
HAL Id: hal-02086536
https://hal.science/hal-02086536v1

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the difficulty of hiding the balance of lightning
network channels

Jordi Herrera-Joancomarti, Guillermo Navarro-Arribas, Alejandro Ranchal
Pedrosa, Perez-Sola Cristina, Joaquin Garcia-Alfaro

To cite this version:
Jordi Herrera-Joancomarti, Guillermo Navarro-Arribas, Alejandro Ranchal Pedrosa, Perez-Sola
Cristina, Joaquin Garcia-Alfaro. On the difficulty of hiding the balance of lightning network chan-
nels. [Research Report] Dépt. Réseaux et Service de Télécom (Institut Mines-Télécom-Télécom
SudParis); Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux
(Institut Mines-Télécom-Télécom SudParis-CNRS); Department of Information and Communications
Engineering (Autonomous University of Barcelona). 2019, pp.13. �hal-02086536�

https://hal.science/hal-02086536v1
https://hal.archives-ouvertes.fr

On the Difficulty of Hiding the Balance
of Lightning Network Channels

Jordi Herrera-Joancomartí
jordi.herrera@uab.cat

Universitat Autònoma de Barcelona
Cybercat

Guillermo Navarro-Arribas
guillermo.navarro@uab.cat

Universitat Autònoma de Barcelona
Cybercat

Alejandro Ranchal-Pedrosa
alejandro.ranchal_pedrosa@

telecom-sudparis.eu
Telecom SudParis

Cristina Pérez-Solà
cperez@deic.uab.cat

Universitat Rovira i Virgili
Cybercat

Joaquin Garcia-Alfaro
jgalfaro@ieee.org

CNRS SAMOVAR, Institut
Polytechnique de Paris, T. SudParis

Abstract
The Lightning Network is a second layer technology running
on top of Bitcoin and other Blockchains. It is composed of a
peer-to-peer network, used to transfer raw information data.
Some of the links in the peer-to-peer network are identified
as payment channels, used to conduct payments between two
Lightning Network clients (i.e., the two nodes of the channel).
Payment channels are created with a fixed credit amount,
the channel capacity. The channel capacity, together with
the IP address of the nodes, is published to allow a routing
algorithm to find an existing path between two nodes that
do not have a direct payment channel. However, to preserve
users’ privacy, the precise balance of the pair of nodes of
a given channel (i.e. the bandwidth of the channel in each
direction), is kept secret. Since balances are not announced,
second-layer nodes probe routes iteratively, until they find a
successful route to the destination for the amount required,
if any. This feature makes the routing discovery protocol
less efficient but preserves the privacy of channel balances.
In this paper, we present an attack to disclose the balance of
a channel in the Lightning Network. Our attack is based on
performing multiple payments ensuring that none of them is
finalized, minimizing the economical cost of the attack. We
present experimental results that validate our claims, and
countermeasures to handle the attack.

1 Introduction
The Lightning Network is a second layer running on top of
Bitcoin and other Blockchains. Its goal is to address scala-
bility problems with Bitcoin payment systems, and to lower
transaction fees [17]. It uses a peer-to-peer network, to trans-
fer raw information data. Some of the links in the peer-to-
peer network are identified as payment channels. Payment

IACR PrePrint, January, 2019
© 2019 Authors
.

channels allow payments to be routed between Lightning
Network clients.

The Lightning Network not only provides better scalabil-
ity. It also enables users to perform payments privately, and
with low or negligible fees. In its current specification [31],
payments are conducted with an onion-routing protocol [9],
to provide each node in the route with the minimum informa-
tion required to relay and retrieve payments. A node other
than the origin and the destination does not know who is
the origin node or the destination node; it only knows from
whom and to whom forward the payment.

Channels are created with a fixed credit amount, the chan-
nel capacity. Channels can be used to perform payments
between the two nodes of the channel. The channel capac-
ity, together with the IP address of the nodes, is published
to allow a routing discovery algorithm to find an existing
path between two nodes that do not have a direct payment
channel. To preserve privacy properties, and although the
channel capacity can be known, the particular balances of
each of the nodes of the channel at a given time is set confi-
dential only to the two members of the channel. Given that
such balances (i.e., the bandwidth of the channel in each
direction) are not announced, routing nodes need to probe
and monitor routes iteratively, until they find a successful
path to the destination for the amount required, if any. This
feature makes the routing discovery protocol less efficient,
but preserves the privacy of channel balances.

In this paper, we present an attack to disclose the balance
of a channel in the Lightning Network. Our attack is based
on performing multiple payments, ensuring that none of
them is finalized, and minimizing the economical cost of the
attack. Our attack exploits the detailed information provided
by the Lightning Network clients on the occurred errors.
The onion-routing nature of the Lightning Network routing
makes difficult for victims to detect the source of the attack,
i.e., the source of the payments.

IACR PrePrint, January, 2019 Herrera, Navarro, Ranchal, Pérez, Garcia

Section 2 introduces the basic background to understand
the proposed attack and countermeasures. Section 3 de-
scribes the adversarial model and provides a detailed descrip-
tion of the attack. Section 4 provides experimental results.
Section 5 provides the countermeasures. Section 6 surveys
related work. Section 7 concludes the paper.

2 Lightning Network Background
From an architectural point of view, the Lightning Network
is a separated peer-to-peer (P2P) network, connected to the
main Bitcoin P2P network [12]. More precisely, the Lightning
Network is formed from nodes that run a Lightning software
client [14, 32]. The client maintains a P2P network with other
nodes of the Lightning Network and also a connection with
a node in the Bitcoin main P2P network.
Once a node establishes a connection with a peer in the

Lightning P2P Network, they can open a payment channel
in which they can exchange Bitcoin transactions without the
need for such transactions to be set down in the blockchain.
This payment channel is not a real network connection, but
a state of the P2P network connection that both nodes have
in the Lightning P2P Network. For that reason, a payment
channel between two users A and B cannot be created or
used without the existence of a connection between A and
B in the Ligthning P2P Network. This online model of the
Lightning Network differs from the offline mechanism of
standard Bitcoin payments, in which A and B may perform
payments between them without being connected, since
payments pass through the blockchain.

2.1 Payment Channels
The core element of the Lightning Network is the payment
channel. A payment channel can be seen as a contract be-
tween exactly two parties, A and B, with a capacity amount
of Bitcoins CAB = CBA that is divided between the parties
and can be exchanged. Such division, represented as the bal-
ance of A and balance of B, can be updated without having
to send a transaction to the Bitcoin blockchain.

To create a payment channel,A and B need to set a node in
the Lightning P2P Network and connect both nodes in that
network. Once the connection is established, they proceed
to create a payment channel. Channel creation is performed
by sending a special transaction to the Bitcoin blockchain.
The open nature of the Bitcoin blockchain allows any user to
check when a channel is created and some basic information
for that channel, like the capacity of the channel or the
Bitcoin addresses that created the channel1.
The Bitcoin transaction needed to create a channel is

known as the funding transaction, a transaction in which
one of the users deposits some bitcoins in a multisignature

1Although Bitcoin addresses are included, the identity of users A and B
holding the channel may be preserved.

address controlled by both A and B. The total amount in-
cluded in the funding transaction is the channel capacity,
CAB = CBA.

