe that U |(Z×{0})∪{(0,−1),...,(`+r−1,−1)} determines U |Z×{−1}
for Φ. For, given a word w ∈ F`+r

p , there is a unique sequence v ∈ FZ
p such that

v0 · · · v`+r−1 = w and Φ(v) = U |Z×{0}. Similarly, U |(Z×{−n})∪{(0,−n−1),...,(`+r−1,−n−1)}
determines U |Z×{−n−1}. We can repeat this, determining one row at a time, once
we have specified a word of length `+ r in that row. �
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Figure 7. A Z×Z-indexed spacetime diagram for the Ledrappier
cellular automaton. The initial conditions are Um,0 = T (m) for
m ≥ 0, Um,0 = T (−m) for m ≤ −1, and U0,n = T (−n) for n ≤ −1,
where T (m)m≥0 is the Thue–Morse sequence. The dimensions are
511× 511.

Example 4.3. Consider the Ledrappier cellular automaton Φ, whose generating
polynomial is φ(x) = 1 + x−1. By Lemma 4.2, U is determined by its values on
(Z×{0})∪ ({0}×−N). See Figure 7 for an example of a spacetime diagram for Φ.

Definition 3.12 naturally generalises to [p, q]-automaticity for any integers p, q
with |p| ≥ 2 and |q| ≥ 2. Therefore we may consider [−p,−p]-automaticity. One
can also define [p, p]-automaticity for any of the four quadrants (±N)× (±N).

Proposition 4.4. A sequence U ∈ FZ×Z
p is [−p,−p]-automatic if and only if each

of U |(±N)×(±N) is [p, p]-automatic.

The proof of Proposition 4.4 follows the same lines as that of [3, Theorem 5.3.2].

Theorem 4.5. Let Φ : FZ
p → FZ

p be a linear cellular automaton with left and right

radii ` and r. Let U ∈ FZ×Z
p be a spacetime diagram for Φ. If U |{i}×−N is p-

automatic for each i in the interval −` ≤ i ≤ r− 1 and U |Z×{0} is (−p)-automatic,
then U is [−p,−p]-automatic.

Proof. By Lemma 4.2, U is uniquely determined by its values on (Z × {0}) ∪⋃r
i=−`({i} × −N). By Proposition 4.4 it is sufficient to show that each of the

four quadrants U |(±N)×(±N) is [p, p]-automatic.
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By Corollary 3.15, U |Z×N is [−p, p]-automatic. By Theorem 3.13, U |Z×N has a
finite [p, p]-kernel. Thus each of U |±N×N has a finite [p, p]-kernel. By Theorem 3.9
with r = 0, each of U |±N×N is [p, p]-automatic.

We show that U |N×−N is [p, p]-automatic; the automaticity of U |−N×−N follows
by a similar argument. Let φ(x) = α−`x

` + · · ·+α0 + · · ·+αrx
−r be the generating

polynomial of Φ. For S ⊆ Z × Z, let F |S denote the generating function of U |S .
Since U is a spacetime diagram for Φ, we have Um,n+1 −

∑r
i=−` αiUm+i,n = 0 for

each (m,n) ∈ Z×Z. Multiplying by xmyn+1 and summing over m ≥ 0 and n ≤ −1
gives

0 =
∑
m≥0
n≤−1

Um,n+1x
myn+1 −

∑
m≥0
n≤−1

r∑
i=−`

αiUm+i,nx
myn+1

= F |N×−N −
r∑

i=−`

αix
−iy

 ∑
m≥0
n≤−1

Um+i,nx
m+iyn


= F |N×−N −

−1∑
i=−`

αix
−iy

(
i∑

k=−`

F |{k}×−N + F |N×−N − F |N×{0} − Pi(x)

)

− α0y
(
F |N×−N − F |N×{0}

)
−

r−1∑
i=1

αix
−iy

(
F |N×−N −

i−1∑
k=0

F |{k}×−N − F |N×{0} + Pi(x)

)
= (1− φ(x)y)F |N×−N + φ(x)yF |N×{0}

−
−1∑

i=−`

αix
−iy

(
i∑

k=−`

F |{k}×−N

)
+

r−1∑
i=1

αix
−iy

(
i−1∑
k=0

F |{k}×−N + Pi(x)

)
,

where Pi(x) are Laurent polynomials to account for over- and under-counting. Since
each U |{k}×−N and U |N×{0} is automatic, each F |{k}×−N and F |N×{0} are algebraic
by Part (1) of Theorem 3.1. Hence

F |N×−N =
G(x, y)

1− φ(x)y

where G(x, y) is algebraic. Therefore F |N×−N is algebraic, and U |N×−N is [p, p]-
automatic by Part (2) of Theorem 3.1. �

Example 4.6. Consider the Ledrappier cellular automaton with φ(x) = 1 + x−1,
and let

L1 = N× {0}
L2 = {0} × −N

so that U |L1∪L2 determines U |N×−N for Φ.
We have Um,n +Um+1,n −Um,n+1 = 0 for each (m,n) ∈ Z×Z, so, following the

proof and notation of Theorem 4.5, we have

0 = F |N×−N − y (F |N×−N − F |L1
)− x−1y (F |N×−N − F |L1

− F |L2
+ U0,0)

and therefore

F |N×−N =
x−1yU0,0 − (1 + x−1)yF |L1 − x−1yF |L2

1− (1 + x−1)y
.
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If F |L1
and F |L2

are both algebraic, then F |N×−N is also.

As we converted the [p, p]-kernel to the [−p, p]-kernel in Theorem 3.13, one
can also convert the [−p, p]-kernel of a spacetime diagram in Theorem 4.5 to the
[−p,−p]-kernel. For example, this enables one to compute a [−p,−p]-automaton
for the spacetime diagram in Figure 7.

5. Invariant sets for linear cellular automata

In this section and the next we apply the automaticity of spacetime diagrams,
as shown in Corollary 3.15 and Theorem 4.5, to two related questions in symbolic
dynamics. We consider the Z×Z-dynamical system (FZ

p , σ,Φ) generated by the left

shift map σ and a linear cellular automaton Φ, and we find closed subsets of FZ
p

which are invariant under both σ and Φ. In Section 6 we find nontrivial measures
µ on FZ

p that are invariant under the action of σ and Φ.
By a simple transfer principle, these questions can be approached by considering

dynamical systems generated by spacetime diagrams U for Φ. Given a spacetime
diagram U , one considers the subshift (XU , σ1, σ2), a Z × Z-dynamical system
generated by U ; this is defined in Section 5.1. If U is automatic, then XU is small
in the sense of Theorem 5.2.

The maps σ and Φ do not exhibit the topological rigidity that Furstenberg’s
setting yields, as mentioned in the Introduction. An example of a (σ,Φ)-invariant
set was first pointed out by Kitchens and Schmidt [22, Construction 5.2] and elabo-
rated by Einsiedler [18]. In Theorem 5.8 we identify a large family of (σ,Φ)-invariant
sets, and we discuss the relationship between our invariant sets and those that are
obtained by the method in [22].

