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In robotic mapping and navigation, of prime importance today with the trend for autonomous cars, simultane-
ous localization and mapping (SLAM) algorithms often use stereo vision to extract 3D information of the sur-
rounding world. Whereas the number of creative methods for stereo-based SLAM is continuously increasing,
the variety of datasets is relatively poor and the size of their contents relatively small. This size issue is increas-
ingly problematic, with the recent explosion of deep learning based approaches, several methods require an
important amount of data. Those multiple techniques contribute to enhance the precision of both localization
estimation and mapping estimation to a point where the accuracy of the sensors used to get the ground truth
might be questioned. Finally, because today most of these technologies are embedded on on-board systems,
the power consumption and real-time constraints turn to be key requirements. Our contribution is twofold: we
propose an adaptive SLAM method that reduces the number of processed frame with minimum impact error,
and we make available a synthetic flexible stereo dataset with absolute ground truth, which allows to run new
benchmarks for visual odometry challenges. This dataset is available online at http://alastor.labri.fr/.

1 Introduction

The ability for a machine to navigate au-
tonomously has become a central challenge for nowa-
days robotic science. Building a model of the sur-
rounding world and having the capacity to work out
its location (position and orientation) in the gener-
ated map allows a robot to “understand” information
of an unknown area. This feature is called Simul-
taneous Localization And Mapping (SLAM). A ma-
chine with such a skill can estimate a path, provide er-
gonomic visualization for human users and even reset
its localization estimation by revisiting known areas.
Its application for autonomous vehicles such as cars
(Geiger et al., 2012; Howard, 2008; Lategahn et al.,
) or UAV (Karlsson et al., ; Cvisié et al., 2017; Ca-
ballero et al., ), has been illustrated many times over.
To be aware of its environment, the robot must ob-
viously be equipped with sensors. Several types of
sensors give birth to different SLAM algorithms. Al-
though the state of the robot is often described in simi-
lar ways (its position and rotation, sometimes with ad-
ditional information such as its velocity, sensor orien-
tation or biases, battery or any other accessible infor-
mation), the map representation is still debated. They
go from sparse representations with only landmarks,

connected graphs or obstacles to dense (Geiger et al.,
2011) or semi-dense (Engel et al., 2014) reconstruc-
tion with (e.g. stereo vision) or without colour infor-
mation (e.g. most LIDAR systems).

Tactile sensors outputs are extremely sparse as
they contain only information about points very close
to the agent, so they require strong prior models to
compensate. Thus, most modern methods use laser
scans or visual features. They provide details of many
points within an area, sometimes rendering SLAM in-
ference unnecessary because shapes in these clouds
of points can be easily and unambiguously aligned
at each step via image registration. Optical sensors
may be one-dimensional or 2D laser range-finders,
3D High Definition LiDAR, 2D or 3D sonar sen-
sors, one or more 2D cameras. Since 2005, there
has been intense research into visual SLAM primarily
using cameras, because of the increasing availability
of cameras such as those in mobile devices or UAV.
Moreover, the use of two 2D cameras to mimic the
human stereo vision system has become very popu-
lar in a great number of robotic applications. Besides
being relatively cheap systems compared to LiDAR
or sonar based approaches, stereo-based methods pos-
sess the huge advantage of avoiding scale drift which
typically occurs in monocular SLAM. They have the



ability to quickly generate a dense point cloud estima-
tion. These two main advantages have made stereo
based systems a vast field of research and a well-
established approach for SLAM algorithms (Howard,
2008; Cvisic et al., 2017; Geiger et al., 2011; Engel
et al., ; Kuschk et al., 2017; Tanner et al., ; Sanfourche
et al., ; Kaess et al., ; Zhu, 2017; Pire et al., 2018;
Cvisi¢ and Petrovié¢, 2015; Kitt et al., 2010).

These algorithms use stereo visual odometry to
solve the SLAM problem as accurately as possible,
and the results of most of them are really impressive.
Due to their objective, SLAM algorithms are often
embedded on on-board systems, making them truly
autonomous. However, the robots have their own
limitations in terms of memory, computation power
and battery. In that respect, whereas most of modern
SLAM methods tend to exploit every available piece
of computational power to improve their accuracy, our
first contribution in this paper is to suggest an adap-
tive SLAM algorithm that modulates its input frame
rate to avoid unnecessary computation. Saving time,
power and thus making the autonomy of the system
that embeds it.

