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The symmetry group of the non-isothermal Navier-Stokes equations is used to develop physics-preserving turbulence models for the subgrid stress tensor and the subgrid heat flux. The Reynolds analogy is not used. The theoretical properties of the models are investigated. In particular, their compatibility with the scaling laws of the flow are proven. A numerical test, in the configuration of an air flow in a ventilated and differentially heated room is presented.

Introduction

Many industrial applications in fluid mechanics involve not only fluid motion but also thermal phenomena. Because of the cost of experimentation, engineers generally use CFD simulations to predict the velocity and the temperature behavior. In the presence of a turbulent flow, the large-eddy simulation approach is one of the most widely used simulation methods. This approach requires modeling a subgrid stress tensor and a subgrid heat flux. Many models exist in the literature but precise predictions can be obtained only whith models wich are compatible with the physics of the flow.

In the isothermal case, Razafindralandy et al. [START_REF] Razafindralandy | A class of subgrid-scale models preserving the symmetry group of Navier-Stokes equations[END_REF][START_REF] Razafindralandy | Consequences of symmetries on the analysis and construction of turbulence models[END_REF] developed physicspreserving model for the subgrid stress tensor. It was based on a symmetry approach. Indeed, the symmetries of an equation are very closely linked to the physical properties hidden behind the equation. This connection was made evident by E. Noether who proved that, for a Lagrangian system, each symmetry group of the Lagrangian action corresponds to a conservation law [START_REF] Noether | Invariant variation problems[END_REF][START_REF] Noether | Invariante Variationsprobleme[END_REF]. In fluid mechanics, the symmetries of the Navier-Stokes equations enabled to compute interesting solutions such as vortex-like solutions [START_REF] Grassi | Vorticies and invariant surfaces generated by symmetries for the 3D Navier-Stokes equation[END_REF]. Symmetries was also used to study the decay of turbulence [START_REF] Oberlack | On the decay exponent of isotropic turbulence[END_REF], the solutions having an eddyindependant energy transfer rate as postulated by Kolmogorov [START_REF]Constitutive equation of turbulence and the Lie symmetries of Navier-Stokes equations[END_REF], to derive scaling laws [START_REF] Oberlack | A unified approach for symmetries in plane parallel turbulent shear flows[END_REF], etc. Finally, we note that on the discrete point of view, symmetries have been integrated by some authors into numerical schemes, in order to build geometric integrators [START_REF] Chhay | Comparison of some lie-symmetry-based integrators[END_REF]. Especially in the non-isothermal case, Grassi et al [START_REF] Grassi | A group analysis of the 2d navier-stokes-fourier equations[END_REF][START_REF] Grassi | Temperature behaviour of vortices of a 3D thermoconducting viscous fluid[END_REF] made use of the symmetry approach to compute self-similar solutions in laminar regime. They used the Navier-Stokes-Fourier equations as non-isothermal model of Navier-Stokes equations. This model differs from the one used in the present paper (equations [START_REF] Archambeau | Code saturne: a finite volume code for the computation of turbulent incompressible flows -Industrial applications[END_REF]) in that the temperature and the velocity are decoupled. In addition, it includes an energy-dissipation term in the equation of the temperature.

In this article, we propose to extend the work done in [START_REF] Razafindralandy | A class of subgrid-scale models preserving the symmetry group of Navier-Stokes equations[END_REF][START_REF] Razafindralandy | Consequences of symmetries on the analysis and construction of turbulence models[END_REF] to the nonisothermal case and develop models for the subgrid stress tensor and the subgrid heat flux jointly, using the symmetry approach. Our goal is twofold. First, the preservation of symmetries will lead to physics-preserving models. Next, it avoids the use of the Reynolds analogy. Indeed, most of the time, only the subgrid stress tensor is really modeled. The expression of the the subgrid heat flux is simply deduced by assuming that the ratio between the subgrid viscosity and the subgrid thermal diffusion coefficient, called subgrid Prandtl number, is constant. This analogy limits the scope of the model since they may not correctly take into account the interaction between the dynamics of the flow and the temperature field. As we will see, with the symmetry approach, the subgrid heat flux model appears naturally without using the previous analogy.

This article is structured as follows. In section 2, Lie's algorithm of computing symmetries is presented. The symmetries of the non-isothermal Navier-Stokes equations are then listed. These symmetries are used in section 3 to develop a class of the subgrid models. The properties of these models, such as stability and wall behavior, are studied in section 4. A numerical test is presented in section 5. In Appendix A, the algorithm of symmetry computation is illustrated from an example.