5.1. Subshifts generated by [−p,−p]-automatic spacetime diagrams. In
this section we set up the necessary background, define subshifts generated by
a spacetime diagram, and show that the subshift generated by an automatic space-
time diagram is small but infinite. We also define substitutions, linking them to
automaticity.

We equip Fp with the discrete topology and the sets FZ
p and FZ×Z

p with the metris-
able product topology, noting that with this topology they are compact. Let σ1 :
FZ×Z
p → FZ×Z

p denote the left shift map (Um,n)(m,n)∈Z×Z 7→ (Um+1,n)(m,n)∈Z×Z, and

let σ2 : FZ×Z
p → FZ×Z

p denote the down shift map (Um,n)(m,n)∈Z×Z 7→ (Um,n+1)(m,n)∈Z×Z.
With the notation of Section 2.1, applying the left shift (down shift) to a sequence
is equivalent to multiplying its generating function by x−1 (y−1).

Definition 5.1. Let S and T be transformations on X. A set Z ⊂ X is T -invariant
if T (Z) ⊂ Z, and Z is (S, T )-invariant if it is both S- and T -invariant. A (two-
dimensional) subshift (X,σ1, σ2) is a dynamical system with X a closed, σ1- and
σ2-invariant subset of FZ×Z

p .

We can similarly define a one-dimensional subshift (X,σ): here X is a closed,
σ-invariant subset of FZ

p and σ is the left shift map. We call X the shift space.
Let S ⊆ Z×Z be a rectangle [m1,m2]×[n1, n2]. A word on S is a map w : S → Fp.

These words are higher-dimensional analogues of words in one dimension, i.e. those
indexed by a finite interval in Z. If U ∈ FZ×Z

p , then U |S is the word (Um,n)(m,n)∈S ,

and we say that the word U |S occurs in U . Given a configuration U ∈ FZ×Z
p , the

language LU of U is the set of all words that occur in U . The language LX of a
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shift space X is the set of all words that occur in some configuration U ∈ X. A
subword of the word w : S → Fp is a restriction of w to some rectangular S′ ⊆ S.
The language LX is closed under the taking of subwords, and every word in the
language is extendable to a configuration in X. Conversely, a language L on Fp

which is closed under the taking of subwords defines a (possibly empty) subshift
(XL, σ1, σ2), where XL is the set of configurations all of whose subwords belong
to L.

Note that we can also define the language of an N × N- or Z × N-configuration
U and, in an analogous manner, of the Z× Z-subshift (XU , σ1, σ2).

Let U be a two-dimensional configuration. Recall the complexity function cU :
N × N → N, where cU (m,n) is the number of distinct m × n words that occur in
U . We remark that the second statement of the following theorem can be improved
but is sufficient for our purposes.

Theorem 5.2.

(1) If the sequence U ∈ FN×N
p is [p, p]-automatic, then for some K, its complex-

ity function satisfies cU (m,n) ≤ K max{m,n}2.
(2) If the sequence U ∈ FZ×Z

p is [−p,−p]-automatic, then for some K, its

complexity function satisfies cU (m,n) ≤ K max{m,n}10.

Proof. The proof of Part (1) is in [3, Corollary 14.3.2]. See also [9].
To see Part (2), we recall first that, by Proposition 4.4, each of U |±N×±N is

[p, p]-automatic, so by Part (1), for each of them there exists a constant K±N×±N
such that cU |±N×±N(m,n) ≤ K±N×±N max{m,n}2. Let K∗ be the maximum of

the four constants K±N×±N and let K := (K∗)4. Let w be a rectangular m × n
word that occurs in U . If each occurrence of w is entirely contained in one of the
quadrants ±N × ±N, then w is counted by the complexity of U restricted to that
quadrant, and this count is bounded above by K max{m,n}2. Otherwise, either
S is partitioned into two rectangles, each of which lies in a distinct quadrant, or
S is partitioned into four rectangles lying in distinct quadrants. The worst case is
when S is a concatenation of four subrectangles, so we assume this. There are at
most K

∑m
i=1

∑n
j=1 max{i, j}2 max{i, n − j}2 max{m − i, j}2 max{m − i,m − j}2

of these subrectangles, and a crude upper estimate tells us that there are at most
K max{m,n}10 such words. �

Theorem 5.2 tells us the languages generated by [−p,−p]-automatic configura-
tions are small. On the other hand, provided that the initial conditions generating
U are not periodic, we now also show that they are not too small.

Let fu(x) =
∑

m∈Z umx
m be the generating function of u ∈ FZ

p and let FU (x) =∑
m∈Z,n∈Z Um,nx

myn be the generating function of U ∈ FZ×Z
p . Recall that the

configuration u is periodic if x−ifu(x) = fu(x) for some i ≥ 1 and nonperiodic
otherwise. Similarly the configuration U is periodic if there exists (i, j) 6= (0, 0)
such that x−iy−jFU (x, y) = FU (x, y) and nonperiodic otherwise. We say that
(um)m≥0 is eventually periodic if (x−ifu(x))|N is periodic for some i ≥ 0.

Proposition 5.3. Let u ∈ FZ
p be (−p)-automatic, let Φ : FZ

p → FZ
p be a linear

cellular automaton whose generating polynomial is neither 0 nor a monomial, and
let U ∈ FZ×Z

p be a spacetime diagram for Φ with U |Z×{0} = u. If (um)m≥0 is not
eventually periodic, then U is nonperiodic.



20 ERIC ROWLAND AND REEM YASSAWI

Proof. Suppose that U is periodic. Then there is (i, j) 6= (0, 0) such that x−iy−jFU (x, y) =
FU (x, y). We can assume without loss of generality that −j ≥ 0. We have
xiFU (x, y) = y−jFU (x, y). Restricting to Z × {0}, we get xifu(x) = φ(x)−jfu(x),
where φ(x) is the generating polynomial of Φ. In other words

(
φ(x)−j − xi

)
fu(x) =

0, where by assumption φ(x)−j − xi 6= 0. Thus (um)m≥min{i,rj} satisfies a linear
recurrence and hence is eventually periodic. �

Corollary 5.4. Under the conditions of Proposition 5.3, if (um)m≥0 is not even-
tually periodic, then cU (m,n) > mn for each m and n ∈ N.

Proof. This follows directly from [21, Corollary 9 and the remark following it], where
Kari and Moutot show that Nivat’s conjecture holds for Z × Z-indexed spacetime
diagrams U of a linear cellular automaton: If cU (m,n) ≤ mn for some m and n,
then U is periodic. �

Let Φ : FZ
p → FZ

p be a linear cellular automaton, and let U in FZ×Z
p or FZ×N

p be
a spacetime diagram for Φ. Define

XU := {V ∈ FZ×Z
p : LV ⊆ LU}.