Once a channel is open, the two users holding that chan-
nel can perform payments in both directions, only restricted
to the balance that each of them has in the channel. The
balance of each user in a channel is a fraction of the capacity
of that channel, and can be indicated with balanceAB for
the balance that user A has in the channel and balanceBA
for the balance of B. Obviously, the following expression
always holds: CAB = CBA = (balanceAB + balanceBA). For
instance, if the user A has deposited 0.1 Bitcoins in the fund-
ing transaction of the channel, then the initial balances of
the channel will be balanceAB = 0.1 and balanceBA = 0.
When A performs a payment of 0.02 to B in that channel,
the balances are updated accordingly: balanceAB = 0.08 and
balanceBA = 0.02.

Payments in a channel are performed through commit-
ment transactions. When A wants to perform a payment to
B both users exchange a Bitcoin transaction with special
features. In short, the transaction takes as input the fund-
ing transaction output of the channel and splits the input
creating outputs in which every user gets the new balance
of the channel. Since such a transaction is not published
in the Bitcoin blockchain, but stored by each user of the
channel, when a new payment has to be performed, new
commitment transactions are created and exchanged. How-
ever, since the new commitment transactions spend the same
output from the funding transaction as used in a previous
committed transaction, a mechanism should be added to in-
validate a previous commitment transaction once a new one
has been exchanged. This mechanism is performed by a set
of transactions that are kept offline. The transactions are only
published if the counterpart intends to commit to an invalid,
old, commitment transaction. Users are discouraged to use
previous transactions since at every new commitment trans-
action, (secret) information of the previous one is revealed,
giving the opportunity to honest users to punish a dishonest
one, by collecting all the balance of the channel [26].

Notice that commitment transactions are valid formatted
Bitcoin transactions that, although they are not intended to,
can be posted in the Bitcoin blockchain at any time for any
of the participants of the channel.

At any moment, users of a channel can close the channel
and refund the balance each one has in the channel. This re-
set can be performed unilaterally, by any of the users sending
the last commitment transaction to the Bitcoin blockchain or
jointly, by creating a closing transaction in which the fund-
ing transaction output of the channel is spent in two outputs
that equal the actual balances of each user. More types of
channels and similar constructions have been proposed and
generalized, identifying the same open-close funds mecha-
nism [28].

On the Difficulty of Hiding the Balance of Lightning Network Channels IACR PrePrint, January, 2019

2.2 Multihop Payments
Channels described so far are of little use in real scenarios,
since they are based on a two party agreement, and often
a stable payment relation between only two users is not
common. However, payment channels can be concatenated
allowing to route payments between two users that do not
hold a direct payment channel. When A wants to perform
a payment to C and there is no direct payment channel
between A and C , A tries to find a multihop path of direct
channels. In case the path exists (for instance, with two hops),
a sequence A ↔ B ↔ C is established where each arrow
indicates a payment channel. In such a case, if A wants to
pay 0.01 Bitcoins to C , she can pay 0.01 Bitcoins to B and B
can perform the 0.01 payment to C . The only condition that
has to be set to perform the aforementioned mechanism is
that balanceAB ≥ balanceBC ≥ 0.01.
In the multihop approach, payments at each individual

payment channel cannot be performed exactly in the same
way that with a single hop because user B has to enforce that
he would receive the payment fromA once he has performed
the payment toC , otherwise he would lose the amount of the
payment. The enforcement of this type of atomic exchange
between all the nodes of the path (i.e., all simple one-hop
payments have to be completed or none can be processed) is
performed using Hashed Timelock Contracts (HTLCs) [11].
In an HTLC between the sender A and the receiver B, A can
deposit Bitcoins that can be redeemed by B if B can perform
a digital signature and provide a preimage of a hash value.
Furthermore, the deposit performed by A has an expiration
date after whichA can retrieve the deposit providing a digital
signature. The idea is thatC generates a random value x and
sendsh(x) toA.A performs the single hop payment to B with
an HTLC based on h(x) and B also performs the single hop
payment to C with an HTLC based on the same value h(x).
In that way, since C knows x , he can redeem the transaction
from B, but redeeming the transaction implies revealing the
value of x which, in turn, implies that B may also redeem
the payment from A.
Information in a Lightning multihop payment is routed

through an onion routing protocol where every node of the
path is only aware of his previous and next neighbor. For
that reason, the payer is the one that decides the route of the
payment based on the path availability.
To determine the path, the network topology of the pay-

ment channels of the Lightning Network is published. For
each payment channel, the capacity of the channel and the
fees of each node are advertised. Based on this information,
the payer determines the path for the payment. However,
for privacy reasons, the only information available for a
channel is its capacity, but not the exact balance for each of
the two users of the payment in which the capacity is split.
Hence, it is possible that, although the capacity of the chan-
nel could allow to route a payment through that channel, its

exact balance for each part may not allow the payment to
be processed. In that case, the payer cannot be aware of that
situation until she tries to proceed with the payment and the
protocol returns an error indicating that a particular hop in
the path has not enough funds. Such an error indicates that
the payer needs to find another path which avoids that hop
with insufficient balance in the right direction.

2.3 Invoices in the Lightning Network
In contrast with regular Bitcoin payments, where a payment
request is based only on the Bitcoin address of the payee and
the amount of the payment, LightningNetwork payments are
requested through invoices. When user A wants to make a
payment to user D, the payee creates an invoice. The invoice
includes, among others, the amount of the payment, p, the
key of the destination node, the value h(x) described in the
previous section (to redeem atomically all the payments of
the payment path) and an invoice signature from the payee
(see [31] for all the details). Once A receives the invoice,
she looks for a path in the Lightning Network to route the
payment. In case there is no direct payment channel with
enough capacity betweenA and D, thenA should find a path,
for instance A↔ B ↔ C ↔ D, in which CAB ≥ p, CBC ≥ p,
CCD ≥ p. With this information, using the public keys of
each node, A creates an onion-routing path in which every
node can only decrypt information with regard to the next
hop payment, and the value h(x) needed to redeem all the
conducted payments.

Every node of the network performs a commitment trans-
action to the next hop of the path, by using the existing
payment channel. The commitment transaction includes the
value h(x) in an output to be redeemed once the value x will
be revealed. Upon reception of the last payment, D looks for
the value x that he previously generated and used to include
h(x) in the invoice. Then, D reveals the value x to obtain
the payment performed by C . In doing this, C gets to know
about x and can redeem the payment from B that, in turn,
can do the same.

3 Channel Balance Discovery
Our scenario assumes that Alice,A, and Bob, B, have an open
Bitcoin Lightning Channel,AB, with capacityCAB . Then, the
objective of the adversary, MalloryM , is to disclose the exact
balances that each node has in channelAB, that is balanceAB
and balanceBA.

MA M
AB A B

Figure 1. Simple single channel scenario.

IACR PrePrint, January, 2019 Herrera, Navarro, Ranchal, Pérez, Garcia

To perform our attack, Mallory M needs to open a pay-
ment channel with2 A, MA (see Figure 1). Once the MA
channel is open, M performs a payment through the path
M ↔ A↔ B. In case that balanceMA ≥ balanceAB , any pay-
ment with amount p ≤ balanceAB performed by M can be
routed through that route and the payment will be correctly
delivered to B. Obviously, a naive attack may be carried
by performing multiple payments each of one increases p
from balanceMA step by step3 until an error in the payment
is obtained. The amount p of the last correctly processed
payment can be considered the value balanceAB and then
balanceBA = CAB − balanceAB .