The symmetry group of the non-isothermal Navier-Stokes equations

The general presentation of the Lie group theory can be found in [START_REF] Olver | Applications of Lie groups to differential equations[END_REF], followed by the algorithm for the determination of Lie-symmetry groups of a system of differential equations. In the first part of this section, we make a brief reminder and apply the theory to the computation of the symmetries of the Navier-Stokes equations. The calculation will be summarized but interested readers may find in appendix more details on the calculations.

We consider an incompressible and non-isothermal Newtonian fluid flow, governed by the equations

               ∂u ∂t + div(u ⊗ u) + 1 ρ ∇p -div τ -βgθ e 2 = 0 ∂θ ∂t + div(θu) -div h = 0 div u = 0 (1) 
In these equations, τ = 2νS and h = κ∇θ are respectively the viscous stress tensor and the heat flux, and S is the strain rate tensor. e 2 is the ascendant unit vector. Equations ( 1) represent an idealized motion where the variation of density, due to the change of temperature, is neglected except in the buoyancy term (Boussinesq hypothesis). The situations where this hypothesis are discussed in [START_REF] Gallavotti | Foundations of fluid mechanics[END_REF] where the order of magnitude of each term is analyzed and Reyleigh's model is presented. Moreover, the effect of energy dissipation on the temperature has been neglected before the heat flux term. Indeed, in many engineering fields, such as building or aeronautics, the presence of the energy dissipation in the temperature equation does not significantly change the behaviour of the flow when the variation of temperature remains small. Consider a set of transformations

g a : q = (t, x, u, p, θ) → q = ( t, x, u, p, θ), (2) 
depending continuously on a real parameter a, and having the structure of a (eventually local) Lie group. Transformations g a act on the phase space J of equations [START_REF] Archambeau | Code saturne: a finite volume code for the computation of turbulent incompressible flows -Industrial applications[END_REF]. A transformation (2) is called a Lie-symmetry of (1) if it maps a solution of (1) into another solution. The maximal group formed by Lie-symmetries of the equations is called the Lie-symmetry group of these ones.

The principal tool for the computation of Lie groups is the vector field:

X = ξ q ∂ ∂q = ξ t ∂ ∂t + i ξ xi ∂ ∂x i + i ξ ui ∂ ∂u i + ξ p ∂ ∂p + ξ θ ∂ ∂θ (3) 
where ξ q = ξ q (q) represents the variation of q :

ξ q = ∂ q ∂a a=0 . (4) 
The vector field X belongs to the tangent space of the phase space J.

Since the expression of q can be recovered from the knowledge of X through the exponential map q = exp(aX) • q,

X is called the inifinitesimal generator of the transformation. Note that relation ( 5) is equivalent to

       ∂ q ∂a = ξ q ( q), q(a = 0) = q. (6) 
In other words, the transformation g a is the flow of the vector field X.

In order to take into consideration the transformation of the partial derivatives involved in equations (1), the phase space J must be prolonged into the second order jet space : J (2) = t, (x i ), (u i ), p, θ, (u i;ι ), (u i;ι,ι ), (p ;ι ), (p ;ι,ι ), (θ ;ι ), (θ ;ι,ι ) .

The index i runs from 1 to 3, and 0 ≤ ι ≤ ι ≤ 3. In this jet space, equations (1) can be seen as a sub-manifold E, and a symmetry of ( 1) is a transformation keeping E invariant. At the same time, the vector field X is prolonged into the second order vector field

X (2) = X + i,ι ξ ui;ι ∂ ∂u i;ι + i,ι,ι ξ u i;ι,ι ∂ ∂u i;ι,ι + ι ξ p;ι ∂ ∂p ;ι + ι,ι ξ p ;ι,ι ∂ ∂p ;ι,ι + ι ξ θ;ι ∂ ∂θ ;ι + ι,ι ξ θ ;ι,ι ∂ ∂θ ;ι,ι , (8) 
belonging to the tangent space of J (2) . The first new coefficients are defined as follows :

ξ ui;ι = D xι (ξ ui ) - 3 ι =0 ∂u i ∂x ι D xι (ξ x ι ) (9) 
and

ξ u i;ι,ι = D x ι (ξ ui;ι ) - 3 ι =0 ∂ 2 u i ∂x ι x ι D x ι (ξ x ι ) (10) 
where x 0 = t and D xι is the total derivation operator according to x ι . The other coefficients are defined in a similar way.

For simplicity, we also shorten system (1) to

E = 0. ( 11 
)
According to Lie's theory, a Lie group of transformations, spanned by a vector field X, is a Lie symmetry group of equations [START_REF] Noether | Invariante Variationsprobleme[END_REF] if and only if

X (2) • E = 0 wherever E = 0, (12) 
that is, if the prolonged vector field X (2) is tangent to the sub-manifold E at any point of E.

