

Intégration temporelle basée sur la resommation de séries divergentes: Où en est-on ?

Dina Razafindralandy, Aziz Hamdouni, Ahmad Deeb

Laboratoire des Sciences de l'Ingénieur pour l'Environnement LaSIE - UMR CNRS 7356 Université de La Rochelle - France

Journée Méthodes Asymptotiques Numériques 2017 Metz

Motivations

Asymptotic Num. Meth. for unsteady problems: $u(t) = \sum_{n>0} u_n t^n$

But the convergence radius δt may be very small, or even vanish

Heat equation:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $u(t = 0, x) = \frac{1}{1-x}$
 $u(t, x) = \sum_{n \ge 0} \frac{(2k)!}{k!} \frac{t^k}{(1-x)^{2k+1}}$ $\delta t = 0$ for all x

Goal:

- ★ Take advantage of the divergence, using a suitable summation theory
- ★ Build numerical schemes based on this approach

Overview:

- ★ Use of divergent series in history
- ★ Borel-Laplace summation
- ★ Summation algorithm
- ★ Applications

Divergent series in history

Astronomers: n-body problems

★ 3 bodies = 2 bodies + perturbation:

$$u \sim u_0 + \varepsilon u_1 + \varepsilon^2 u_2 + \cdots$$

★ Good agreement with measures

 \star Yet, the series is divergent in the sense of geometers

Divergent series in history

- Astronomers: n-body problems
 - ★ 3 bodies = 2 bodies + perturbation:

$$u \sim u_0 + \varepsilon u_1 + \varepsilon^2 u_2 + \cdots$$

- ★ Good agreement with measures
- \star Yet, the series is divergent in the sense of geometers
- Airy: Study of rainbow (1838)
 - \star Ray reflection in the neighbourhood of a caustics
 - ★ Intensity of light proportional to $Ai(t) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{x^{3}}{3} + tx\right) dx$

m

Airy: Asymptotic development at zero: convergent series $Ai(t) \sim 3^{-2/3} \sum_{n=0}^{\infty} \frac{t^{3n}}{9^n n! \Gamma\left(n + \frac{2}{3}\right)} - 3^{-4/3} \sum_{n=0}^{\infty} \frac{t^{3n+1}}{9^n n! \Gamma\left(n + \frac{4}{3}\right)}$

The terms increase before becoming small Very tedious calculations Very tedious calculations Airy: 1

Airy: 1 fringe with 4 digits

Stokes: Change of variable (Asymptotic dev. at ∞): divergent series $Ai(t) \sim \frac{t^{-1/4} e^{-\frac{2}{3}t^{3/2}3^{-\frac{2}{3}}}{\pi^{3/2}} \sum_{\substack{n=0\\n=0}}^{\infty} \frac{\Gamma\left(n+\frac{5}{6}\right)\Gamma\left(n+\frac{1}{6}\right)}{n!} \frac{3^n}{4^n} (-t)^{-\frac{3n}{2}}$ The terms decrease before "exploding" \longrightarrow Good approximation with few terms

Summation at the smallest term

Stokes: 30 fringes with 4 digits

Borel-Laplace summation

 $\begin{array}{c}
0 \\
0 \\
\xi \\
\infty
\end{array}$

Gevrey series: $|u_n| < CA^n n!$

• Analytical prolongation on \mathbb{R}^+

Unzoom with Laplace transformation

For a convergent series, $\hat{u}(t) = S\hat{u}(t)$ inside the convergent disc

A series $\hat{u} \in \mathbb{C}[[t]]$ is Gevrey asymptotic (of order 1) to a function S, analytic within a sector $S \subset \mathbb{C}^*$ of apex O, if for any relatively compact subsector $W \subset C S$, there exists C > 0, A > 0,

$$\left|\mathcal{S}(t)-\sum_{n=0}^{N-1}u_{n}t^{n}\right|=CA^{N}N!t^{N},\qquad\forall t\in W,N\in\mathbb{N}$$

Borel-(Padé-)Laplace integrator

Padé approximants efficient on Bû(ξ) (convergent series)

- Exponential growth of |P(ξ)| at infinity
- Choice of the Laplace direction d: poles of $P(\xi)$

Euler's equation

$$t^2\frac{\mathrm{d}u}{\mathrm{d}t}+u=t,\ u(0)=0$$

Prolongation

$$\hat{u}(t) = \sum_{\substack{n \ge 0 \\ \text{Borel}}} (-1)^n n! t^{n+1}$$
$$\stackrel{\text{Borel}}{=} \bigcup_{\substack{n \ge 0}} (-1)^n \xi^n \qquad -$$

SIE

0.2

Stiff problems

- Only very few explicit schemes work
- Exponential integrators (ETD: exponential time differencing) semi-explicit
 - $\star \quad \frac{\mathrm{d}u}{\mathrm{d}t} = Lu + N(t, u)$
 - ★ Exact integration of the linear part: $u(t) = e^{tL} u_0 + \int_0^t e^{(t-\tau)L} N(\tau, u(\tau)) d\tau$

FTDRK4

- ✤ Runge-Kutta RK4 for the resolution of the integral
- Borel-Padé-Laplace integrator, N = 10

$$\star \quad u_{n+1} = \frac{1}{n+1} \left[Lu_n + N_n(u_0, \cdots, u_n) \right]$$

- ★ Summation
- Direct Adaptative RK4
- Direct Adaptative RK, with 5 Gauss-quadrature based implicit internal stages

Calibration: $\epsilon = \frac{|\overline{l}(t) - l(0)|}{|l(0)|} \le \epsilon_l$ for $t \in [0, 500]$

- * Increasing stiffness ratio $r = \frac{\max(\alpha, \delta)}{\min(\alpha, \delta)}$
- **★** *N* = 5

Parameter calibration: Approximately the same order of precision

- * Increasing stiffness ratio $r = \frac{\max(\alpha, \delta)}{\min(\alpha, \delta)}$
- **★** *N* = 5

Parameter calibration: Approximately the same order of precision

Over one period, with d = 128

	BPL	ETDRK4
L^2 error at $t = T$	$9.76 \cdot 10^{-06}$	$1.10 \cdot 10^{-05}$
Mean time step	$1.53 \cdot 10^{-01}$	$6.41 \cdot 10^{-04} (/238)$
Simulation time	1.74	$1.66 \cdot 10^{+03} (imes 954)$

Korteweg de Vries

Δt decreases slowly with BPL and ETDRK4

• CPU growth rate between d = 256 and d = 512

BPL: 0.51 ETDRK4: 3.81

Evolution of Δt and CPU with d

Integration by parts of Su(t)

Inverse factorial series algorithm

 $b_n = \frac{1}{n!} \sum_{k=1}^{n+1} |S_{k-1}^n| u_k$ S_k^n Stirling numbers of 1st kind

Unique, absolutely convergent for Re(1/t) big enough
 Avoids quadrature error, artificial poles in Padé, non unique Padé

Interesting qualities

- ★ Large time steps, low CPU
- ★ High-order Symplecticity
- ★ Isospectrality
- ★ Ability to cross some types of singularities
- ★ Efficiency for stiff problems, despite explicit character

Theoretical questions

- ★ Gevrey order
- ★ Laplace direction
- ★ → Optimization

Prospects: large size ODE