Despite the popular success of stereo based
SLAM, the number of available benchmarks on which
they can be tested is relatively poor. Indeed, build-
ing such a real-world dataset with a high precision
level can be an extremely time-consuming task and
requires complex equipment and consequently expen-
sive human work. And even then, the ground truth is
highly sensitive to the manual labelling method that
is used and/or the precision of the sensors. This turns
out to be a real issue because of the constantly increas-
ing precision of new SLAM algorithms: their eval-
uation requires more precise ground truth to which
their results could be compared. Finally, aiming at
proving the efficiency of our adaptive SLAM method,
a dataset with tunable parameters such as modular
frame rate or customizable resolution was required,
which unfortunately did not exist. The second con-
tribution of this paper is thus the presentation of a
synthetic benchmark generation tool that we have de-
signed and developed: Alastor. In addition to fulfill-
ing the previously unavailable requirements described
above, it offers two major advantages compared to
real-world datasets: 1. it comes with a perfect ground
truth and it ensures no error coming from the sensors;
2. it eases the generation of an extensive amount of
stereo data, which is an insatiable request from neural
networks based methods that become more and more
popular. An example of the Alastor output is shown
on figurel.

(b)

Figure 1: Alastor simulator engine output. (a) Simulation
of a stereo system embedded on a car. (b) same system on
an UAV.

2 Related Works

As mentioned in section 1, a large number of
methods that use stereo visual odometry already exist.
These methods build a 3D map of their environment
in real-time. Among them, three main categories can
be distinguished:

1. Sparse map generation methods (Visual-SLAM
(Cvisié et al., 2017; Cvisi¢ and Petrovié, 2015));

2. Semi-dense map generation methods, (LSD-
SLAM or ORB-SLAM (Engel et al., 2014; Mur-
Artal et al., ));

3. Dense map generation methods (StereoScan
(Geiger et al., 2011)).

Among the several stereo datasets that have been
created for training and evaluating stereo algorithms,
only a few of them are commonly used. Middle-
bury stereo dataset (Baker et al., 2011) is widely used
for indoor scenes; it provides high-resolution stereo
pairs with dense disparity ground truth. However it
does not offer any data usable for SLAM algorithms,
as all the given images are totally independent. The
KITTI stereo dataset (Geiger et al., 2012) is a bench-
mark consisting of urban video sequences with semi-
dense disparity ground truth along with semantic la-
bels. The EuRoC MAV dataset (Burri et al., 2016)
presents two visual-inertial datasets containing stereo
images collected on-board on a Micro Aerial Vehicle
(MAV).

Because of the complex equipment and expensive
human ressource required to build them, these three
real-world datasets have relatively small sizes: for in-
stance, the largest one, the KITTI dataset, has only
aounrd 400 labelled stereo pairs in total for public use.
Another disadvantage of real-world datasets is the
limited precision of 3D sensors and LIDAR that pro-
hibits high-quality ground truth. Finally, because of
physical limitations of acquisition and recording, the
frame rates of these datasets are relatively low (around
10 frames per second) compared to actual cameras.
This was a major drawback to evaluate our adaptive



SLAM proof of concept. Additionally, with the re-
cent interest in deep convolutional neural networks to
resolve the SLAM problem, the actual amount of data
is unsatisfactory for those greedy methods.

For all the reasons described above, the need
for synthetic stereo datasets arose. Virtual KITTI
(Gaidon et al., ) offers a dataset automatically labelled
with accurate ground truth for object detection, track-
ing, scene and instance segmentation, depth acquired
by LiDAR, and optical flow. They unfortunately do
not allow users to extract any stereo data, making it
strongly powerful for monocular SLAM method, but
irrelevant for our context. On the other hand, Un-
real stereo (Zhang et al., ) and (Mayer et al., ) offer a
real answer to synthetic stereo data generation. How-
ever, none of them provides any consecutive frame,
and they are thus ineffective to achieve SLAM. Our
dataset is therefore, to our knowledge, the only syn-
thetic stereo dataset that could be used for SLAM al-
gorithms.