The symmetry criterion [START_REF] Noether | Invariant variation problems[END_REF] provides an algorithmic computation method of the Lie-symmetries of the equations. Indeed, X (2) • E is a system of polynomials in the local coordinates of J (2) . Condition [START_REF] Noether | Invariant variation problems[END_REF] requires that their coefficients vanish. This leads to linear partial differential equations on ξ q which, after resolution, determine the vector field X. The Lie symmetries are deduced from (5) by exponentiation or from [START_REF] Grassi | A group analysis of the 2d navier-stokes-fourier equations[END_REF].

An interesting example, which describes the algorithm in detail, is provided in Appendix A. It shows how to compute the infinitesimal generators of symmetry for the equations of a thin layer flow.

In our case, X is a linear combination of the following vector fields:

• X 0 = ∂ ∂t
, which generates the Lie group of time translations

(t, x, u, p, θ) -→ (t + a, x, u, p, θ), (13) 
• X 1 = ζ(t) ∂ ∂p
, which corresponds to the infinite-dimension Lie group of pressure translations

(t, x, u, p, θ) -→ (t, x, u, p + ζ(t), θ), (14) 
• X 2 = βg x 3 ∂ ∂p + 1 ρ ∂ ∂θ , which induces the group of pressure-temperature translations (t, x, u, p, θ) -→ (t, x, u, p + a βg x 3 , θ + a 1 ρ ), (15) 
• X 3 = x 2 ∂ ∂x 1 -x 1 ∂ ∂x 2 + u 2 ∂ ∂u 1 -u 1 ∂ ∂u 2
, which spans the 3-dimensional Lie-group of horizontal rotations

(t, x, u, p, θ) -→ (t, Rx, Ru, p, θ) (16) 
where R is a 2D (constant) rotation matrix,

• X 3+i = α i (t) ∂ ∂x i + αi (t) ∂ ∂u i -ρ x i αi (t) ∂ ∂p , i = 1, 2, 3
, which are the infinitesimal generators of the infinite-dimensional group of generalised Galilean transformations

(t, x, u, p, θ) -→ (t, x + α(t), u + α(t), p + ρ x α(t), θ), (17) 
• X 7 = 2t ∂ ∂t + 3 j=1 x j ∂ ∂x j - 3 j=1 u j ∂ ∂u j -2p ∂ ∂p -3θ ∂ ∂θ
, which generates a first group of scaling transformations (t, x, u, p, θ) -→ (e 2a t, e a x, e -a u, e -2a p, e -3a θ).

In these expressions, ζ and α are respectively arbitrary scalar and vectorial functions. If one considers transformations which also act on the variables ν and κ, one finds one more vector field

X 8 = 3 j=1 x j ∂ ∂x j + 3 j=1 u j ∂ ∂u j + 2p ∂ ∂p + θ ∂ ∂θ + 2ν ∂ ∂ν + 2κ ∂ ∂κ (19) 
which spans a second group of scaling transformations (t, x, u, p, θ, ν, κ) -→ (t, e a x, e a u, e 2a p, e a θ, e 2a ν, e 2a κ).

The union of the above groups constitutes the Lie-symmetry group of the nonisothermal Navier-Stokes equations (1).

In addition to symmetries ( 13)-( 20), equations ( 1) own non-Lie symmetries which are

• the (discrete) reflections (t, x, u, p, θ) → (t, Λx, Λu, p, λ 3 θ) (21) 
where

Λ = diag(λ 1 , λ 2 , λ 3 ) with λ i = ±1,
• and the material indifference in the limit of a 2D horizontal flow [START_REF] Cantwell | Similarity transformations for the two-dimensional, unsteady, stream-function equation[END_REF] which is a time-dependent rotation:

(t, x, u, p, θ) → (t, x, u, p, θ) (22) 
with

     x = R(t) x, u = R(t) u + Ṙ(t) x, p = p -3ωφ + ω 2 x 2 /2 (23) 
where R(t) is an horizontal 2D rotation matrix with angle ωt, ω a real parameter, φ the usual 2D stream function defined by

u = curl(φe 3 )
if the flow is parallel to the plane (e 1 , e 2 ). The norm symbol • indicates the Euclidian norm.

The combination of the above symmetries consitutes a group that is called the symmetry group of equations [START_REF] Archambeau | Code saturne: a finite volume code for the computation of turbulent incompressible flows -Industrial applications[END_REF]. Note that these transformations are symmetries of the equations, not of each solution. Indeed, any particular solution may not have the listed symmetries, especially in turbulent regime. A solution which is invariant under one of these transformations is called self-similar.

In the next section, the symmetry group is used to develop a class of turbulence models.