We call (XU , σ1, σ2) the Z × Z-subshift defined by U . We consider spacetime di-
agrams U ∈ FZ×Z

p which are [−p,−p]-automatic. By Theorem 4.5, we obtain
these once we choose automatic sequences as initial conditions, in U |{i}×−N, for
−` ≤ i ≤ r − 1, in U |−N×{0}, and in U |N×{0}.

Lemma 5.5. Let Φ : FZ
p → FZ

p be a linear cellular automaton, let U ∈ FZ×Z
p be a

spacetime diagram for Φ, and let (XU , σ1, σ2) be the Z × Z-subshift defined by U .
Then every element of XU is a spacetime diagram for Φ.

Proof. Let φ(x) = α−`x
` + · · · + α0 + · · · + αrx

−r be the generating polyno-
mial of Φ. If some element V ∈ XU is not a spacetime diagram for Φ, then
Φ’s local rule is violated somewhere, i.e. for some m,n we have α−`Vm,n + · · · +
α0Vm+`,n + · · · + αrVm+`+r−1,n 6= Vm+`,n+1. By definition the rectangular word
w := (Vi,j)m≤i≤m+`+r−1,n≤j≤n+1 belongs to the language of U ; that is, w occurs
in U and agrees with Φ’s local rule, a contradiction. �

We collect some facts about constant-length substitutive sequences, referring the
reader to [3] for a thorough exposition. A substitution of length p is a map θ : A →
Ap. We use concatenation to extend θ to a map on finite and infinite words from A.
By iterating θ on any fixed letter a ∈ A, we obtain infinite configurations u ∈ AN

such that θj(u) = u for some natural number j; we call such configurations θ-
periodic, or θ-fixed if j = 1. We write θ∞(a) to denote a fixed point. The pigeonhole
principle implies that θ has a θ-periodic configuration. We can also define bi-infinite
fixed points of θ. Given a bi-infinite sequence u = · · ·u−2u−1 · u0u1 · · · ∈ AZ and
substitution θ on A, define θ(u) = · · · θ(u−2)θ(u−1)·θ(u0)θ(u1) · · · . If a, b are letters
such that θ(a) starts with a, θ(b) ends with b, and the word ba occurs in θn(c) for
some letter c, then we call the unique sequence u = · · · b·a · · · that satisfies θ(u) = u
a bi-infinite fixed point of θ. Bi-infinite fixed points of a length-p substitution θ are
(−p)-automatic, since p-automatic sequences are closed under shifting to the right
and the addition of finitely many new entries; see [3, Theorem 6.8.4].

We can similarly define two-dimensional substitutions θ : A → Ap×p and two-
dimensional θ-fixed points.
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We recall Cobham’s theorem [16]. We refer to [3, Theorems 6.3.2 and 14.2.3] for
the proof.

Theorem 5.6.

(1) The sequence (um)m≥0 ∈ FN
p is p-automatic if and only if it is the image,

under a coding, of a fixed point of a length-p substitution θ.
(2) The sequence (Um,n)m≥0,n≥0 ∈ FN×N

p is [p, p]-automatic if and only if it is

the image, under a coding, of a fixed point of a substitution θ : A → Ap×p.

Example 5.7. As in Examples 3.11 and 3.16, let p = 3, and let φ(x) = x +
1 ∈ F3[x]. We perform a search to find substitutions θ : F3 → F3

3 with fixed
points θ∞(a) generated by small automata under Part (1) of Theorem 5.6, since
a small automaton makes subsequent computations feasible. We also require that
θ is primitive, that the fixed point (um)m≥0 is not eventually periodic, and that
(u3m)m≥0, (u3m+1)m≥0, and (u3m+2)m≥0 are not eventually periodic. Among the
substitutions satisfying these criteria, the substitution θ defined by θ(0) = 001,
θ(1) = 112, and θ(2) = 220 minimizes the number of states in the corresponding
automaton, producing the automaton on the left in Figure 3 for the fixed point
θ∞(0). Indeed this is how we chose that automaton. From the 54-state automaton
for U |N×N, we compute by Part (2) of Theorem 5.6 a substitution Θ : A → A3×3

and coding τ : A → F3 such that τ(Θ∞(a)) = U |N×N for a particular letter a ∈ A.
The size of the alphabet is |A| = 75.

Note that while the spacetime diagram has a substitutional nature, the alphabet
size makes the computation of this substitution by hand infeasible. This is pre-
sumably why such substitutions have not been studied in the symbolic dynamics
literature.

5.2. Automatic invariant sets and intersection sets. For a linear cellular
automaton Φ : FZ

p → FZ
p , let

XΦ = {V ∈ FZ×Z
p : V is a spacetime diagram for Φ}.

Then XΦ is closed in FZ×Z
p and (XΦ, σ1, σ2) is a Z × Z-subshift, an example of a

Markov subgroup or algebraic shift [32].
We define π : XΦ → FZ

p by π(V ) = V |Z×{0}. Let Z ⊂ XΦ be a closed and (σ1, σ2)-
invariant subset. Note that by construction Φ maps π(Z) onto π(Z), though Φ is
not necessarily invertible on π(Z); i.e. we have two commuting transformations σ
and Φ defined on π(Z) that define a monoid action of Z × N. The reader who
prefers to work with a Z× Z action can take the natural extension of (π(Z), σ,Φ);
see for example the exposition in [17]. We have

(1) π ◦ σ1 = σ ◦ π and π ◦ σ2 = Φ ◦ π.

Theorem 5.8. Let Φ : FZ
p → FZ

p be a linear cellular automaton whose generat-

ing polynomial is neither 0 nor a monomial, and let u ∈ FZ
p be a (−p)-automatic

sequence which is not eventually periodic. Then π(XSTΦ(u)) is a closed (σ,Φ)-

invariant subset of FZ
p which is neither finite nor equal to FZ

p .