3 Adaptive SLAM methodology

This section presents the adaptive SLAM method
that we have created and its integration in the pipeline
for 3D dense reconstruction.

3.1 SLAM optimization

As shown in the previous section, actual slam meth-
ods are mostly based on consecutive pairwise analy-
sis, what means that they directly rely on the camera
frame rate. Let us consider an image sequence com-
posed of frames fo, f1,..., f,. We will note f; the i""
frame. The objective of a SLAM algorithm is to find
the transformation matrix M (rotation and translation)
that allows a vector to go from f; to fii1:

i ri2 rns iy
|1 r2 3 ty| R T
T m o m3 |

0 0 0 1 0 0 0 1

With r,, the rotation coefficients, 7, the translation
coefficients o the corresponding axis. R and T are thus
respectively the Rotation and Translation matrix. We
can derive from the R matrix the rotation angle in each
dimension ry,ry, ;. The role of a SLAM algorithm is
to estimate these matrices so that:

fir1 =Rx fi+T
With f; the set of feature points extracted for the
i"frame. In order to ensure the highest possible preci-
sion, recent methods include every frame in the pro-
cess. Indeed, minimizing the distance between two

consecutive frames reduces the matrix estimation er-
ror. Moreover, the feature selection process from two
close frames ensure a large number of matching land-
marks, which is suitable for a robust path estima-
tion. However, such a computation is both time and
power consuming. With the advent of embedded sys-
tems such as mobile phones or small unmanned vehi-
cles, autonomy became a strong parameter to take into
consideration for SLAM applications, in addition to
real-time process requirements. It is thus unthinkable
to deal with a 30 fps frame rate within an on-board
system still fulfilling all the requirements. To make
things possible, the frame rates are strongly reduced,
compared to standard acquisition devices, ineluctably
incorporating biases in the process.

It is a known fact that rotations are the actual rea-
son why SLAM is still an actively searched problem
(Carlone et al., ; Pirchheim et al., ). Rotation estima-
tion (a.k.a. rotation averaging) has been widely stud-
ied in computer vision, where accurate camera orien-
tation estimation is critical to solve Bundle Adjust-
ment in Structure from Motion. It has also been in-
vestigated in the control theory community, where it
has applications for vehicle coordination, sensor net-
works localization, camera network calibration and
more broadly in robotic science. The idea that we
suggest is thus to reduce the number of frames pro-
cessed while the trajectory remains straight, in order
to reduce power consumption to increase processing
speed, and to measure the frame rate when the robot
is carrying out a rotation. Instead of considering the
whole set of images, we only consider a subset of it as
long as the trajectory stays straight. Let ¢ be the num-
ber of skipped frames and € a minimum rotation angle
threshold. If at the i’ frame the detected rotation an-
gle is above the threshold, we process the subset f;_s
to f; back into the SLAM algorithm. Doing so, we
strongly reduce the total number of processed frame
still minimising the critical errors in the dangerous ro-
tation parts. The pseudo-code of this simple process
is available on figure 1.

With this method, two parameters have to be con-
sidered: the number of skipped frames ¢ and the ro-
tation threshold €. These two factors are strongly de-
pendent on the original frame rate of the sensor, the
current speed of the vehicle when turning. So to avoid
the laborious task of parameters adjustment, we have
developed an adaptive method the role of which is
to continuously adjust ¢ and € during the exploration
process.

As shown in figure 2 (a), a less energy consuming
frame rate is applied to most of the trajectory (black
dots) and our method re-samples to a higher frame
rate when a rotation occurs (red dots). The structure



Algorithm 1 Adaptive SLAM frame selection pseudo
code.