Symmetry and turbulence modelling

In large-eddy simulation approach, one does not directly solve equations [START_REF] Archambeau | Code saturne: a finite volume code for the computation of turbulent incompressible flows -Industrial applications[END_REF]. Instead, one computes an approximate solution (u, p, θ) which contains only the large scales of the actual velocity u, pressure p and temperature θ of the fluid. The equations of (u, p, θ) are:

                     ∂u ∂t + div(u ⊗ u) + 1 ρ ∇p -div(τ -τ s ) -βgθ e 2 = 0 ∂θ ∂t + div(θu) -div(h -h s ) = 0 div u = 0. ( 24 
)
In these equations, τ s = u ⊗ uu ⊗ u is the subgrid stress tensor and h s = θu -θu the subgrid heat flux, which have to be modelled. A "good" turbulence model is one with which (u, p, θ) has the same properties as (u, p, θ) from some point of view. In our approach, we require that (u, p, θ) has the same symmetry properties as (u, p, θ). This requirement is essential since, as underlined earlier, the symmetry group contains important physical information on the flow.

More precisely, the model should be such that each symmetry of (1) applied to (u, p, θ), is also a symmetry of (24) applied to (u, p, θ). When it is the case, the model will be called invariant. Unfortunately, as analyzed in [START_REF] Razafindralandy | Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations[END_REF], the major part of existing LES turbulence models do not comply with this requirement. In what follows, we propose new models based on the preservation of the symmetry group of the equations.

It is clear that time translations [START_REF] Oberlack | A unified approach for symmetries in plane parallel turbulent shear flows[END_REF], applied to (t, x, u, p, θ), are symmetries of the filtered equations (24) if τ s and h s do not explicitely depend on t. It is also straightforward to check that the pressure-temperature translations, and the galilean transformations remain symmetries of (24) if τ s and h s depend only on S and T = ∇θ:

-τ s = -τ s (S, T), -h s = -h s (S, T) (25) 
From the classical theory of isotropic functions [START_REF] Smith | On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors[END_REF][START_REF] Itskov | Tensor algebra and tensor analysis for engineers: With applications to continuum mechanics[END_REF], one can deduce that rotations, reflections and the material indifference are symmetries of (24) if the model has the following form

           -τ d s = E 1 S + E 2 Adj d S + E 3 (T ⊗ T) d +E 4 S(T ⊗ T) d + E 5 S(T ⊗ T)S d -h s = E 6 T + E 7 S T + E 8 S 2 T ( 26 
)
where the coefficients E i are scalar functions of: Next, equations ( 24) are invariant under the first scale transformations if

χ = tr S 2 , ξ = det S, ϑ = T 2 , ω 1 = T S T, ω 2 
τ s = e -2a τ s and h s = e -4a h s . (28) 
This condition implies that

E 1 ( χ, ξ, ϑ, ω 1 , ω 2 ) = E 1 (χ, ξ, ϑ, ω 1 , ω 2 ), (29) 
that is

E 1 (e -4a χ, e -6a ξ, e -8a ϑ, e -10a ω 1 , e -12a ω 2 ) = E 1 (χ, ξ, ϑ, ω 1 , ω 2 ). ( 30 
)
Deriving with respect to a and setting a to zero, we get

-4χ ∂E 1 ∂χ -6ξ ∂E 1 ∂ξ -8ϑ ∂E 1 ∂ϑ -10ω 1 ∂E 1 ∂ω 1 -12ω 2 ∂E 1 ∂ω 2 = 0. (31) 
Applying the same procedure to the other coefficients E i , we get the following conditions:

-4χ

∂E i ∂χ -6ξ ∂E i ∂ξ -8ϑ ∂E i ∂ϑ -10ω 1 ∂E i ∂ω 1 -12ω 2 ∂E i ∂ω 2 = s i E i (32) 
where

s 1 = 0, s 2 = -1 2 , s 3 = -3 2 , s 4 = -2, s 5 = -5 2 , s 6 = 0, s 7 = -1 2 , s 8 = -1.
The characteristic equations are

dχ χ = dξ 3 2 ξ = dϑ 2ϑ = dω 1 5 2 ω 1 = dω 2 3ω 2 = dE i s i E i , i = 1, ..., 8. (33) 
From the resolution of these equations, we conclude that the model is invariant under the first scale transformation if

E i (χ, ξ, ϑ, ω 1 , ω 2 ) = χ si E i (v 1 , v 2 , v 3 , v 4 ) ( 34 
)
where the v i 's are the invariants:

v 1 = ξ χ 3/2 , v 2 = ϑ χ 2 , v 3 = ω 1 χ 5/2 , v 4 = ω 2 χ 3. . (35) 
Finally, the second scale transformations are symmetries of equations ( 24) if

E i = νF i , i = 1, ..., 5 and 
E i = κF i , i = 6, ..., 8.
To sum up, we get the following class of subgrid models which are consistent with the symmetry group of (1):