The previously described attack can be enhanced, in order
to reduce the economic cost for the adversary, by routing
an invalid payment. To that end, M creates a fake invoice
as if created by B, with a random value h(x). However, the
fake invoice cannot be detected byA but only by B, who will
not be able to retrieve the corresponding x value (in fact, he
could not locate the invoice, that was created byM) denying
the last hop payment and, therefore, the whole payment.

3.1 Attack Extension
The previously described attack can be easily extended in
order to discover the balance of all open channels that A has
with n peers B1,B2, · · ·Bn (see Figure 2). Notice that with
the same set-up as before (M opens a single channel with A),
M can also obtain the pairs (balanceABi ,balanceBiA) ∀i =
1, · · · ,n as far as M is aware of the existence of Bi and
balanceMA ≥ balanceABi ∀i . In that case,M should set pay-
ments with each end node Bi .

MA

B1

B2

B3
AB3 M A

Bn

Figure 2. Multiple nodes scenario.

3.2 Attack Implementation
Algorithm 1 describes the first attack presented in the previ-
ous section, i.e., the adversary trying to discover thebalanceAB
by performing invalid payments to B through the pathM ↔
A↔ B route (cf. Figure 1). Algorithm 1 takes as inputs the
target node B, the route to B (i.e., node A), the range of the

2There is a symmetry in the channel creation, so M can choose either A or
B , or both, for the attack.
3The implemented approach, however, improves its efficiency by using a
binary search to obtain the threshold value.

Algorithm 1: minmaxBandwidth
Data: route, target, maxFlow, minFlow,

accuracy_threshold
Result: bwidth, an array of tuples that gives the range of bandwidth

discovered for each channel
1 missingTests← T rue ;
2 bwidth.max ← maxFlow;
3 bwidth.min ← minFlow;
4 while missingTests do
5 if bwidth.max − bwidth.min ≤ accuracy_threshold then
6 missingTests← False ;
7 end
8 flow← (bwidth.min + bwidth.max)/2;
9 h (x) ← RandomValue ;

10 response← sendFakePayment(route =
[route, target], h (x), f low);

11 if response = UnknownPaymentHash then
12 if bwidth.min < flow then
13 bwidth.min ← flow;
14 end
15 else if response = InsufficientFunds then
16 if bwidth.max > flow then
17 bwidth.max ← flow;
18 end
19 end
20 end
21 return bwidth

Algorithm 2: Complete Node Attack
Data: node, accuracy_threshold
Result: routes2Neighbors, an array of routes and bandwidths for

each neighbor of the node
1 channelPoint← getChannelPointListChannels(node);
2 created← False ;
3 if channelPoint is undefined then
4 channelPoint = getChannelPointPendingChannels(node);
5 if channelPoint is defined then
6 waitChannelNotPending(channelPoint);
7 else
8 created← T rue ;
9 createConnection(node.externalIP);

10 maxFunding← calculateMaxFunding;
11 responseOpenChannel← createChannelSync;
12 channelPoint← waitChannel(responseOpenChannel);
13 end
14 end
15 neighbors← getNeighbors(node);
16 for neighbor in neighbors do
17 neighbor.minmaxBandwidth ←

minmaxBandwidth(route =node, target =neighbor);
18 end
19 if created then
20 closeChannel(channelPoint);
21 end
22 return routes2Neighbors

On the Difficulty of Hiding the Balance of Lightning Network Channels IACR PrePrint, January, 2019

payment minFlow and maxFlow, that is [0,CAB], and the ac-
curacy the adversary wants for the obtained balance. The
function returns the value balanceAB .
The algorithm starts by trying a payment in the middle

of the payment range (cf. Lines 8-10). The value h(x) to per-
form the payment has been randomly created byM ensuring
that the sendFakePayment() function always will return
an error. If the failure message is “UnknownPaymentHash”,
then the adversary knows that the payment would have
been possible (cf. Line 11), i.e., the channel can forward the
payment. Thus, the minimum bandwidth of the channel
can be updated to this new flow, unless its minimum was
already greater (cf. Lines 12-14). If the failure message is
instead “InsufficientFunds”, then the payment could not
pass through channel A ↔ B , due to insufficient funds4
(Line 15). In this case, the maximum bandwidth (cf. Lines 16-
18) is modified. Since the adversary cannot get any further
information w.r.t. the maximum bandwidth, the new max-
imum and minimum values are those of the channel that
produced the failure message, which held the lowest index in
the route, w.r.t. the origin. Lines 5–7 ensure the termination
of the algorithm when the range is less than the desired ac-
curacy threshold (since, at least, the desired channel reaches
such a precision when maxFlow equals the capacity of the
channel created by the adversary created).

In order to estimate the balance of the channel, one simply
has to add up 1% of the capacity of the channels to each of
the results of the algorithm, since this is the default percent-
age that members of a channel require to always have as
balance to be accountable for punishments in the event of
fraud. In order to perform the attack described in Section
3.1, Algorithm 2 can be used. Given the victim node A, the
adversary discovers all the channels she had open with other
peers Bi for i = 1, · · · ,n and obtains their current balances
balanceABi for i = 1, · · · ,n. We assume here that the ad-
versary advertises its external IP address to the victim (i.e.,
the IP address which is accepting incoming connections).
A straightforward variant of the attack can be conducted
without releasing the external IP address of the adversary.

Lines 1-6 first check if the adversary has an open or pend-
ing open (i.e. waiting to get enough confirmations) channel
with the victim node. If not, then the adversary creates the
channel (Lines 7-13). Afterwards, the adversary gets the
neighbors of the victim in Line 15, to perform Algorithm 1
on each of the channels with its neighbors (Line 17). Finally,
if the attack opened a channel, it closes it in Line 20.

3.3 Adversary Model and Attack Cost
The Bitcoin Lightning Network is an open P2P network to
which any user can connect, and for that reason, there is no

4The payment should always pass through the channel M ↔ A since M
controls the channel and can ensure that balanceMA ≥ CAB .

special requirements for an adversary to perform the pro-
posed attack, besides the ability to open a payment channel
with the victim node A from which the adversary knows the
IP address. Of course, nodeA could refuse to open a payment
channel with the adversary, since such procedure should be
authorized by both parties, and then the attack could not
be initiated. However, nodes in the Lightning Network are
expected to be willing to open new channels, to allow bet-
ter connectivity. In case the adversary completely funds the
funding transaction, node A should not need to provide any
liquidity, being more likely to accept the request from the
adversary to open the channel.

In order to disclose the balance of a channel, the adversary
needs to open another channel (i.e., first hop in the path).
To do this, the adversary needs to send two transactions to
the Bitcoin blockchain: (1) a first transaction to open the
channel and lock the funds of the channel; and (2) a second
transaction to close the channel and refund the funds that
were previously locked. No Lightning Network fees need to
be used, since the attack does not fulfill any payment.

The total cost of the attack can be divided between the en-
trance barrier cost and the economic cost. On the one hand,
the entrance barrier cost takes into account the economic
resources that the adversary has to control to be able to per-
form the attack. Such resources will be completely recovered
after the attack has been finished. On the other hand, the
economic cost of the attack is the amount of money that the
adversary will lose due to the execution of the attack.
Regarding the entrance barrier cost, the proposed attack

needs to fund a Lightning Channel to perform the balance
disclose of other channels. In order to achieve maximum ac-
curacy, the adversary needs to open a channel with its maxi-
mum capacity, that at present time is bounded at 0.16777215
BTC (stock symbol for Bitcoins, in which 1 BTC represents
100, 000, 000 satoshis5). Hence, the entrance barrier cost will
be around6 640.05 USD (United States Dollars).