1: procedure ADAPTIVESLAM

2: i+ 0

3: 0+ 1

4: while i < n do:

5: (rxaryarmtmtyatz) A
computeSLAM(f;_g, /)

6: if e >€orr,>¢orr;, >¢then

7: for j« [i—o+1,i] do:

8: (rmry»rmtmty,tz) A
computeSLAM(f;_1, f})

9: save(ry, Iy, 7, by, 17)

10: o+ 1

11: else

12: save(ry, ry, 17, b, by, ;)

13: c+0o+1

14: i+i+0

of the trajectory is conserved, still a significant num-
ber of frames have been skipped. More information
about these numbers are given in the results section of
this paper (section 5). Figure 2 ((b)) illustrates the dif-
ferences between the estimation of the trajectory with
and without Adaptive SLAM with the same number
of processed frames.The blue doted line is the output
of SLAM algorithm with a naive reduced frame rate.
The black and red doted line is the output of Adap-
tiveSLAM algorithm with the same number of dots.
The green doted line corresponds to the ground truth
delivered by KITII. This example clearly emphasizes
the need for high frame rates in the rotation areas, and
its non necessity for straight lines.

(a) (b)
Figure 2: Illustration of Adaptive SLAM frame selection.
The black+red points represent the trajectory given by adap-
tive SLAM. We can easily see in (a) that the curves are pro-
cessed with a highest frame rate than the straight lines. (b)
illustrates in blue what would happen if we keep the reduced
frame rate for the entire sequence. The computed trajec-
tory strongly spreads off the represented ground truth (green
dots), whereas the adaptive SLAM remains very close to it.

This method allows us to quickly get a coarse es-
timation of the transformation between two selected
frames. In the next subsection, we will use the out-
put of the adaptive SLAM algorithm to generate a
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Figure 3: Pipeline to generate a cloud of points from a
stereo image pair.

3D dense reconstruction of the world surrounding the
cameras.

3.2 A Pipeline for 3D Dense
Reconstruction in Real-Time

In this section we present a full pipeline for real-time
3D dense reconstruction from stereo visual odome-
try, without any other sensors than our two calibrated
cameras.

The very first step of the pipeline consists in build-
ing an initial point cloud at a time # on which the other
generated clouds will be grafted. To do so, we pre-
liminary have to calibrate the cameras. This step is
an essential requirement of the pipeline. This cali-
bration process will generate intrinsic parameters (fo-
cal length, distortion, principal points and axis skew)
and extrinsic parameters( baseline length, translation
and rotation matrices from a camera to the other). A
standard procedure to calibrate the camera is to use a
chessboard pattern. An average of significant number
of different poses is used to get better calibration re-
sults. This calibration is a mandatory step for the rec-
tification process used to project the two images onto
a common image plane. We can then apply a stereo
vision algorithm to build a disparity map. We decided
to compute our maps using an implementation of the
so-called Semi-Global Block Matching SGBM from
(Hirschmuller, 2006). Using the previously computed
calibration parameters, we can then integrate the dis-
parity map into a depth map. We can eventually ex-
tract a point cloud from the depth map. This process
is illustrated in figure 3.

One of the main advantages of this method is that
the point cloud is generated directly from the image,
and every 3D point is associated to one pixel in the
image. This provides a quick method to build a dense
3D point cloud in real-time scenarios. A critical draw-
back is that the quality of the generated cloud is really
sensitive to the calibration process. This step should
thus be done with great precision in order to limit
noise generation, but this is out of the scope of this
paper. Once the initial point cloud has been gener-



ated, we apply the proposed adaptive SLAM method
to the input images sequence. From the trajectory
estimation, we then extract a key frame and com-
pute its corresponding point cloud. the key frame
is selected when a displacement threshold has been
reached. After a filtering step, the transformation ma-
trix estimated by the adaptive SLAM algorithm is ap-
plied to the new point cloud and merged within the
global cloud, giving suitable estimation. Then, in
order to minimize the difference between the global
point cloud and the new one, an Iterative Closest Point
(ICP) algorithm (Chetverikov et al., ) is run to refine
the final registration. This step is done simultaneously
with the adaptive SLAM algorithm so it does not slow
down the global pipeline (figure 4). Results will be
presented in section 5.