               -τ d s = νF 1 S + νχ -1/2 F 2 Adj d S + νχ -3/2 F 3 (T ⊗ T) d + νχ -2 F 4 [S(T ⊗ T)] d ] + νχ -5/2 F 5 S[(T ⊗ T)S] d ], -h s = κ F 6 + χ -1/2 F 7 S + χ -1 F 8 S 2 T. (36) 
Note that the invariants (35) and the eight arbitrary functions F i 's arise naturally from the symmetry requirement, without extra-hypothesis. In general, the model is strongly coupled, in the sense that the filtered temperature gradient can intervene in the subgrid stress tensor model and, conversely, the filtered strain rate tensor is present in the subgrid heat flux model. However, by the choice of the arbitrary functions, this coupling may be weakened.

Other properties of the models, and choices of the arbitrary functions will be analysed in the next section.

Properties and simplification of the models

By construction, models (36) preserve the properties of the actual solution, such as conservation laws, spectral properties, etc. In particular, they are compatible with the scaling laws of the mean flow. Indeed, as proved in the next subsection, scaling laws are particular self-similar solutions under the symmetries of the fluctuation equations. Consequently, symmetry preserving turbulence models do not destroy these scaling laws.

Non-isothermal scaling laws

The present method of computing scaling laws is an extension of the work of Oberlack [START_REF] Oberlack | A unified approach for symmetries in plane parallel turbulent shear flows[END_REF] to the non-isothermal case. Consider a bi-dimensional, parallel, steady turbulent shear flow, driven by a constant pressure gradient K in the streamwise direction x 1 . The decomposition of the dependent variables into a mean and a fluctuating parts gives:

u = U (x 2 ) + u , p = [P (x 2 ) + Kx 1 ] + p , θ = Θ(x 2 ) + θ , (37) 
with U 2 = U 3 = 0. Assume that ρ = 1. The equations of the fluctuating parts write

                                 ∂u ∂t + div(u ⊗ u ) + U 1 ∂u ∂x 1 + ∇p -ν∆u + u 2 dU 1 dx 2 -K -ν d 2 U 1 dx 2 2 e 1 + dP dx 2 -βg(Θ + θ ) e 2 = 0, ∂θ ∂t + div(θ u ) -κ∆θ + u 2 dΘ dx 2 + U 1 ∂θ ∂x 1 -κ d 2 Θ dx 2 2 = 0, div u = 0. ( 38 
)
e 1 is the streamwise unit vector. We look for self-similar solutions in (U 1 , Θ), that is, solutions such that

     U 1 ( x 2 ) = U 1 (x 2 ), Θ( x 2 ) = Θ(x 2 ) (39) 
under a symmetry of equations (38). Lie's theory permits to transform relations (39) into the condition:

X • (U 1 , Θ) = 0 ( 40 
)
where

X = ξ t ∂ ∂t + 3 i=1 ξ xi ∂ ∂x i + ξ U1 ∂ ∂U 1 + ξ P ∂ ∂P + ξ Θ ∂ ∂Θ + 3 i=1 ξ u i ∂ ∂u i + ξ p ∂ ∂p + ξ θ ∂ ∂θ + ξ ν ∂ ∂ν + κ ∂ ∂κ (41) 
is an infinitesimal generator of Lie-symmetries of (38). Using the Lie-symmetry computation method presented in section 2, applied to (38), we get the components of X:

ξ t = [n -2m] t + a 0 , ξ x2 = [n -m] x 2 + a, ξ x1 = [n -m] x 1 + f 1 (t) + a 1 , ξ x3 = [n -m] x 3 + f 2 (t) + a 2 ξ U1 = mU 1 -f 3 (t) -f 4 (t, x 2 ) + f 5 (x 2 , U 1 , P ) + ḟ1 (t), ξ P = 2mP + ∂f 4 ∂t (t, x 2 )x 1 -f 6 (t, x 2 ) + f 7 (x 2 , U 1 , P ) + βgf 8 (t, x 1 , x 3 )x 2 + f 9 (t, x 1 , x 3 ), ξ Θ = [3m -n] Θ + f 8 (t, x 1 , x 3 ) -f 10 (x 2 ), (42) 
ξ u 1 = mu 1 + f 3 (t) + f 4 (t, x 2 ) -f 5 (x 2 , U 1 , P ), ξ u 2 = mu 2 , ξ u 3 = mu 3 + ḟ2 (t), ξ p = 2mp + K(n -3m) -ḟ3 (t) - ∂f 4 ∂t (t, x 2 ) x 1 -f2 (t)x 3 + f 6 (t, x 2 ) -f 7 (x 2 , U 1 , P ), ξ θ = [3m -n] θ + f 10 (x 2 ), ξ ν = nν, ξ κ = nκ.
The a i 's and the f i 's are respectively arbitrary scalars and functions. The selfsimilar solutions can be obtained from the characteristic equations

dU 1 ξ U1 = dx 2 ξ x2 = dΘ ξ Θ . ( 43 
)
We do not aim to be exhaustive. Thus, the parameters f i 's are assumed constant. Equations (43) becomes:

dU 1 mU 1 + b 1 = dx 2 (n -m)x 2 + a = dΘ (3m -n)Θ + b 2 . ( 44 
)
where

b 1 = -f 3 -f 4 + f 5 and b 2 = f 8 -f 10
are constants. According to the values of n and m, we get the following scaling laws.