Proof. By the identities in (1), any closed (σ1, σ2)-invariant set in XΦ projects to
a closed (σ,Φ)-invariant subset of FZ

p . Thus π(XSTΦ(u)) is (σ,Φ)-invariant, and

compactness implies that it is closed in FZ
p . By Proposition 5.3, π(XSTΦ(u)) is not

finite. By Theorem 5.2, π(XSTΦ(u)) 6= FZ
p . �
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There are other examples of invariant sets for linear cellular automata. This was
first touched on by Kitchens and Schmidt [22, Construction 5.2] [32, Example 29.8]
and by Silberger [33, Example 3.4], where the following construction is described.
One starts with a finite set H ⊂ Fj

p and considers HZ. There is a natural injection

i : HZ → FZ
p obtained by concatenating. Note that i(HZ) is not necessarily invariant

under the left shift σ, but Ȳ := ∪j−1
m=0σ

m(i(HZ)) is. It is clear that Ȳ is a proper
subset of FZ

p . However, to extend Ȳ to a “small” set which is invariant under Φ,
Kitchens and Schmidt [22, Construction 5.2] assume in addition that H is a group
and that j has a simple base-p representation. For example, they take j = pk,
and then the assumption that H = Hk is a group and the “freshman’s dream”
(which is that if Φ has generating polynomial φ(x) = α−`x

` + · · ·+α0 + · · ·+αrx
−r

then Φpk

has generating polynomial φ(x)p
k

= α−`x
`pk

+ · · ·+ α0 + · · ·+ αrx
−rpk

)

imply that Φpk

(Ȳk) ⊆ Ȳk. Therefore Yk := ∪p
k−1

n=0 Φn(Ȳk) is (σ,Φ)-invariant and is
also a proper subset of FZ

p . One can also obtain more complex subshifts by taking
an infinite intersection ∩kYk of nested shift spaces where Yk is built from a group

Hk ⊂ Fpk

p and k →∞.

Example 5.9. Let p = 2, let Φ be the Ledrappier cellular automaton, and let

Hk = {02k

, θk(0), θk(1), 12k} where θ is the Thue–Morse substitution. Then, using
the freshman’s dream, ∩kYk contains π(XSTΦ(u)), where u ∈ FZ

p is any bi-infinite
fixed point of the Thue–Morse substitution. Note that in fact here π(XSTΦ(u)) is
almost all of ∩kYk, as ∩kYk\π(XSTΦ(u)) consists of bi-infinite sequences which are
identically 0 to the left of some index and which are a θ-fixed point to the right of
that index, or vice versa. We can rectify this discrepancy by changing our initial
condition. If one starts with the (−2)-automatic initial condition u whose right half
is a fixed point of θ and whose left half is identically 0, then π(XSTΦ(u)) = ∩kYk.

This construction is explored in greater detail by Einsiedler [18], who shows
that one can find (σ1, σ2)-invariant sets of any possible entropy. His construction
is based on the construction of Kitchens and Schmidt, although he expresses it
differently. Precisely, recall that XΦ is the set of all spacetime diagrams for Φ.
Einsiedler works with a group Z ⊂ XΦ which is invariant under the action of some
σm

1 σ
n
2 . For example, if one considers the group

Z := {V ∈ XΦ : V2m,2n = 0 for each m,n ∈ Z},
then this group is invariant under σ2

1σ
2
2 . Using the Kitchens–Schmidt construc-

tion, it can be generated by taking spacetime diagrams of sequences on H =
{(0, 0), (1, 1)} ∈ F2

2 with the Ledrappier cellular automaton Φ. For, the image
of a sequence in HZ under Φ contains a 0 in every even index, and the image of a
sequence in HZ under Φ2 is a sequence in HZ. Einsiedler also allows addition of
Z by a finite set F . He calls sets Z = ∩k(Zk + Fk) intersection sets, and he asks
whether there is a description of every (σ1, σ2)-invariant set in terms of intersection
sets.

Theorem 5.10. Let Φ : FZ
p → FZ

p be a linear cellular automaton, and let u ∈ FZ
p be

a (−p)-automatic sequence which is not eventually periodic. Then π(XSTΦ(u)) is a

(σ,Φ)-invariant proper subset of FZ
p which is a subset of an intersection set.

Proof. By assumption, u is a concatenation of two p-automatic sequences. By
Cobham’s theorem, there are substitutions θ1 : A1 → Ap

1 and θ2 : A2 → Ap
2,
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and codings τ1 : A1 → Fp and τ2 : A2 → Fp such that u|N is the τ1-coding of
a right-infinite fixed point of θ1, and u|−N is the τ2-coding of a left-infinite fixed

point of θ2. For each k let Hk be the group in Fpk

p generated by {τ1(θk1 (a)) :

a ∈ A1} ∪ {τ2(θk2 (a)) : a ∈ A2}. Let Yk be the (σ,Φ)-invariant subset of FZ
p

as defined above using the group Hk. Then for each k, π(XSTΦ(u)) ⊂ Yk, so
π(XSTΦ(u)) ⊂ ∩kYk. �

In Example 5.9, we can find u such that the set π(XSTΦ(u)) is equal to an inter-

section set ∩kYk. This is because for each k the group generated by {θk(0), θk(1)}
is very close to the set {θk(0), θk(1)}.

Example 5.11. We continue with our running example, last seen in Example 5.7,
where p = 3, Φ is the cellular automaton with generating function x + 1, and the
initial condition is generated by the substitution θ(0) = 001, θ(1) = 112, θ(2) = 220.
Every word of length 2 occurs in every fixed point of θ. One shows by induction
that

(2) θk(0) + θk(1) + θk(2) = 03k

for each k. We also have

(3) 2θk(0) + θk(1) = 2θk(1) + θk(2) = 2θk(2) + θk(0) = 13k

,

so that the group generated by {θk(0), θk(1), θk(2)} is

Hk = {03k

, 13k

, 23k

, θk(0), 2θk(0), θk(1), 2θk(1), θk(2), 2θk(2)}.

Let (um)m≥0 be the fixed point θ∞(0) and let (u−m)m≥0 be the constant 0 sequence.
Its spacetime diagram STΦ(u) is shown in Figure 4. We claim that all words in Hk

occur horizontally in STΦ(u). The words 03k

, θk(0), θk(1), and θk(2) occur in the
0-th row of STΦ(u). Since all possible words of length 2 occur in u, each element of

Sk = {θk(a) + θk(b) : ab ∈ F3 × F3} = {2θk(0), 2θk(1), 2θk(2)}

occurs in the 3k-th row of STΦ(u). Also, since (x+ 1)4·3k

= x4·3k

+ x3·3k

+ x3k

+ 1,
Equation (3) implies

Φ4·3k

(u)|[3·3k,4·3k−1] = u|[3·3k,4·3k−1] + u|[2·3k,3·3k−1] + u|[0,3k−1] + u|[−3k,−1]

= θk(0) + θk(1) + θk(0) + 03k

= 13k

.

It follows that 23k−1 occurs in row 4 ·3k +1; this is true for all k, so 23k

also occurs.
Therefore all words in Hk occur in STΦ(u), and by approximation arguments one
sees that π(XSTΦ(u)) = ∩kYk.

In contrast, for the initial condition u in Figure 5, it is not so clear that π(XSTΦ(u))
is an intersection set. In Example 6.6, for a different initial condition u, which is
also not eventually periodic in either direction, we describe π(XSTΦ(u)) as a modi-
fied intersection set ∩kYk, where Yk is defined with sets of words Hk which are not
groups, but which nevertheless capture the words we see at levels pk.