4 Alastor Dataset

As shown in the related work section, only a few
datasets exist for stereo vision based odometry. And
even then, the volume of data they provide remains
limited due to the hard task of collecting such data in
areal-world scenario (Geiger et al., 2012; Baker et al.,
2011; Burri et al., 2016). Moreover, existing synthetic
datasets are ineffective for stereo (Gaidon et al., ) or
SLAM (Zhang et al., ; Mayer et al., ) scenarios. As
the first one only provides images from mono camera,
and the second does not provide any images sequence
mandatory to apply SLAM algorithms. The second
main contribution of this article is thus to offer the
first, to our knowledge, synthetic stereo dataset for
SLAM algorithms.

To generate such a dataset, several solutions ex-
ist in the literature. The Modular OpenRobots Simu-
lation Engine (MORSE) (Echeverria et al., ) seemed
to fulfill most of the needed requirements to perform
our simulation. MORSE is an open-source software
which offers an extended set of predefined sensors
and controllers that cover reasonably well common
simulation needs. Nevertheless, even though the cam-
era physics were ideal for our needs, the vector ma-
nipulation lacked of realism. We thus decided to im-
plement our own solution using Unity 3D!, a power-
ful cross-platform engine we are familiar with. Still,
we should give a closer look to MORSE in our future
works.

We developed a solution which allows users to
load any 3D environment model (forest, city, road,
etc.) and to insert one or several vectors (car, UAV,
boat, person, efc.) equipped with a stereo acquisi-

!Unity 3D Engine: https://unity3d.con/

tion system. The simulation lets the user play with
a large number of parameters (resolution, baseline,
Field of View, baseline, FPS). Then, with a regular
game controller, the user simply wanders inside its
3D scene (see figure 1), letting the simulation capture
the stereo images and record the ground truth trajec-
tory. The generated dataset can then be downloaded
and given as input to any SLAM algorithm, with a
perfect ground truth to compare with. As shown in
figure 5 (a), the simulation also enables the user to
generate a calibration scene.

The synthetic datasets that we generated offer the
following advantages:

1. Perfect ground truth.

2. Complete vehicle parametrization (dimensions,
speed, turning angle, ability to fly).

3. Full acquisition system parametrization (resolu-
tion, frame rate, baseline).

4. Multi-scale and multi-scene adaptability.

The figure 5 shows an example of a 3D model of
a city used in the Alastor simulation. The full dataset
is available on-line at http://alastor.labri.fr/
The figure 6 represents 10 simulated drives, from very
simple straight trajectories to more complex scenar-
i0s.

Our architecture makes it possible to easily tune
acquisition parameters. We have included a rain sim-
ulator to deal with noisy particles as well as a daylight
manipulation tool allowing to work with illumination
changes. An output example is given in fig. 7 (a,b).

To go even further, a rotary LiDAR has been
added in the simulation, as shown in fig. 8. Once
more, as the datasets are fully synthetic, the preci-
sion of the generated cloud of points is strongly higher
than a real sensor subject to real-life acquisition noise.

5 Results

In order to evaluate our model, we tested the
proposed adaptive SLAM algorithm on the so-called
KITTI dataset (Geiger et al., 2012) and on the Alas-
tor dataset. The SLAM algorithm on top of which is
implemented the Adaptive SLAM algorithm is gen-
erated by libviso2 (Geiger, 2012), an open source li-
brary for stereo visual odometry. The goal of the fol-
lowing results is to demonstrate that the same results
are achievable with less resources. We do not focus
on precision improvement here. The following re-
sults will consider the computed trajectory given by
libviso2 as the ground truth for our adaptive SLAM
estimation. Thanks to the Alastor dataset, our results
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Figure 4: Pipeline of global 3D dense reconstruction.
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Figure 5: Alastor simulation example scenes. (a) Example
of the calibration scene used to compute the intrinsic and
extrinsic parameters of the stereo cameras. (b) Example of
a 3D model used as the global scene in Alastor simulation.

are obtained on a high frame rate (50fps) for all the
synthetic data, whereas the KITTI dataset was used at
its maximum of 10 fps.