• If m = n = 0, the mean velocity and mean temperature write

U 1 = b 1 a (x 2 + b), Θ = b 2 a (x 2 + b) (45) 
where the constants C i 's and b can be determined from a, b 1 , b 2 and the integration constants. Equations (45) represent linear wall laws for both velocity and temperature.

• When m = 0 and n = 0, the mean profiles verify

U 1 = C 1 ln (x 2 + b) + C 3 , Θ = C 2 (x 2 + b) -1 + C 4 ( 46 
)
where the C i 's and b are also constants but do not necessarily have the same values as in (45). In (46), the velocity follows a logarithmic law. The corresponding hyperbolic temperature profile is less common. This scaling law is worthy to be checked experimentally or numerically.

• The third self-similar solution is obtained with m = n = 0:

U 1 = exp [C 1 (x 2 + b)] + C 3 , Θ = exp [2C 1 (x 2 + b)] + C 4 . ( 47 
)
The velocity law is similar to the exponential law found by Oberlack [START_REF] Oberlack | A unified approach for symmetries in plane parallel turbulent shear flows[END_REF] in the isothermal case, which was confirmed later by DNS [START_REF] Oberlack | Group analysis, direct numerical simulation and modelling of a turbulent channel flow with streamwise rotation[END_REF] in the midwake region of a high Reynolds boundary layer. The temperature law is also in an exponential form.

• For the case m = 0, n = m and n = 3m,

U 1 = C 1 (x 2 + b) a + C 3 , Θ = C 2 (x 2 + b) 2a-1 + C 4 ( 48 
)
where a = m/(n -m). We recognize algebraic laws for both velocity and temperature. The exponents are closely linked.

When the invariant model developed previously is added to equations (38), the symmetry properties are not violated. We then get the same self-similarity variables as in (45)-(48).

In the next subsection, we impose the stability of the models. This will reduce the degree of freedom of the models.

Stability of the model

It can be stated that the molecular strain rate tensor τ and the molecular heat flux h derive from the positive convex potentials ν tr S 2 and κ||T|| 2 /2, in the sense that

τ = ∂ ∂S ν tr S 2 and h = ∂ ∂T 1 2 κ||T|| 2 . ( 49 
)
This ensures, in particular, that the mechanical dissipation, defined as tr(τ S), and the thermal dissipation are positive. We assume that, similarly, the subgrid strain tensor τ s and the subgrid heat flux h s derive from convex potentials. This condition leads to the following class of models (see [START_REF] Razafindralandy | Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations[END_REF]):

                             -τ d s = ν 2g m -3v 1 ∂g m ∂v 1 -4v 2 ∂g m ∂v 2 -5v 3 ∂g m ∂v 3 -6v 4 ∂g m ∂v 4 S + ν χ -1/2 ∂g m ∂v 1 Adj d S + χ -3/2 ∂g m ∂v 3 (T ⊗ T) d + 2χ -2 ∂g m ∂v 4 [S(T ⊗ T)] d , -h s = κ ∂g t ∂v 2 + χ -1/2 ∂g t ∂v 3 S + χ -1 ∂g t ∂v 4 S 2 T, (50) 
where g m and g t are arbitrary functions of the invariants v i 's. It can be shown that a model defined as in (50) is stable, in the sense that the L 2 -norm of the solution remains bounded [START_REF] Razafindralandy | Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations[END_REF].

In order to simplify the form of the model, we assume that g m depends only on v = v 1 and g t = h t (v)v 2 , such that v is the only scalar invariant involved in the model. The latter then reads

         -τ d s = ν [2g m (v) -3vg m (v)] S + νg m (v) ||S|| Adj d S, -h s = κh t (v)T. (51) 
This reduces the degree of freedom of the model to 2.

In the following section, we study the wall behavior of model (51) and the corresponding subgrid viscosity.

Subgrid viscosity at the wall

Strictly speaking, model (51) is not a subgrid-viscosity model. However, the effective viscosity, caused by the model, can be defined from the subgrid dissipation as follows.