With regard to the economic cost of the attack, three val-
ues have to be taken into account: (i) the fee corresponding
to the funding transaction of the channel; (ii) the fee corre-
sponding to the transaction that closes the channel; and (iii)
the financial cost from having funds of the channel locked
during the attack execution. Although the amount of bitcoins
deposited in the funding transaction has to be, at least, as
big as the biggest capacity of the channel that the adversary
wants to attack, the cost in fees of the transaction does not
depend on the amount deposited in the channel but on the
size in bytes of the transaction. Additionally, being such size
mostly independent from its inputs that will vary for each
particular transaction, funding transactions with a single
input can cost as low as 0.00001534 BTC7. Secondly, and
5Smallest amount within Bitcoin, i.e., one hundred millionth of a BTC.
6Exchange rate from Jan 10, 2019 in which 1 BTC exchanges at 3, 815 USD.
7See, for instance, transaction:
930d1c204258afee13fac4d45f9fa98e6e807c918cdbfde49f9d56e2dc482f4a

https://blockstream.info/tx/930d1c204258afee13fac4d45f9fa98e6e807c918cdbfde49f9d56e2dc482f4a

IACR PrePrint, January, 2019 Herrera, Navarro, Ranchal, Pérez, Garcia

regarding the closing transaction, it is difficult to estimate
the exact fee for a generic closing transaction, since mul-
tiple parameters may affect such a value. A cost rounding
0.00000463 BTC can be achieved, as can be seen in different
existing closing transactions8.

The financial costs derived from the locking funds can be
measured in terms of standard interest rate [8]. However, as
we detail in the next section, even a standard fixed annual
interest rate of 4% implies negligible values when estimating
this type of costs, since the time to perform the aforemen-
tioned attack is in the range of seconds. Then, the economic
cost of the attack will be around 0.00002 BTC, i.e., equivalent
to 0.0763 USD. Such a reduced cost can be used not only to
disclose the balance of a single channel, but also to disclosing
the balances of all the open channels of node A.

4 Experimental Results
To analyze the feasibility of our attack, we have performed
two different evaluations. The first evaluation focuses on
the Lightning Network running over the Bitcoin Mainnet
Blockchain, where real value is being transacted. In this
first evaluation, we estimate the impact of our attack over
Mainnet, based on topological measures, as well as the cost
estimation that such an attack could have. The second eval-
uation focuses on the Lightning Network running over the
Bitcoin Testnet Blockchain, to test a real attack over trans-
actional functionality. This second evaluation reports the
technical feasibility of the attack.
The choice of only running the second evaluation over

Testnet, rather than executing the attack over Mainnet, does
not follow any technical, nor economical, reasons. In fact,
experiments over Testnet have a very erratic and unreal-
istic behavior. The implications on the exact information
extracted from Testnet are not always easy to extrapolate
over Mainnet. However, our decision of conducting the real
evaluation only over Testnet follows ethical reasons. In addi-
tion, we performed a responsible disclosure to the developers
of the Lightning Network, about our findings.

4.1 Bitcoin Mainnet Evaluation
To analyze the feasibility of our attack in the Bitcoin Light-
ning Mainnet, we have performed some measurements on
that network that is composed by 1, 732 nodes and 6, 501
channels (snapshot taken the 8th of January, 2019).
At the moment of writing, there is a detail in the main

implementations of the Lightning Network that may let our
attack less effective, providing a bound on the balance of the
channel rather than the exact balance. Lightning Network

It is the funding transaction corresponding to the Channel Id
614573123866132481 opened on January 17, 2019, by node
021387e1257d1da1c93996e10e7c4e2a2183683e978e60e40ae9f1927b86fabd27
8For instance, Channel Id 608922733705166848 with total capac-
ity 0.1 BTC has been closed with the following close transaction
8da4d6b708eabbedaeb978e88fb8a5331c6e164c64cf9e561ba165dbdd200e71

implementations have two main limits, one on the maximum
amount to pay in one single payment (MAX_PAYMENT_ALLO-
WED), and another one on the maximum amount with which
to create a channel (MAX_FUNDING_ALLOWED), with values
4, 294, 967 and 16, 777, 215 satoshis, respectively. Regarding
the logic of Algorithm 1 andwith these limits in mind, we can
perform the attack to a channel with capacity CAB and ob-
tain its exact balance only if CAB ≤ MAX_PAYMENT_ALLOWED.
Should that not be the case, and considering that MAX_FUND-
ING_ALLOWED is almost four times the MAX_PAYMENT_ALLOW-
ED, it is possible that, if a channel has a big amount of
funds in both ends, the attack will not see the actual bal-
ance, but provide a lower bound for that balance that will be
MAX_PAYMENT_ALLOWED. In these cases, the exact balance of
the channel can be obtained only depending on the actual
balance of the channel, and the direction in which the attack
is performed.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107 1.6x107

Pe
rc

en
ta

ge
 o

f C
ha

nn
el

s

Channels (sorted by increasing capacity)

MAX-PAYMENT-ALLOWED
Channel Number

Figure 3. Percentage of deanonymizable channels, per num-
ber of channels attacked, sorted by increasing capacity.

Figure 3 shows that the number of channels in theMainnet
for which the exact balance may not be recovered is very low.
The plot shows the cumulative distribution of the channels
by its capacity, that is, for a given capacity, it shows the
percentage of channels with lower or equal such capacity.
We can see that there are 89.10% of channels in Mainnet with
lower capacity than MAX_PAYMENT_ALLOWED, which means
that their balances can be exactly disclosed.

Another interesting measure performed in Mainnet is the
cost for an adversary to compute the balances of all the
channels in the network. As mentioned in Section 3.3, if
an adversary wants to perform the attack, the cost can be
minimized by choosing as victims of the attack (i.e., nodeA in
Figure 2) nodes that are highly connected. A single channel
creation is required to get the balance of all the channels
connected to such a node. A good strategy is to select the
nodes by their number of channels and perform the attack
until all the channels are processed.

https://1ml.com/channel/614573123866132481
https://1ml.com/node/021387e1257d1da1c93996e10e7c4e2a2183683e978e60e40ae9f1927b86fabd27
https://1ml.com/channel/608922733705166848
https://blockstream.info/tx/8da4d6b708eabbedaeb978e88fb8a5331c6e164c64cf9e561ba165dbdd200e71

On the Difficulty of Hiding the Balance of Lightning Network Channels IACR PrePrint, January, 2019

Figure 4 shows the percentage of channels that can be
deanonymized by attacking a given number of nodes, as-
suming that the nodes are sorted by their number of chan-
nels. We can see that we can deanonymize 50% of the chan-
nels by just attacking 18 nodes, 80% with 78 nodes, and
90% with 141 nodes. Moreover, we can easily estimate the
minimum vertex cover of the Lightning Network using the
local-ratio algorithm [5], which yields a set of 624 nodes.
In other words, with less than 624 attacks to specific nodes,
one could cover all the channels in the network. Note that,
by the local-ratio algorithm, the vertex cover is guaranteed
to be at most twice the minimum vertex cover. The actual
size of the minimum cover set will range between 312 and
624 nodes. Then, to disclose the balance for all the network,
there is a trade-off between the entrance barrier cost and
the time needed to perform the attack. The attack can be
parallelized by opening channels with each of the nodes at
the same time. In the worst case, this implies an entrance
barrier cost of 624× 640.05 = 339, 391.2 USD. If time is not a
constrain, channels can be open sequentially, hence lowering
the entrance barrier cost to 640.05 USD. From Figure 4, we
can observe that by attacking only 78 nodes, an adversary
can disclose the balance of 80% of the channels. Therefore, by
performing a parallel attack with these settings, the entrance
barrier cost gets reduced to 78 × 640.05 = 49, 923.9 USD.
With regard to the economic cost of the attack, and since
the transactions fees are charged per channel, the parallel or
sequential strategy does not affect the total cost. The total
cost is low even in the worst case scenario, i.e., attacking the
624 nodes, in which it reaches 624 × 0.0763 = 47.61 USD.
Besides the economical cost of the attack, we can also

consider a time cost estimation. Algorithm 1 looks for the
balance in the same form as a binary search algorithm looks
for a number in a sorted list. Therefore, each iteration of the
algorithm reduces the range by half. The initial range would
normally be always set by maxFlow = channel_capacity