We used two main metrics to evaluate the perfor-
mances of our method: the first one is the time saved
between libviso2 SLAM and our adaptive SLAM ex-
pressed in seconds. The evaluation have been run on
a17-4770 CPU with 16Go of RAM. The second met-
rics is the error A generated by our adaptive SLAM.
The error represents the average error with respect to
the total travelled distance (as a percentage):

o v/ (i — )2 + (i —y)? + (i — 2)*/n

f V(= x )2+ 0 —yi)? 4 (7 —2j1)?

where 7 is the total number of processed frames, x,y, z
are the 3D coordinates given by libviso2 for a given
frame i. x',y’,7" are the 3D coordinates given by the
Adaptive SLAM for the same frame. We first tested
our algorithm on the KITTI Dataset.

5.1 Evaluation based on the KITTI
Dataset

Due to the frame rate used in the KITTI datasets, we
set the parameters to € = 0.01 and G, = 4. This way,
we ensure a low frame rate at 2,5 fps with a maximum
speed of the vehicle at 30 km/h. The results using the

KITTTI dataset are illustrated on an histogram figure
9. The black bar corresponds to the execution time of
the SLAM algorithm of libViso2. The blue one corre-
sponds to the execution time of the Adaptive SLAM
algorithm. As it can be seen on the histogram, the er-
ror rate is very low (the highest error is 0.34%) with
saved time of 32.8% on average. These values repre-
sent considerable gains for embedded systems.

5.2 Evaluation based on the Alastor
Dataset

On the basis of the results on the KITTI dataset,
we then tested the Adaptive SLAM algorithm on the
Alastor dataset. Due to the used frame rate in the
simulation, we set our parameters to € = 0.01 and
GOmax = 10. This way, we ensure a low frame rate at 5
fps with a maximum vehicle speed of 60 km/h. The
number of skipped frames and the corresponding er-
ror are displayed on figure 10. The average saved time
is 73.8%. This good result is due to the original frame
rate of the simulation. In the other hand, the max-
imum generated error reached 1.75% for the dataset
number 00. This is mainly due to a bad estimation of
the elevation close to the first frames.

Tested on a 17-4770 computer with 16Go of RAM,
a regular dataset of 1000 frames with a resolution of
1392 x 512 pixels (similar to KITTI (Geiger et al.,
2012)) takes around 420s (7 minutes) with libviso2
raw algorithm. Three scenarios can be considered
with our Adaptive SLAM algorithm:

1. Worst case scenario: The trajectory is entirely
composed of rotations: no single frame is skipped,
the computation time thus remains thus the same
(7 minutes).

2. Regular case: The trajectory is composed of rota-
tions and straight lines. In average, the execution
time is shorten by 30%. The whole SLAM gener-
ation takes 4 minutes and 54s.

3. Optimal case: The trajectory is a single straight
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Figure 6: Some simulated trajectories available in the Alastor dataset. These 10 datasets correspond to scenarios with different
complexity levels. The results of the adaptive SLAM algorithm on these datasets are shown in the next section

(b)

Figure 7: Alastor simulation engine outputs. With differ-
ent weather and lighting conditions: (a) Simulation during
daylight with light rain, (b) during dawn with strong rain.
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Figure 8: Example of a cloud of point generated by the ro-

tary LiDAR. Thanks to the synthetic nature of the datasets,
its reliability is very high.

line. The percentage of skipped frames is in this
case is around 90%. The execution time is 42 sec-
onds. This situation occurs, for instance, in one of
the KITTI datasets see figure 11.

To ensure the stability of the Adaptive algorithm,
it was tested on more complex scenarios. For instance
one of the biggest datasets available in KITTIL. The
corresponding trajectory is shown on figure 12 (a).
This examples highlights the efficiency of the frame
selection process. Indeed, most of the straight parts
are sparse (black dots) whereas the rotation parts are
more dense (red dots). This phenomenon is even more
noticeable in the simulated spinning trajectory of fig-
ure 12 (b). This dataset clearly put forward the pro-
cess of the adaptive frame selection.

Datasets time (s)
00 181 4540
Error 0.26% 138 3472
o1 44 1100
Error 0.34% 27 693
02 186 4660
Error 0.24% 138 3461
03 32 800
Error 0.22% 22 566
04 10 270
Error 0.11% 3 94
05 10 2760
Error 0.11% 68 1724
06 44 1100
Error 0.17% 20 51
07 44 1100
Error 0.16% 29 735
08 162 4070
Error 0.19% 1 2780
09 63 1500
Error 0.16% 50 1256
10 48 1200
Error 0.06% 34 863
= SLAM algorithm of libViso2 Our adaptative SLAM algorithm total processed

Figure 9: Evaluation of adaptive SLAM algorithm com-
pared to libviso2 on the KITTI dataset. This array clearly
highlights the saved computational time on real data. It also
confirms that the error is negligible in comparison.