The molecular dissipation rate ε is linked to the molecular viscosity by the relation

ε = tr[τ S] = ν tr S 2 .
Similarly, the subgrid scale ν s is defined by

ε s = tr[(-τ s )S] = ν s tr S 2 .
Using (51), it follows:

ν s = 2νg m (v).
Assume that the wall is at x 2 = 0. The Taylor expansions of the velocity components are

u 1 = C 1 1 x 2 + C 2 1 x 2 2 + O(x 3 2 ) u 2 = C 2 2 x 2 2 + O(x 3 
2 )

u 3 = C 1 3 x 2 + C 2 3 x 2 2 + O(x 3 2 ) (52) 
It is admitted that ν s should vanish at the wall and behave as O(x 3 2 ) near this wall. This behavior is reached if we choose

g m (v) = C m (1 -e -v 3
),

S = O(1), det S = O(x 2 ), v = O(x 2 ). (53) since 
With the same form for the function h t , we get

         -τ d s = C m ν 2 -2 e -v 3 -9v 3 e -v 3 S + 3v 2 e -v 3 S Adj d S , -h s = C t κ(1 -e -v 3 )T. (54) 
where C m and C t are constants. With this model, there is then no need to introduce a wall-damping function since the model automatically vanishes at the wall.

A numerical test on model (54) is presented in the next section.

Numerical test

Consider an air flow in the ventilated room presented in figure 1 [see 23]. The dimension of the room is 1.04m×1.04m×0.7m. The inlet and outlet heights are respectively 0.018 and 0.024m, and the inlet velocity is 0.57m/s. The floor is heated at 35 • C while the other walls are maintained at 15 • C. The Reynolds number, based on the inlet height and the inlet velocity, is 678.

The simulation was carried out with the finite volume code Code Saturne [START_REF] Archambeau | Code saturne: a finite volume code for the computation of turbulent incompressible flows -Industrial applications[END_REF], on a 86×86×12 grid. The experimental data of Cheeswright et. al [START_REF] Cheesewright | Experimental data for the validation of computer code for the prediction of two-dimensional buoyant cavity flows[END_REF] are taken as reference solution. A Cranck-Nicolson scheme in time is used. The time step is 7•10 -3 s. In the figures, the mean profiles, computed over 1750 seconds, are presented.

The constants C m and C t are taken equal to (C s δ) 2 where C s is the Smagorinsky constant. For the comparison, the usual Smagorinsky model [START_REF] Smagorinsky | General circulation experiments with the primitive equations[END_REF] was also used. Recall that the Smagorinsky model reads

     -τ d s = ν smago S,
-h s = κ smago T.

(55)

x 1

x 2

35°C

15°C where the subgrid viscosity is defined as follows

ν smago = (C s δ) 2 2 tr S 2 (56) 
and the subgrid diffusion coefficient κ smago is linked to the subgrid viscosity by the relation:

κ smago = ν smago P r s (57) 
P r s is the subgrid Prandtl number, taken equal to 0.699.

Figure 2 shows that the horizontal velocity given by the invariant model (54) fits very well the experimental data. The concordance is particularly striking near the walls. The maximum values near the floor and near the ceilor are correctly predicted. This good agreement can be explained by the non-violation of the wall laws by the invariant model. Almost everywhere, the invariant model provides better results than the classical Smagorinsky model wich seems very dissipative. The vertical velocity, shown on figure 3, right, presents the same trend.

Figures 4 and5 report the temperature profiles along a vertical and an horizontal lines, passing through the middle of the room. It can be observed on these figures that the invariant model predicts the temperature behavior better than the Smagorinsky model does. However, both models under-estimate the experimental measurements. This may not due to the models but to the (wellknown) bad control of boundary conditions during the experimentation. Indeed, some phenomena such as radiation or the variation of temperature at the wall are hard to take into account. 

Conclusion

We showed that the symmetry approach can lead to contructive method for turbulence modelling. The form of model and the non-classical invariants (35) appeared naturally without any other assumption than the invariance under the symmetry group.

However, The symmetry approach does not fix all the parameters of the model. Rather, it leaves some arbitrary functions. This gives some freedom in the developpement, and can be used to ask to the model to fit additionnal requirements. In this article, they were choosen such that the model has a numerical stability and behaves correctly near the wall. The compatibility of the model with the wall laws seems to be confirmed by the numerical test.

Note that the antisymmetric part of gradu could be included in the general form (36) of the model in 3D turbulence since the indifference material is a symmetry of the model only in the limit of 2D flow. For simplicity reason, this was not done in this work.

Scaling laws for non-isothermal flows were also derived, in section 4.1, from the symmetry approach. If the velocity laws are familiar, the corresponding temperature behavior is not always common. For example, we saw that a logarithmic velocity profile goes together with an hyperbolic evolution of the temperature. These results have to be compared with experimental or DNS data.