Question 5.12. Can all of the invariant sets in Theorem 5.8 be written as inter-
section sets?
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6. Invariant measures for linear cellular automata

In this section we study the (σ,Φ)-invariant measures that are supported on the
invariant sets found in Theorem 5.8. By the same transfer principle mentioned in
Section 5, a measure supported on XU that is invariant under σ1 and σ2 trans-
fers to a measure on FZ

p which is invariant under σ and Φ. By Proposition 6.1,
these measures are never the Haar measure. In Theorem 6.2 we identify a de-
cidable condition which guarantees that the measure µ in question is not finitely
supported, and in Theorem 6.4 we identify a family of nontrivial (σ,Φ)-nontrivial
measures when Φ is the Ledrappier cellular automaton. In Theorem 6.11 we iden-
tify (σ,Φ)-invariant measures as belonging to simplices whose extreme points are
ergodic measures supported on codings of substitutional shifts. This statement im-
plicitly contains another method by which to determine whether µ is trivial, as there
exist algorithms to compute the frequency of a word for such a measure. Finally,
in Theorems 6.13 and 6.15, we give conditions that guarantee that the shifts we
study contain constant configurations and hence possibly lead to finitely supported
(σ,Φ)-invariant measures.

Throughout this section, we make use of the substitutional characterisation of
automatic sequences to state and prove our results.

6.1. Invariant measures on [−p,−p]-automatic spacetime diagrams. Recall
that a subshift (X,σ) is aperiodic if each x ∈ X is aperiodic. We consider measures
on the Borel σ-algebra of X. Let S, T : X → X be transformations on X. A
measure µ on X is T -invariant if µ(Z) = µ(T−1(Z)) for every measurable Z, and it
is (S, T )-invariant if it is both S- and T -invariant. A measure µ has finite support
{x1, . . . , xn} if it is a finite weighted sum of Dirac measures µ =

∑n
i=1 wiδxi

. If the
finitely-supported Borel measure µ on a shift space X ⊆ FZ

p is also σ-invariant, then
each configuration in the support of µ is periodic. The same is true if µ is finitely
supported on a two-dimensional shift space and is (σ1, σ2)-invariant. In the next
proposition we list some elementary observations about the measures on YU that
are projections of measures on XU . By the Krylov–Bogolyubov theorem, there exist
(σ1, σ2)-invariant measures supported on XU . Recall that the map π : XU → FZ

p is
defined by π(V ) = V |Z×{0}.

Proposition 6.1. Let Φ : FZ
p → FZ

p be a linear cellular automaton, and let U ∈
FZ×Z
p be a [−p,−p]-automatic spacetime diagram for Φ. Let (YU , σ) be the Z-subshift

defined by U . Let µ be a (σ1, σ2)-invariant measure on XU , and let λ := µ ◦ π−1.

(1) Then λ is a (σ,Φ)-invariant measure on YU that is not the Haar measure.
(2) Moreover, if µ is not finitely supported, then λ is not finitely supported.

Proof. By Equations (1), any Borel measure µ on XU which is (σ1, σ2)-invariant
defines a (σ,Φ)-invariant Borel measure λ := µ ◦ π−1 on YU . By Part (2) of
Theorem 5.2, there is a K such that there are at most Km10 words on an m × 1
rectangle in LU , so there are at most Km10 words of length m in the language of
YU . Thus for large m, there exists a word w of length m such that λ(w) = 0. This
proves the first assertion.

To see the second assertion, if λ is supported on a finite set {y1, . . . , yn}, then, as
λ is invariant under Φ−1, for each i we have Φ−1(yi)∩{y1, . . . , yn} 6= ∅. For each i,
this implies that Φ−1(yi) ∩ {y1, . . . , yn} consists of exactly one element. Therefore
Φ is a permutation on {y1, . . . , yn}. For each cycle in this permutation, consider the
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Z×Z-configurations whose rows are elements of the cycle. Then µ is supported on
the union of the (σ1, σ2)-orbits of these Z × Z-configurations. Since λ is invariant
under the left shift, each yi is periodic. Therefore µ is finitely supported. �

In the following theorem we give a condition that guarantees the existence of
measures on YU which are (σ,Φ)-invariant and which are not finitely supported.
We say that a two-dimensional configuration U is horizontally M -power-free if no
m× 1 word of the form wM with m ≥ 1 occurs in U .

Theorem 6.2. Let U ∈ FZ×Z
p be a [−p,−p]-automatic sequence, specified by an

automaton. It is decidable whether there exists M ≥ 2 such that U is horizontally
M -power-free.

Proof. We reduce the decidability of horizontal M -power-freeness of U to that of
each quadrant.

An occurrence of a horizontal M -power wM with |w| = ` in the sequence
(Um,n)(m,n)∈Z×Z is a word of the form Um,n · · ·Um+M`−1,n satisfying Ui,n = Ui+`,n

for all i in the interval m ≤ i ≤ m + (M − 1)` − 1. Therefore U is horizontally
M -power-free if and only if the set

S := {(M, `) : (∃m ≥ 0)(∃n ≥ 0)(∀i)((0 ≤ i ≤M`− 1)→ (Um+i,n = Um+i+`,n))}

is empty. We follow Charlier, Rampersad, and Shallit [13, Theorem 4]. The con-
figuration U is horizontally M -power-free for arbitrarily large M if and only if for
all k ≥ 0, S contains a pair (M, `) with M > `pk. Padding the shorter word
with zeros if necessary, we write the base-p representation of the pair (M, `) as
(Me, `e), (Me−1, `e−1), . . . , (M0, `0). Thus for every k ≥ 0, S contains a pair (M, `)
with M ≥ `pk if and only if S contains a pair (M, `) whose base-p representation
starts with (d1, 0), (d2, 0), . . . , (dk, 0), where d1 6= 0 and each other di ∈ Fp. Given
the automaton M which generates χS , S contains a pair (M, `) with M ≥ `pk for
arbitrarily large k if and only if there are words u, w, and v on the alphabet Fp×Fp

with the second entries of all letters in w and v all equal to 0, and where u is the
label of a path from the initial state of M to a state s, w is the label of a cycle at
s, and v is the label of a path from s to a state whose corresponding output is 1.
Whether three such words exist is decidable. �

For fixed M , the set S in the proof is a p-definable set (see [28, Definition 6.34]),
and horizontal M -power-freeness can be determined by constructing an automaton;
see [28, Section 6.4] and [24].

Corollary 6.3. Let Φ : FZ
p → FZ

p be a linear cellular automaton, let U ∈ FZ×Z
p

be a [−p,−p]-automatic spacetime diagram for Φ, and let (YU , σ) be the Z-subshift
defined by U . If U is horizontally M -power-free for some M ≥ 2, then there exists
a (σ,Φ)-invariant measure λ on YU which is neither the Haar measure, nor finitely
supported.