Datasets time (s)
00 142 3571
Error 1.75% 45 1128
[ 175 4381
Error 0.42% 74 1869
02 319 7997
Error 0.97% 105 2641
03 509 12747
Error 0.44% 120 3008
04 163 4083
Error 0.50% 60 1513
05 120 3047
Error 0.61% 20 502
06 235 5897
Error 0.34% 62 1556
07 167 4185
Error 0.30% 9 240
08 249 6247
Error 0.23% 45 1128
09 57 1443
Error 0.06% 138 455
mmm SLAM algorithm of libViso2 Our adaptative SLAM algorithm total processed

Figure 10: Evaluation of adaptive SLAM algorithm com-
pared to libviso2 on the Alastor dataset. The gain is here
even more impressive.
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Figure 12: Comparison between the output of our adaptive
SLAM algorithm and the ground truth of one of the KITTI
datasets. Yellow lines correspond to the perfect ground truth
computed during the simulation. Black and red dots are the
adaptive SLAM output.



Figure 11: Illustration of the number of skipped frame. The two lines represent the same trajectory. The upper one is given
by libviso2 whereas the lower one is generated by adaptive SLAM. This trajectory is extracted from a real KITTI sequence.

(b)

Figure 13: 3D dense reconstruction based on the KITTI
dataset. (a) Full 3D dense point cloud generated using the
KITTI dataset. The red points show the trajectory computer
by our adaptive SLAM. (b) Zoom inside the aside point
cloud. Here, several depth maps have been merged to create
a unique cloud.

The Adaptive SLAM computes a coarse estima-
tion of the movements of the camera from one frame
to an other. The final merge between the current
point cloud and the previously computed global one
is consistent. With a precise enough initialization,
ICP (Chetverikov et al., ) algorithm perfectly merges
the input clouds. As no ground truth exists for such
a dense generated cloud, this observation may only
be made subjectively. As displayed in figure 13, the
trajectory (in red) fits perfectly the generated point
cloud. A zoom inside it allows us to observe more
closely the efficiency of the registration.

In order to ease the estimation of the readers, two
videos are provided with this paper as supplemental
materials, one for each generated point cloud.

@ (b)

Figure 14: 3D dense reconstruction of Alastor dataset. (a) is
a fully merged 3D dense point cloud generated from Alastor
dataset overflight by drones. (b) is the Same point cloud
but from an other point of view. The overlapping areas are
totally invisible thanks to ICP (Chetverikov et al., )

6 Conclusion

In this paper, we have presented an optimiza-
tion of SLAM algorithms that reduces the number of
processed frames without increasing the resulting er-
ror. We have shown that this method significantly in-
creases performances in real-time scenarios, and that
it is applicable to well known datasets. We used
Adaptive SLAM algorithm within a 3D dense recon-
struction pipeline and we have shown that the results
are perfectly suitable for dense reconstruction. Ad-
ditionnaly, to support the validation of our concept
and to answer the needs for stereo datasets for SLAM
evaluation, we made available, what is to our knowl-
edge, the first synthetic stereo dataset for SLAM ap-
plications: Alastor. The experiments that we have
conducted have shown that adaptive SLAM performs
great on simulated datasets. We hope that our dataset
will help design and evaluate innovative methods that
will take advantage of the tunable parameters in order
to improve the effectiveness of SLAM solving algo-
rithms in the future.

In terms of future work, we are also considering
the integration of loop-closure algorithm in the recon-
struction pipeline. This problem consists in detecting
when the robot has returned to a past location after
having discovered new terrain for a while. Such meth-
ods are able to greatly reduce the accumulated error
by adjusting the generated cloud once a loop has been
noticed. We also intend to improve the Alastor dataset
by diversifying both its content and the sensors.
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