The components ξ x , ξ y , ξ u and ξ v of X represent respectively the infinitesimal variation of x, y, u and v when transformation (A.2) is applied. They are functions of (x, y, u, v). In what follows, we show how to compute ξ x , ξ y , ξ u and ξ v and to deduce the symmetry (A.2). Equations (A.1) define a manifold on the 14-dimensional jet space

J (2) = {(x, y, u, v, u x , u y , v x , v y , u xx , u xy , u yy , v xx , v xy , v yy )}.
In order to take into account the derivatives involved in the equations, X is prolonged into the folowing vector field which acts on the jet space J (2) :

X = ξ x ∂ ∂x + ξ y ∂ ∂y + ξ u ∂ ∂u + ξ v ∂ ∂v .
+ The solution of this system is

ξ x = a 1 + a 3 x, ξ y = a 2 -a 4 y + f (x), ξ u = a 3 u + 2ua 4 , ξ v = a 4 v + ḟ (x)u, (A.15)
where the a i 's and f are respectively arbitrary constants and function. Using relation [START_REF] Grassi | A group analysis of the 2d navier-stokes-fourier equations[END_REF], one can deduce the symmetry corresponding to each of these parameters. More precisely, a 1 and a 2 lead respectively to the translations (x, y, u, v) → (x + a 1 , y, u, v) (A.16) and (x, y, u, v) → (x, y + a 2 , u, v). (A.17)

  = S T S T. (27) Adj denotes the adjoint operator, verifying S Adj S = (det S)I d where I d is the identity matrix. The superscript ( d ) designates the deviatoric part.
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 4 Figure 4: Mean temperature profiles at x 1 = 0.501m, at the half-width

Figure 5 :

 5 Figure 5: Mean temperature profiles at x 2 = 0.501m, at the half-width

  The coefficient ξ ux represents the infinitesimal variation of ∂u ∂x under transformation (A.2). It can be deduced from the infinitesimal variations of x, y and u. More precisely, ξ ux can be defined as follows (see (9)):The components ξ uy and ξ vy are defined in similar ways:ξ uy = D y (ξ u ) -
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Appendix A. Example of symmetry computation

In this appendix, we show, from an example, Lie's alogrithm for the determination of the symmetry groups of a system of equations. As we will see, the symmetry group of this example system is not very rich in the sense that the symmetries can be "guessed" without Lie's theory. Rather, the equations have been choosen because of their great interest in fluid mechanics and because they are simple enough that the calculation can be carried out by hand. Some theoretical considerations such as the involutivity are not discussed here.

Consider the equations of a 2D laminar thin shear layer flow:

According to the boundary conditions, these equations can model a boundary layer, a mixing layer or a jet. A Lie symmetry of (A.1) has the form q = (x, y, u, v) → ( x(q, a), y(q, a), u(q, a), v(q, a)).

It is caracterized by the infinitesimal generators:

where

The component ξ uyy can be recursively written as a function of ξ x , ξ y , ξ u and ξ v using the formula (see [START_REF] Itskov | Tensor algebra and tensor analysis for engineers: With applications to continuum mechanics[END_REF]):

The other components of X (2) are not usefull for our equations.

The symmetry criterion [START_REF] Noether | Invariant variation problems[END_REF], applied to equations (A.1), reads

Written with the components of X (2) , this criterion becomes: ) is converted into PDE's on ξ x , ξ y , ξ u , and ξ v , via (A.5)-(A.8). Next, νu yy is replaced by uu x +vu y , u xx by -v xy , u xy by -v yy and u x by -v y in the new equations. This leads to two polynomials in u y , v x , v y , v xx , v xy and v yy , which equal 0. The first one, which comes from (A.10a), is

The parameters a 3 and a 4 generate respectively the scale transformations (x, y, u, v) → (e a3 x, y, e a3 u, v) (A.18) and (x, y, u, v) → (x, e -a4 y, e 2a4 u, e a4 v).

(A. [START_REF] Razafindralandy | Analysis and development of subgrid turbulence models preserving the symmetry properties of the Navier-Stokes equations[END_REF])

The combination of transformations (A.16)-(A.19) constitutes a 4-dimensional Lie-symmetry group of (A.1). At last, f (x) spans the infinite-dimensional Liesymmetry group of transformations

As mentionned earlier, the cited symmetries could be guessed without Lie's algorithm. This is not always the case. For example, with Burgers'equation, Lie's theory leads to a projective symmetry which is hard to guess.

For more complicated equations, the calculation may be carried out with the help of symbolic software [START_REF] Hereman | Review of symbolic software for the computation of Lie symmetries of differential equations[END_REF].