Proof. Recall that a finitely-supported σ-invariant measure λ is supported on a
set {y1, y2, . . . , yn} ⊆ YU where each yi is periodic. If XU is horizontally M -
power-free, then YU is aperiodic. Thus for any (σ1, σ2)-invariant measure µ on
(X,σ1, σ2), µ ◦ π−1 is a (σ,Φ)-invariant measure which is not finitely supported.
By Proposition 6.1, µ ◦ π−1 is not the Haar measure. �
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Note that if we take the initial condition u to be an aperiodic fixed point of a
primitive substitution, then, by results of Mossé [23], u is M -power-free for some
M .

Continuing with Example 5.9, Schmidt [32, Examples 29.8] identifies a (σ,Φ)-
invariant measure which is supported on π(XU ), where Φ is the Ledrappier cellular
automaton, U = STΦ(u), um = 0 for all m ≤ −1, and (um)m≥0 is a fixed point of
the Thue–Morse substitution. He does not study whether this measure is finitely
supported; our experiments suggest that this measure is a point mass supported
on the constant zero configuration. However in the next theorem we identify a
family of substitutions which do yield nontrivial (σ,Φ)-invariant measures for the
Ledrappier cellular automaton.

Given a substitution θ : Fp → Fp
p, we write θ(a) = θ0(a) · · · θp−1(a). We say that

θ is bijective if, for each i in the interval 0 ≤ i ≤ p− 1, {θi(a) : a ∈ Fp} = Fp.

Theorem 6.4. Let Φ : FZ
3 → FZ

3 be the linear cellular automaton with generating
polynomial φ(x) = x + 1, let θ be a primitive bijective substitution on F3, and
suppose that u ∈ FZ

3 is a bi-infinite aperiodic fixed point of θ. Then there exists M
such that STΦ(u) is horizontally M -power-free.

Proof. Since θ is bijective, θ satisfies Identity (2):

θk(0) + θk(1) + θk(2) = 03k

.

We claim that, for each k ≥ 1, for each n ≥ 0, and for each m ∈ Z, we have

(4) Φn·3k

(u)|[m3k,(m+1)3k−1] ∈

{
{θk(0), θk(1), θk(2)} if n is even

{2θk(0), 2θk(1), 2θk(2)} if n is odd.

Fix k ≥ 1. Since u is a bi-infinite fixed point of θ, we have u|[m3k,(m+1)3k−1] ∈
{θk(0), θk(1), θk(2)}. Let n = 1. Since (x+ 1)3k

= x3k

+ 1, we have

Φ3k

(u)|[m3k,(m+1)3k−1] = u|[m3k,(m+1)3k−1] + u|[(m−1)3k,m3k−1]

= θk(um) + θk(um−1)

∈ {2θk(0), 2θk(1), 2θk(2)}

for each m ∈ Z. The claim follows by induction on n by replacing u with Φ3k

(u).
For each k, let

Hk = {θk(0), 2θk(0), θk(1), 2θk(1), θk(2), 2θk(2)}.
(Note that Hk is not a group, contrary to the definition of an intersection set.) Since
u is an aperiodic fixed point of a primitive substitution, Mossé’s theorem [23] tells
us that u is M -power-free for some M ≥ 2. This implies that θk(a) is M -power-free
for each a ∈ F3, and hence 2θk(a) is also M -power-free. Thus all words in Hk are
M -power-free, so if a power wl occurs as a subword of a word in Hk, then l < M .

Next note that, again because words in Hk are M -power-free, if a word in Hk

is tiled by a word w (that is, is a subword of w∞), then |w| > 3k

M . This implies

that if |w| ≤ 3k

M and wl occurs as a subword of W1 · · ·Wj ∈ Hj
k, then wl occurs as

a subword of WiWi+1 for some 1 ≤ i ≤ j − 1, and so l ≤ 2M − 2.
Given a word w = w1 · · ·wm of lengthm ≥ 2, define Φ(w) := (w1+w2) · · · (wm−1+

wm). Suppose wl occurs in the n-th row of STΦ(u). We show that l < 9M . Let

k be such that 3k+1 ≤ |wl| = l|w| < 3k+2. Then |w| < 3k+2

l . Let N be such that
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N · 3k ≤ n < (N + 1) · 3k. Write Φ(N+1)·3k−n(wl) = w̄l̄v̄, where the words w̄ and v̄
are such that l̄ ≥ 1 is maximal and v̄ is a prefix of w̄ with 0 ≤ |v̄| ≤ |w̄| − 1. We
have |w̄| ≤ |w| since the period length of a word does not increase after applying
Φ. There are two cases.

If |w̄| ≥ 3k

M , then 3k

M ≤ |w̄| ≤ |w| <
3k+2

l , so l < 9M .

If |w̄| < 3k

M , then, since w̄l̄ occurs on row (N + 1) · 3k, by (4) w̄l̄ occurs as a

subword of W1 · · ·Wj ∈ Hj
k for some j. By the argument above, w̄l̄ occurs as a

subword of WiWi+1 and therefore l̄ ≤ 2M − 2. We also have

|w̄l̄v̄| = |Φ(N+1)·3k−n(wl)| = |wl| −
(
(N + 1) · 3k − n

)
≥ 3k+1 − (N + 1) · 3k +N · 3k

= 2 · 3k,
so

2 · 3k ≤ |w̄l̄v̄| < (l̄ + 1)|w̄| ≤ (2M − 1)|w̄| ≤ (2M − 1)|w|.
Therefore 2·3k

2M−1 < |w| <
3k+2

l , so l < 9
2 (2M − 1) < 9M .

It follows that STΦ(u) is (9M)-power-free. �

Remark 6.5. Analogous to the construction preceding Example 5.9, we construct
the shift Yk using Hk. We do not need Hk to be a group since we have shown that

Φn·3k

(u) is a concatenation of words that belong to Hk. Since (4) holds for each
k ≥ 1, we have π(XSTΦ(u)) = ∩kYk.

Example 6.6. We continue with our running example, in particular from Exam-
ple 5.11, where p = 3, Φ is the cellular automaton with generating function φ(x) =
x+ 1, and the initial condition is generated by the substitution θ(0) = 001, θ(1) =
112, θ(2) = 220. We saw that Hk, the group generated by {θk(0), θk(1), θk(2)}, is

Hk = {03k

, 13k

, 23k

, θk(0), 2θk(0), θk(1), 2θk(1), θk(2), 2θk(2)}.
If we take u = · · ·u−2u−1 · u0u1 · · · to be any bi-infinite fixed point of θ, then
STΦ(u) is horizontally M -power-free for some M by Theorem 6.4.

In Theorem 6.4, we fixed the cellular automaton and prime p, and we let θ vary
over a family of substitutions. Next, for each p we fix a substitution and vary the
cellular automaton to obtain nontrivial (σ,Φ)-invariant measures for a family of
cellular automata.

Definition 6.7. For fixed p, let W := 01 · · · (p − 1) and define θ : Fp → Fp
p by

θ(a) = W + ap, where ap denotes the word aa · · · a of length p. We call θ the
(base-p) parity substitution.