0 250 500 750 1000 1250 1500 1750
Number of Nodes (sorted by their number of channels)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f D
ea

no
ny

m
ize

d
Ch

an
ne

ls

Channels
Min. vertex cover size

Figure 4. Percentage of deanonymizable channels per at-
tacked node.

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000
 0

 10

 20

 30

 40

 50

 60

N
um

be
r o

f I
te

ra
tio

ns

Ex
pe

ct
ed

 T
im

e
(s

ec
on

ds
)

Channels (sorted by increasing capacity)

1 satoshi (0.00003 USD)
16,384 satoshis (0.63 USD)

65,536 satoshis (2.5 USD)
262,144 satoshis (10 USD)

Figure 5. Expected time to perform attack on each channel,
sorted by increasing capacity.

and minFlow = 0. Given the above-mentioned limitation,
the current execution of the algorithm sets maxFlow =
min{channel_capacity,MAX_PAYMENT_ALLOWED} ins-
tead. This means that, in the worst-case scenario, the algo-
rithm iterates 23 times, considering an accuracy_threshold
of 1. In the general case, the number of iterations is:

loд2

(⌈maxFlow −minFlow

accuracy_threshold

⌉)
(1)

which means that there are three ways of reducing the num-
ber of iterations (and thus the running time to perform the
attack on a given channel):

• reducemaxFlow −minFlow by using historic informa-
tion from previous iterations of the attack,
• reduce maxFlow by choosing a channel with small
capacity,
• increase accuracy_threshold and allow more coarse-
grained results.

Regardless of the current MAX_FUNDING_ALLOWED and spe-
cially MAX_PAYMENT_ALLOWED limit, it is easy to predict the
number of iterations for each of the channels capacity. Fig-
ure 5 shows the number of iterations for all existing channels,
if there was no MAX_PAYMENT_ALLOWED limit, depending on
the accuracy threshold. All currently existing channels have
less capacity than MAX_FUNDING_ALLOWED, for which 24 it-
erations are enough to find out the balance within a range
of 1 satoshi. In general, with n iterations, one can perform
the attack of channels of capacity 2n . Given that the running
time between iterations can be considered constant, we can
estimate the time required to perform an attack given the
number of iterations. This time is also shown in Figure 5 in
the right y axis. The actual time is taken as the average from
the tests performed in the Bitcoin Testnet (see Section 4.2).

IACR PrePrint, January, 2019 Herrera, Navarro, Ranchal, Pérez, Garcia

4.2 Bitcoin Testnet Evaluation
In order to provide a proof-of-concept of our attack, we have
developed and performed a real attack on the Lightning Net-
work running over Testnet. To perform the attack, we first
identified 11 nodes with the largest amount of Lightning
Channels in Testnet, as seen by a local deployment of lnd
[32]. These 11 nodes have 2, 518 open channels, more than
50% of the total number of channels in Testnet. Then, we
performed the attack described in Algorithm 2 by sequen-
tially connecting to each of the nodes and opening a channel,
in order to retrieve the exact balance of the 2, 518 channels
they had previously open with other nodes of the network.

Contrarily to traditional Bitcoin payments, the Lightning
Network requires both users, and also intermediary hops, to
be online for the payment to take place. Whereas the adver-
sary (our node) and intermediary nodes (the 11 nodes we
open channels with) were online and responsive throughout
the whole attack, the destination payment nodes (i.e., each
of the targets in each iteration of Algorithm 1) were in most
cases not online. This is likely due to nodes that were created
in the Testnet for occasional testing and that may even not
be used anymore. At the time of writing, Lightning Network
client implementations do not have a mechanism to filter out
unused channels, or unresponsive nodes. Out of the 2, 518
target nodes that our attack contacted, only 710 replied. The
remaining 1808 requests failed due to long delays, or simply
because of their unresponsive behavior.

Out of the 710 channels that behaved normally, and each
of the iterations of the attacks on each on them, we extracted
the average time, median time, and minimum time per itera-
tion of Algorithm 1. These values are 2, 562, 2, 603 and 1, 106
milliseconds, respectively. Figure 6 shows the time (both in
seconds and in number of iterations) that it would take to
perform the attack, depending on the capacity of a channel,
and the desired range (i.e., the accuracy_threshold parameter
in Algorithm 1) in satoshis.
Notice that by detecting a balance with an accuracy of

0.0391 USD on a channel of capacity MAX_PAYMENT_ALLOWED
takes about 33.3 seconds, according to the average; 33.84 sec-
onds, according to median; and 14.4 seconds, following the
minimum time. Detecting a balance with an accuracy of
1 USD takes about 20 seconds in both average and median;
and less than 10 seconds in the minimum case. Detecting
the balance with an accuracy of 10 USD can be conducted in
10.25, 10.4 and 4.4 seconds, respectively.

Figure 7 shows the time it would take to perform the
attack on all of the channels of a single node, by assuming
that the adversary only controls one channel, and ignoring
the MAX_PAYMENT_ALLOWED limitation. The adversary could
perform the attack in parallel by opening multiple channels
and probing different channels at the same time. We see
that 1, 432 nodes can be attacked in a minute; or less in the
sequential attack, with an accuracy of 10 USD; 1, 369 with

 0

 10

 20

 30

 40

 50

 1 32 1024 32768 1.04858x106
 0

 5

 10

 15

 20

0.000977 0.031250 1.000000 32.000000

Ti
m

e
(s

ec
on

ds
)

N
um

be
r o

f I
te

ra
tio

ns

Range (satoshis)

Range (USD)

Time per range (using average)
Time per range (using median)

Time per range (using minimum)

Figure 6. Time to perform the attack (in seconds left and in
number of iterations right) per desired accuracy range (in
satoshis bottom and in USD top).

an accuracy of 2.5 USD; 1, 249 with 0.63 USD and 608 with
3.815×10−5 USD; or 1 satoshi, out of 1, 682 nodes with visible
channels by the adversary.

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 0 200 400 600 800 1000 1200 1400 1600 1800
 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

N
um

be
r o

f I
te

ra
tio

ns

Ex
pe

ct
ed

 T
im

e
(s

ec
on

ds
)

Nodes (sorted by increasing sum of capacity of their channels)

1 satoshi (0.00003 USD)
16,384 satoshis (0.63 USD)

65,536 satoshis (2.5 USD)
262,144 satoshis (10 USD)

Figure 7. Expected time to perform attack on all channels
of each node. Left y axis as per number of iterations, right y
axis as per time in seconds.