If u ∈ FN
p is the fixed point of the parity substitution starting with 0, then um is

the sum, modulo p, of the digits in the base-p representation of m.

Lemma 6.8. The fixed point u ∈ FN
p of the parity substitution θ : Fp → Fp

p is not
eventually periodic.

Proof. For each candidate period length k, we show that there are arbitrarily large
m such that um 6= um+k. Let k` · · · k1k0 be the base-p representation of k, with
k` 6= 0. If uk 6= 0, let m = pN for some N > `; then um = 1 6≡ 1 + uk ≡ um+k

mod p. If uk = 0, let m = pN +(p−k`)p` for some N > `+1; then um ≡ 1+p−k` 6≡
2− k` ≡ um+k mod p.
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�

Theorem 6.9. Let u ∈ FZ
p be a fixed point of the parity substitution θ : Fp → Fp

p,

let Φ : FZ
p → FZ

p be a linear cellular automaton, and let L be the number of nonzero
monomials in the generating polynomial of Φ. If p does not divide L, then there
exists M such that STΦ(u) is horizontally M -power-free.

Proof. The proof is similar to that of Theorem 6.4. We refine Equation (4) to claim
that

(5) Φn·pk

(u)|[mpk,(m+1)pk−1] ∈ {(Ln mod p)θk(0) + ap : a ∈ Fp}

for each n ∈ N. The proof of this claim is by induction, as in Theorem 6.4. Note
that Ln 6≡ 0 mod p for every n, since p does not divide L. Next we let

Hk = {jθk(0) + ap : a ∈ Fp and j ≡ Ln mod p for some n ∈ N}.

As in the proof of Theorem 6.4, there exists M ≥ 2 such that all words in Hk are

M -power-free. Also, if |w| ≤ pk

M and wl occurs as a subword of W1 · · ·Wj ∈ Hj
k,

then l ≤ 2M − 2.
Let ` and r be the left and right radii of Φ. Given a word w = w1 · · ·wm of

length m ≥ 2, define Φ(w) to be the word of length m− `− r obtained by applying
Φ’s local rule. Suppose wl occurs in the n-th row of STΦ(u). We show that

l ≤ max

(
(`+ r)p2M,

⌈
p2

p− 1
(2M − 1)

⌉)
.

If |w
l|

`+r < p, then l ≤ l|w| < (` + r)p < (` + r)p2M . If |w
l|

`+r ≥ p, let k be such that

(`+ r)pk+1 ≤ |wl| = l|w| < (`+ r)pk+2. Then |w| < (`+r)pk+2

l . Let N be such that

N · pk ≤ n < (N + 1) · pk. Write Φ(N+1)·pk−n(wl) = w̄l̄v̄, where the words w̄ and v̄
are such that l̄ ≥ 1 is maximal and v̄ is a prefix of w̄ with 0 ≤ |v̄| ≤ |w̄| − 1. We
have |w̄| ≤ |w| since the period length of a word does not increase after applying
Φ. There are two cases.

If |w̄| ≥ pk

M , then pk

M ≤ |w̄| ≤ |w| <
(`+r)pk+2

l , so l < (`+ r)p2M .

If |w̄| < pk

M , then, since w̄l̄ occurs on row (N + 1) · pk, by (5) w̄l̄ occurs as a

subword of W1 · · ·Wj ∈ Hj
k for some j. By the same argument in the proof of

Theorem 6.4, w̄l̄ occurs as a subword of WiWi+1 and therefore l̄ ≤ 2M − 2. We
also have

|w̄l̄v̄| = |Φ(N+1)·pk−n(wl)| = |wl| −
(
(N + 1) · pk − n

)
(`+ r)

≥ (`+ r)pk+1 − (N + 1) · pk(`+ r) +N · pk(`+ r)

= (`+ r)pk+1 − pk(`+ r)

= (`+ r)(p− 1)pk

so

(`+ r)(p− 1)pk ≤ |w̄l̄v̄| < (l̄ + 1)|w̄| ≤ (2M − 1)|w̄| ≤ (2M − 1)|w|.

Therefore (`+r)(p−1)pk

2M−1 < |w| < (`+r)pk+2

l , so l < p2

p−1 (2M − 1) ≤
⌈

p2

p−1 (2M − 1)
⌉
.

It follows that STΦ(u) is max
(

(`+ r)p2M,
⌈

p2

p−1 (2M − 1)
⌉)

-power-free. �
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Question 6.10. Given a linear cellular automaton Φ : FZ
p → FZ

p , what is the
proportion of length-p substitutions θ : Fp → Fp

p, with a bi-infinite θ-fixed point u,
for which there exists an M ≥ 2 such that STΦ(u) is horizontally M -power-free?

Einsiedler [18], as well as finding the invariant sets that are discussed in Sec-
tion 5.2, shows the existence of shift-invariant measures supported on a subset of
XΦ (the set of spacetime diagrams for a linear cellular automaton Φ). He asks:
What are the ergodic measures on X? Our contribution is to identify simplices of
invariant measures that are generated by ergodic measures supported on codings of
substitutional sets. The invariant measures of a substitutional dynamical system
can be derived from its incidence matrix: see [10] for a thorough description of
how to compute them from the relevant Perron vectors of the matrix. The the-
ory for two-dimensional substitutions is very similar and is described for primitive
substitutions in [8].

Theorem 6.11. Let Φ : FZ
p → FZ

p be a linear cellular automaton, and let U ∈ FZ×Z
p

be a [−p,−p]-automatic spacetime diagram for Φ. Then there exists a simplex of
(σ1, σ2)-invariant measures generated by the relevant Perron vectors of the incidence
matrices of the four substitutions defining U .

6.2. Automatic spacetime diagrams with finitely supported invariant mea-
sures. Given a length-p substitution θ : A → A∗, recall that we write θ(a) =
θ0(a) · · · θp−1(a), i.e. for 0 ≤ i ≤ p− 1 we have a map θi : A → A where θi(a) is the
(i + 1)-st letter of θ(a). We say that θ has a coincidence if there exists k ≥ 1 and
i1, . . . , ik such that

|θi1 ◦ · · · ◦ θik(A)| = 1.

By considering a power of θ if necessary, we assume that the coincidence is achieved
by θ, i.e. |θi(A)| = 1 for some i. Analogously, we say that a p-automatic sequence
u has a coincidence if u = τ(θ∞(a)) for some length-p substitution θ with a coinci-
dence. Given a word w = w0w1 · · ·wn, let w[i,j) := wiwi+1 · · ·wj−1.

Let Φ be a linear cellular automaton, let u ∈ FZ
p , and let U = STΦ(u). Notice

that XU contains the constant zero configuration if for all N and m there exists
n > N and k such that 0m occurs in the row Φn(u) starting at index k, as this
implies that STΦ(u) contains arbitrarily large triangles of 0’s. We investigate when
XU contains constant configurations.