Besides the strict attack of finding the balances of the
channels, information about the balance can be used to mea-
sure the state of the Lightning Network. For the Lightning
Network to maximize its utility, it is important for channels
to be balanced or leveled. For this reason, we include the
notion of level percentage. Given a channel between two
nodes A and B, with capacity CAB , and balance of each of
the nodes balanceAB for the balance of A and balanceBA for
that of B, then we refer to the level percentage lpAB as:

lpAB =
CAB − (0.01 ×CAB + balanceAB)

CAB
× 100 (2)

On the Difficulty of Hiding the Balance of Lightning Network Channels IACR PrePrint, January, 2019

And analogously to lpBA as:

lpBA =
CAB − (0.01 ×CAB + balanceBA)

CAB
× 100 (3)

Intuitively, if lpAB is closer to zero, then A holds most of
the capacity of the channel, and can thus perform payments
to B, but not receive payments from B. Similarly, the closer
lpAB gets to 100, the less balance A holds in the channel, and
the more payments it can receive from B. Ideally, without
further knowledge on the characteristics of each channel, all
the channels should always be equally leveled to ensure a
good functioning of the network. Figure 8 shows the level
percentage of the 272 channels of whichwe could find out the
exact balance, even with the testing limit of MAX_PAYMENT_A-
LLOWED. Figure 8 shows that, for the channels whose balances
we could find out, the level percentages are destituted: either
nodes can only make payments, or nodes can only receive
payments. A better payment network should provide more
channels close to a level percentage of 50%.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250

Le
ve

l P
er

ce
nt

ag
e

Channels (sorted by increasing level percentage)

Figure 8. Level percentage of each channel.

5 Discussion
Several countermeasures can be developed to mitigate the at-
tack described in this paper. A first solution relies on denying
access to the debugging messages, e.g., by silently dropping
the information provided by the failure message referred to
in Section 3.2, Algorithm 1. Other possibilities include se-
lectively or randomly denying given payment requests, or
even allowing dynamically rechargeable payment channels
to fully mask and randomize existing balances of two Light-
ning Network channel points. Additional details about the
aforementioned solutions follow.

5.1 Payment Requests Denial
A first approach is for a node to randomly deny a given
percentage of payment requests, e.g., by setting a dropping
rate parameter in the node. The requesting node does not
know the reason of the rejection (by using the failure message
with no debugging information described in Section 3). This

can make the attack unfeasible since the adversary might
assume that the route has failed because there are not enough
funds to carry the requested payment. The solution can be
seen as a typical approach for masking information based on
introducing noise. In this case, the adversary receives wrong
information that makes the attack probabilistic or simply
unfeasible. There is clearly the typical trade-off between
privacy and usability tied to the dropping rate parameter.
Several improvements can be developed in order to improve
such trade-off.
Instead of setting the dropping rate at random, a node

could define a more selective approach. We can identify
some indications revealing that a balance disclosure attack
(or other type of attack) is being carried on. For example,
consider that node A receives a payment request from node
B. Then node A can use the following information to decide
its dropping rate:

– 1. Consider the number of channels and rate of payment
requests of node B. If node A receives lots of payment re-
quests from node B, and node B has just one channel (other
than the AB channel). Node A can consider this as an ab-
normal situation, potentially an evidence of an adversary
perpetrating the balance disclosure attack, hence increasing
the dropping rate of the node in real time.

– 2. Consecutive payment requests with a suspicious amo-
unt pattern. If node A receives from node B (independently
of its number of channels) payment requests that follow the
pattern described in Algorithm 1, the nodeA considers again
the situation as an anomaly, and increases the dropping rate
of the node.

These are just two examples of simple heuristics that can
be used to detect an abnormal behavior. In the general case,
we can model the behavior of a node and provide anomaly
detection measures to dynamically tune the dropping rate
for specific nodes or situations. In the end, the node admin-
istrator can set the dropping rate and decide the privacy
degree willing to accept. This privacy comes with the cost
of not routing some payments that might be legitimate. We
believe, however that a good trade-off can be achieved with
relatively simple measures, like the ones outlined above.

5.2 Dynamic Absorption of Negative Balances
Another way to address the general attack uncovered in this
paper could be the extension of the current implementations
of the Lightning Network, by including additional mask-
ing functionalities capable of absorbing negative balances.
This would be similar to energy-driven techniques discussed
in [4], where adversaries trying to estimate metering con-
sumption and billing functionality by adversarial collection
of metering metadata get concealed by privacy-preserving
mechanisms. The addition of synthetic computing and stor-
age functionality, relying on charging channels, can be put
in place as well between Lightning Network channel points,
hence avoiding fine-grained collection of nodes’ information

IACR PrePrint, January, 2019 Herrera, Navarro, Ranchal, Pérez, Garcia

to mitigate the deanonymisation attack presented in Sec-
tion 3.1. In addition, the masking solution can be randomized
as in [3, 35], in such a way that the adversarial monitoring
of balances between payment channels gets transformed
from fine-grained processing into coarse-grained collection,
hence guaranteeing that more powerful adversaries will fail
at properly retrying accurate balances between two payment
channels points of the Lightning Network.

The absorption of negative balances will act as a network-
ing countermeasure to handle periodic (adversarial) probing
to identify balance capacity flows, i.e., to hide and avoid accu-
rate collection of channel node balance capacities. This shall
lead to anonymity provable protection (i.e., protection with
anonymity guarantees that can be proven in a formal way)
like the one in [4], and whose goal is to mask transactional
information flows in payment streams. The underlying tech-
niques can rely on rechargeable swapping channels between
Lightning Network nodes, used to mask channels’ balance by
adding or subtracting resource capacities (e.g., by increasing
or decreasing the real bandwidth of each payment channel).
The goal is to establish strong anonymity guarantees in the
sense of differential privacy [13]. To achieve such anonymity
guarantees in realistic settings, further work must be con-
ducted, e.g., to establish the influence of, and the interplay
between, capacity and throughput bounds that real payment
channels of Lightning Network nodes must face.
The overall solution shall provide integrated methods

based on cascading noise, allowing for payment channel
on-the-fly recharging functionality, able to mask capacity
and throughput of Lightning Network nodes with either dis-
crete and continuous time constraints. We shall also make
sure that the addition and subtraction of masking resources
holds the minimal possible impact to the payment network,
e.g., in terms of service disruption. Of course, this solution
will require an important effort for its implementation in
current payment networks such as the Lightning Network. It
might require to redesign how payment networks work and
provide means to allow the absorption of negative balances
somehow by interested parties. A more straightforward ap-
proach could be the use of private channels between nodes
(channels not announced to the whole network) that allow
for such negative balance to be privately compensated.

6 Related Work
There are a number of studies that investigate adversarial
issues, in terms of privacy and information disclosure, in
current cryptocurrencies and routing literature. We survey
next some examples, structuring the existing work in such
two main research lines.

6.1 Cryptocurrencies Literature
Traditionally, anonymity in Bitcoin-like cryptocurrencies
relies on pseudonymity, i.e., users creating any number of

anonymous account addresses that are used later on, to iden-
tify the transactions. However, an underlying, non-anonymo-
us, Internet infrastructure, together with the availability of
transactions meta-data stored in a blockchain, allows the
development of deanonymization tools. We follow four main
recent literature classifications [10, 17]: (1) blockchain anal-
ysis, (2) network monitoring, (3) attacks to mixing protocols,
and (4) balance disclosure.

In terms of blockchain analysis, and since any blockchain
includes, by definition, all the transactions performed by
the system, deanonymization may take advantage of such
information. A simple analysis of the blockchain may pro-
vide information such as from which Bitcoin addresses the
money comes from, and to which Bitcoin addresses it goes to
[29]. Since users in the Bitcoin ecosystem can create any
number of addresses, a more powerful tool to deanonymize
transactions is to cluster all addresses in the blockchain that
belong to the same user. Different proposals exist to conduct
address analysis, such as clustering and similar techniques
[2, 22, 30, 34]. From shadow address analysis to multiple in-
put clustering and also behavior-based clustering techniques
like k-means and Hierarchical Agglomerative Clustering can
be used to enhance the cluster creation. Once the clustering
set for one user is large enough, deanonymization becomes
possible by using external information on Bitcoin addresses
(e.g., posts, forums, markets, and market exchanges) that
could identify at least one of the addresses.

With regard to traffic analysis, we recall that transactions
in Bitcoin are transmitted through a P2P network [12]. Hence,
metadata such as TCP or IP headers, which can be obtained
by using traditional network analysis tools, can also be used
as an underlying base for novel deanonymization tools [20].
Transaction eavesdropping can be performed to, e.g., discov-
ering the IP addresses corresponding to those nodes that
are broadcasting a transaction for the first time. To match
an IP address with a Bitcoin address, the problem can be
modeled as an evaluation of association rules, identifying
the corresponding confidence scores and the support counts
for the rule. Deanonymization of Bitcoin transactions can
also benefit from the existence of Bitcoin sessions, initiated
by nodes that get unreachable after a given period of time
[21], e.g., nodes that are hidden behind NAT (Network Ad-
dress Translation) and TOR (The Onion Router) connections,
by identifying transaction patterns via fingerprinting tech-
niques to characterize and highlight weaknesses in terms of
pseudonymity models for Bitcoin users.
Mixing protocol attacks exist in the literature [6, 7, 23,

25]. Mixing protocols are tools designed to enhance the
anonymity of Bitcoin transactions by, e.g., shuffling the in-
formation in order to hinder the relation between the input
and the output values of the transactions. Bitcoin users send
Bitcoins from one address to a mix service and receive from
the mix service the Bitcoins to another address that could
not be linked with the original one. The effectiveness of

On the Difficulty of Hiding the Balance of Lightning Network Channels IACR PrePrint, January, 2019

such systems has been analyzed by different authors. They
found a clear structure that allow understanding how this
services work and may be used for deanonymization. Model-
ing and analysis of the P2P Bitcoin networking stack in term
of anonymity properties, by providing source inference over
graphs via epidemic source finding [24], has identified that
the real Bitcoin P2P network topology offers a low degree of
anonymity [15].

The work in [1] addresses the risk of leakage w.r.t. the cur-
rency balance of Bitcoin addresses and claim the necessity
of hiding transaction values as well as address balances in
Bitcoin, e.g., for those users who opt-out from exchanging
assets. The work builds upon the assumption that Bitcoin
traders may end accepting transactions immediately with-
out waiting the necessary confirmations. This exposes them
to traditional risks in terms of double spending, even for
clients that are not miners [19]. The feasibility of such kind
of attacks relies on directly broadcasting to the seller double-
spending transactions, but in a different location of the net-
work, within a similar time window frame. Countermeasures
to the attack lead to new designs in which much more con-
trol about the precise balances of every node in the network
is guaranteed. This additional control has as collateral con-
sequences a higher likelihood in terms of deanonymization
of Bitcoin users. The authors developed additional means to
address the collateral consequences by hiding the balance
of transactions by moving to alternative cryptocurrencies
like Zerocash [33], with much stronger privacy guarantees
in terms of anonymity, via zero knowledge proof techniques,
while guaranteeing functionality and efficiency.

Finally, the feasibility of deanonymizing Internet privacy
services such as Tor, due to leakage information of Bitcoin
technologies has also been discussed in the recent literature.
Authors in [18] provide deanonymization techniques to show
that using Bitcoin as a payment method may leak sensitive
information to disclose Tor hidden services. The techniques
rely on the possibility of an adversary to link those Bitcoin
users who publicly share their Bitcoin addresses on online
social networks, with hidden services, and which publicly
share the mapping about their Bitcoin addresses on their
onion landing pages.

6.2 Routing Literature
In the previous section, we have listed existing related work
in cryptocurrencies literature. An increasing number of re-
search work deals with privacy issues to cryptocurrencies
users, such as traceability of both application and network-
layer data, and the limitation of mixing services. Beyond
the realm of cryptocurrencies, a large number of existing
literature on different areas, from distributed computing to
ad hoc and sensor networking literature, shows similar is-
sues to those uncovered in this paper. Transaction meta-data
disclosure, e.g., unauthorized reporting of balance accounts
on distributed networks, beyond the scope of Bitcoin and the

Lightning Network, deal with similar findings and problems.
Secure routing techniques have been reported vulnerable to
similar adversarial probing attacks. Attacks to routing in ad
hoc and sensor networks, like black-holing and vampire-like
attacks [36], aim at draining the battery life of autonomous
sensor nodes, to affect the routing capabilities of the whole
system. In such attacks, the adversary perpetrates similar
learning and discovery phases as the ones discussed in our
work, prior to conducting the final attack. For instance, the
adversary conducts a discovery phase to learn the accumula-
tive energy dynamics of the network, by probing and esti-
mating the level of available battery on each individual node
of the system. Countermeasures to the attack, like those in
[16, 27] are similar to some of the ideas discussed in Section 5.

Likewise, energy-driven literature on smart-grid and smart-
metering environments share similarities to the issues and
solutions discussed in our work. The privacy-preserving
techniques discussed in [4], related to smart-metering pri-
vacy scenarios, show similar adversaries trying to estimate
user energy consumption and billing functionalities by col-
lectively collecting smart-metering metadata. Solutions are
proposed in order to get adversaries concealed by new data-
processing functionality. The approach relies on the addition
of synthetic computing and storage functionalities, to avoid
fine-grained collection of users’ information. This kind of
solutions can moreover be randomized as the approaches
presented in [3, 35]. In the end, the goals is to increase the
difficulty of adversarial monitoring tasks, to retrieve informa-
tion about consumption channels. Identification and learning
techniques by the adversary can still be put in place, by trans-
forming the process in a two-stage transformation of data,
hence starting with a fine-grained processing; then, moving
to a coarse-grained processing.

7 Conclusion
In this paper, we have addressed privacy issues related to
the Bitcoin Lightning Network. Today, to preserve users’
privacy between two channel payment points of the Bitcoin
Lightning Network, the precise balance (i.e. the bandwidth
of the precise channel points, in each direction), is kept se-
cret. Since the balances are not announced, second-layer
nodes probe routes iteratively, until they find a successful
route to the destination for the amount required, if any. Such
feature makes the routing discovery protocol less efficient,
but preserves the privacy of channel balances. Publicly dis-
closing the updated balance of channels each time they are
updated would allow users to efficiently discover routes in
the network, without having to probe a route in order to
ensure the channels do have enough balance to support a
payment. However, it would also allow adversaries to trace
payments through the network, by observing how balances
fluctuate. On the contrary, not providing any information
about a channel’s state would provide privacy to users, but

IACR PrePrint, January, 2019 Herrera, Navarro, Ranchal, Pérez, Garcia

would render the network unusable to route multihop pay-
ments. Public disclosure of balances implies thus a trade-off
between payment privacy and route finding efficiency in the
network (and therefore usability).