Remark 6.12. In the following two theorems we assume that the cellular automa-
ton Φ has left radius 0. This is not a serious restriction for the following reason.
If Φ has generating polynomial φ(x) and has left radius `, then the generating
polynomial x−`φ(x) is the generating polynomial of a linear cellular automaton Ψ
with left radius 0. Further, the n-th row of STΨ(u) is the left shift, by `n units,
of the n-th row of STΦ(u). In the case where um = 0 for m ≤ 0, this tells us that
the shears of STΨ(u) and STΦ(u) coincide. By Theorem 3.9, the unsheared space-
time diagram STΦ(u) has a finite [p, p]-kernel if and only if the sheared spacetime
diagram STΨ(u) is [p, p]-automatic.

Note that Theorems 6.13 and 6.15 do not apply to the generating polynomial
φ(x) = x + 1 ∈ F3[x] in Examples 3.11, 3.16, and 5.7 (even after shearing as in
Remark 6.12), since

∑r
i=−` αi 6= 0.

Theorem 6.13. Let u ∈ FZ
p be such that (um)m≥0 is p-automatic with a coinci-

dence, and let U = STΦ(u). Let Φ : FZ
p → FZ

p be a linear cellular automaton of left
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Figure 8. Spacetime diagram for the Ledrappier cellular automa-
ton, whose generating polynomial is φ(x) = 1 + x−1, with a 2-
automatic initial condition generated by the substitution in Ex-
ample 6.14. The dimensions are 511× 256.

radius 0 with generating polynomial φ(x) =
∑r

i=0 αix
−i ∈ Fp[x−1]. If

∑r
i=0 αi = 0,

then the constant zero configuration is an element of XU .

Proof. Let θ : A → Ap and τ : A → Fp be the underlying substitution and
coding defining (um)m≥0. Suppose first that |{θ0(a) : a ∈ A}| = 1, i.e. that the
coincidence is achieved in the leftmost column θ0, and also that the coincidence
is attained by θ. Thus there exists a∗ such that θ0(a) = a∗ for each a ∈ A and
unp = τ(a∗) for each n ≥ 0. Since u is the coding of a θ-fixed point, we have that
u[npj+1,npj+1+pj) = τ(θj(a∗)) for each j ≥ 0 and each n ≥ 0.

Since Φp`

has generating polynomial
∑r

i=0 αix
−ip`

, then

Φpj+1

(u)[0,pj) =

r∑
i=0

αiu[ipj+1,ipj+1+pj) =

r∑
i=0

αiτ(θj(a∗)) = 0p
j

,

and in fact for each m ≥ 0

Φpj+1

(u)[mpj+1,mpj+1+pj) =

r∑
i=0

αiu[ipj+1+mpj+1,ipj+1+mpj+1+pj) =

r∑
i=0

αiτ(θj(a∗)) = 0p
j

.

If the coincidence is achieved in the column θL, we translate the above argument,
starting with the modification that unp+L = τ(a∗) for each n ≥ 0, and adjusting
accordingly. �

Example 6.14. Let θ be the substitution θ(a) = ab, θ(b) = cd, θ(c) = ac, θ(d) = da,
and let τ(a) = τ(c) = 0, τ(b) = τ(d) = 1. Then θ4 has a coincidence in the 5-th
column. Let u := τ(θ∞(a)) and let φ(x) = 1 + x−1. Theorem 6.13 tells us that
STΦ(u) contains arbitrarily large patches of 0; see Figure 8. The left half of the
initial condition is the image under τ of the left-infinite fixed point of θ3 ending
with a.

Substitutions with coincidences are not the only ones which generate shift spaces
contain the constant zero configuration. The next proposition identifies cellular
automata and initial conditions which always give such a subshift.
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Theorem 6.15. Let u ∈ FZ
p be such that (um)m≥0 is p-automatic, and let U =

STΦ(u). Let θ : A → Ap and τ : A → Fp be such that (um)m≥0 = τ(θ∞(a)).
Let Φ : FZ

p → FZ
p be a linear cellular automaton of left radius 0 with generating

polynomial φ(x) =
∑r

i=0 αix
−i ∈ Fp[x−1] such that

∑r
i=0 αi = 0. If there exists a

finite word w = w0w1 · · ·wr ∈ Ar+1 such that w occurs in θ∞(a) and |{wi : αi 6=
0}| = 1, then XU contains the constant zero configuration.

Proof. Let {b} = {wi : αi 6= 0}. For each j ≥ 0, since w occurs in θ∞(a), then
θj(w) also occurs in θ∞(a). Also, for each i in the interval 0 ≤ i ≤ r such that

αi 6= 0, θj(b) occurs at θj(w)[pji,pj(i+1)). Since Φpj

has generating polynomial

φ(x)p
j

=
∑r

i=0 αix
−pji, we have, for each k in the interval 0 ≤ k < pj ,(

Φpj

τ
(
θj(w)

))
k

=

r∑
i=0

αiτ
(
θj(w)pji+k

)
=

r∑
i=0

αiτ
(
θj(b)k

)
=

(
r∑

i=0

αi

)
τ
(
θj(b)k

)
= 0,

so that the word 0p
j

occurs in STΦ(u). The result follows. �

We remark that in the previous proof, it is sufficient that the word w occurs once
in θ∞(a), since for each j we obtain a triangular region of 0’s. Also, appropriate
versions of the previous two theorems could be stated without left radius 0; then we
would also need to specify the left side of the initial condition. Finally, given a p-
automatic initial condition u, one can always find a linear cellular automaton Φ such
that STΦ(u) contains arbitrarily large words which are identically zero. Conversely,
given a linear cellular automaton Φ whose generating polynomial satisfies φ(1) = 0,
one can find an initial condition such that STΦ(u) contains large words which are
identically zero. Theorems 6.13 and 6.15 are useful tools in Section 6.1, where we
wished to avoid finitely supported invariant measures.

Corollary 6.16. Let u ∈ FZ
2 be such that (um)m≥0 is 2-automatic, and let U =

STΦ(u). Let Φ : FZ
2 → FZ

2 be the Ledrappier cellular automaton with generating
polynomial φ(x) = 1 + x−1 ∈ F2[x−1]. Then XU contains the constant zero config-
uration.

Proof. If 00 or 11 occurs in (um)m≥0, we are done by Theorem 6.15. Otherwise,
(um)m≥0 is 0101 · · · or 1010 · · · . Since each of these sequences has a coincidence,
we are done by Theorem 6.13. �

Example 6.17. Let Φ be the Ledrappier cellular automaton Let θ be the Thue–
Morse substitution, θ(0) = 01 and θ(1) = 10, and let p = 2. Then 00 and 11
occur in both fixed points of θ and the conditions of Corollary 6.16 are satisfied;
see Figure 7.
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