Our work uncovers a balance discovery attack that can be
used by Lightning Network adversaries, in order to deanony-
mize network payments.We have presented an analysis, com-
plemented by experimental results that validate our claims.
We have also performed a responsible disclosure to the de-
velopers of the Lightning Network, and discussed some po-
tential countermeasures to handle the problem uncovered
by our work.

Acknowledgements — The authors gratefully acknowledge fi-
nancial support from the BART (Blockchain Advanced Research &
Technologies) initiative (cf. http://bart-blockchain.fr/).

References
[1] E. Androulaki and G. O. Karame. Hiding transaction amounts and bal-

ances in bitcoin. In International Conference on Trust and Trustworthy
Computing, pages 161–178. Springer, 2014.

[2] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun.
Evaluating user privacy in bitcoin. In International Conference on
Financial Cryptography and Data Security, pages 34–51. Springer, 2013.

[3] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi. Provably secure
and practical onion routing. In 2012 IEEE 25th Computer Security
Foundations Symposium, pages 369–385. IEEE, 2012.

[4] M. Backes and S. Meiser. Differentially private smart metering with
battery recharging. In Data Privacy Management and Autonomous
Spontaneous Security, pages 194–212. Springer, 2014.

[5] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating
the weighted vertex cover problem. Annals of Discrete Mathematics,
25:27–46, 1985.

[6] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore. Sybil-resistant
mixing for bitcoin. In Proceedings of the 13th Workshop on Privacy in
the Electronic Society, pages 149–158. ACM, 2014.

[7] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W.
Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In
International Conference on Financial Cryptography and Data Security,
pages 486–504. Springer, 2014.

[8] S. Brânzei, E. Segal-Halevi, and A. Zohar. How to charge lightning.
CoRR, abs/1712.10222, 2017.

[9] S. Castillo-Pérez and J. Garcia-Alfaro. Onion routing circuit construc-
tion via latency graphs. Computers & Security, 37:197–214, 2013.

[10] M. Conti, S. Kumar, C. Lal, and S. Ruj. A survey on security and privacy
issues of bitcoin. IEEE Communications Surveys & Tutorials, 2018.

[11] C. Decker and R. Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems, pages 3–18. Springer, 2015.

[12] J. A. D. Donet, C. Pérez-Sola, and J. Herrera-Joancomartí. The bitcoin
P2P network. In International Conference on Financial Cryptography
and Data Security, pages 87–102. Springer, 2014.

[13] C. Dwork. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation, pages
1–19. Springer, 2008.

[14] Elements Project. c-lightning – a lightning network implementation
in C. https://github.com/ElementsProject/lightning, 2019.

[15] G. Fanti and P. Viswanath. Deanonymization in the bitcoin P2P net-
work. In Advances in Neural Information Processing Systems, pages
1364–1373, 2017.

[16] E. Gelenbe and Y. M. Kadioglu. Energy life-time of wireless nodes with
network attacks and mitigation. In 2018 IEEE International Conference
on Communications Workshops (ICC Workshops), pages 1–6. IEEE, 2018.

[17] J. Herrera-Joancomartí. Research and challenges on bitcoin anonymity.
In Data Privacy Management, Autonomous Spontaneous Security, and
Security Assurance, pages 3–16. Springer, 2014.

[18] H. A. Jawaheri, M. A. Sabah, Y. Boshmaf, and A. Erbad. When a
small leak sinks a great ship: Deanonymizing tor hidden service users
through bitcoin transactions analysis. arXiv preprint arXiv:1801.07501,
2018.

[19] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast
payments in bitcoin. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 906–917. ACM, 2012.

[20] P. Koshy, D. Koshy, and P. McDaniel. An analysis of anonymity in bit-
coin using P2P network traffic. In International Conference on Financial
Cryptography and Data Security, pages 469–485. Springer, 2014.

[21] I. D. Mastan and S. Paul. A new approach to deanonymization of
unreachable bitcoin nodes. In International Conference on Cryptology
and Network Security, pages 277–298. Springer, 2017.

[22] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 conference on
Internet measurement conference, pages 127–140. ACM, 2013.

[23] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 397–411. IEEE, 2013.

[24] C. Milling, C. Caramanis, S. Mannor, and S. Shakkottai. On identifying
the causative network of an epidemic. In Communication, Control, and
Computing (Allerton), 2012 50th Annual Allerton Conference on, pages
909–914. IEEE, 2012.

[25] M.Moser, R. Bohme, andD. Breuker. An inquiry intomoney laundering
tools in the bitcoin ecosystem. In eCrime Researchers Summit (eCRS),
2013, pages 1–14. IEEE, 2013.

[26] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain
instant payments, 2015.

[27] C. Pu and S. Lim. A light-weight countermeasure to forwarding mis-
behavior in wireless sensor networks: design, analysis, and evaluation.
IEEE Systems Journal, 12(1):834–842, 2018.

[28] A. Ranchal-Pedrosa, M. Potop-Butucaru, and S. Tucci-Piergiovanni.
Lightning factories. Cryptology ePrint Archive, Report 2018/918, 2018.
https://eprint.iacr.org/2018/918.

[29] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin
system. In Security and privacy in social networks, pages 197–223.
Springer, 2013.

[30] D. Ron and A. Shamir. How did dread pirate roberts acquire and
protect his bitcoin wealth? In International Conference on Financial
Cryptography and Data Security, pages 3–15. Springer, 2014.

[31] A. Samokhvalov, J. Poon, and O. Osuntokun. Lightning Network
In-Progress Specifications. BOLT 11: Invoice Protocol for Lightning
Payments, 2018.

[32] A. Samokhvalov, J. Poon, and O. Osuntokun. The lightning network
daemon, https://github.com/lightningnetwork/lnd, 2018.

[33] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza. Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy (SP), pages 459–474.
IEEE, 2014.

[34] M. Spagnuolo, F. Maggi, and S. Zanero. Bitiodine: Extracting intelli-
gence from the bitcoin network. In International Conference on Finan-
cial Cryptography and Data Security, pages 457–468. Springer, 2014.

[35] D. Sy, R. Chen, and L. Bao. Odar: On-demand anonymous routing in
ad hoc networks. In Mobile Adhoc and Sensor Systems (MASS), 2006
IEEE International Conference on, pages 267–276. IEEE, 2006.

http://bart-blockchain.fr/
https://github.com/ElementsProject/lightning
https://eprint.iacr.org/2018/918
https://github.com/lightningnetwork/lnd

On the Difficulty of Hiding the Balance of Lightning Network Channels IACR PrePrint, January, 2019

[36] E. Y. Vasserman and N. Hopper. Vampire attacks: draining life from
wireless ad hoc sensor networks. IEEE transactions on mobile comput-
ing, 12(2):318–332, 2013.

	Abstract
	1 Introduction
	2 Lightning Network Background
	2.1 Payment Channels
	2.2 Multihop Payments
	2.3 Invoices in the Lightning Network

	3 Channel Balance Discovery
	3.1 Attack Extension
	3.2 Attack Implementation
	3.3 Adversary Model and Attack Cost

	4 Experimental Results
	4.1 Bitcoin Mainnet Evaluation
	4.2 Bitcoin Testnet Evaluation

	5 Discussion
	5.1 Payment Requests Denial
	5.2 Dynamic Absorption of Negative Balances

	6 Related Work
	6.1 Cryptocurrencies Literature
	6.2 Routing Literature

	7 Conclusion
	References

