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Living cells embedded in a complex Extra–Cellular Matrix
(ECM) migrate in a sophisticated way thanks to adhesions
to matrix fibres and contractility. It is important to know
what kind of forces are exerted by the cells. Here we use
reflectance confocal microscopy to locate fibres accurately
and determine displacement fields. Correlation techniques
are used to this aim, coupled with proper digital image pro-
cessing. Benchmark tests validate the method in the case
of shear and stretchingmotions. Finally, themethod is tested
successfully for studying cancer cells migrating in collagen
gels of different concentration.
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1 | INTRODUCTION

Cell migration is a widely studied subject, requiring precise microscopic observations coupled with complementary
biological experiments. In the past ten years, many processes related to cell migration have been considered, in
particular on 2D functionalized gels [36] where cells can migrate. The understanding of the mechanisms of migration
require an accurate knowledge of the spatio–temporal organization of actin fibres [39] and focal adhesions [29] within

Abbreviations: ECM, Extra–Cellular Matrix; DIC, Digital Image Correlation; DVC, Digital Volume Correlation.
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the cell. These mechanisms are highly dependent on molecular signaling, like the coordinated role of GTPases [21].
After a lamellipodium is formed at the front as well as focal adhesions, contractility is necessary for cells to detach
their rear in order to move forward [36]. These phenomena seem easier to understand in 2D but remain difficult
to investigate in 3D as the cells are embedded in the substrate and they might not have enough space to move. A
lot of attention has been paid to realistic systems, in particular collagen, fibrin gels or matrigels within which cells
can adhere and migrate. The early works of Friedl et al. [12] showed the ability of confocal reflectance microscopy
techniques [11] to investigate cell migration in complex collagen networks. The method allows visualisation of fibre
bundles or even individual fibres. This enables to propose 3D global mechanisms, close to the ones observed in 2D,
with an extra step due to possible matrix degradation by MMPs (Matrix–MetalloProteases). Thus cells in 3D push a
lamellipodium, form new adhesions, contract and bring their uropod. In addition, MMPs become necessary in dense
collagen networks, or in a confined environment [42],

Another important aspect is the mechanics of cells: indeed cells forming focal adhesions on matrix fibres propel
themselves by exerting forces which control their migration. It is possible that such forces correspond to the signature
of particular types of cells. Thus it is fundamental to study the displacement fields generated around the cells, then de-
termine forces using inverse methods already developed for elastic gels in 2D. Different methods have been proposed:
the Boundary Integral Method (BIM, [7]), Traction Reconstruction from Point Force (TRPF, [35]), Fourier Transform
Traction Cytometry (FTTC, [6]) or the Adjoint Method (AM, [3, 27]). These methods all need proper regularization and
this question has been addressed in a relevant paper [32]. In three dimensions, experimental displacements or strain
fields are usually harder to determine but have been obtained on regular grids [17, 13]. A relative small number of
studies considering the inverse problem to obtain stress fields have been proposed in 3D [20, 40, 37]. The inverse
problem is harder to solve as precise cell contour determination is needed since the elastic problem is now solved
in the gel without the cell. In addition, the Green function G(r) linking displacements u(r) to stresses T(r) through
u(r)=

∫
G(r − r′)T(r′)dr′ is not known (r being the space variable). To reach this goal, displacement fields with a very

good resolution are needed, this being sometimes difficult due to the lower resolution of confocal microscopes in the
Z–direction. In addition, the inverse problem needs an accurate displacement field close to the cell [40]. Therefore,
one needs to develop specific correlation techniques, to link the fibres position after one time step. Such methods,
also known as Digital Image Correlation (DIC) have been developed for many years in the fields of solid mechanics
[31], fluid mechanics (Particle Image Velocimetry or PIV [5, 33]), geophysics [34], and more recently in biophysics
[25, 16].

In this work, we propose to develop a new method based on images acquired on a confocal microscope using the
reflectance technique, showing fluorescent cells (GFP–labeled cancer cells) in a collagen matrix, naturally reflecting
fluorescence. Collagen fibres form bundles which can be easily detected and favour the use of the correlation tech-
nique. Specific tools are used to draw the cell contour first, in order to remove it from the collagen signal. This is
achieved using cell segmentation [8]. Then the fibres signal is processed using phase correlation tools (POC) [2] with a
high–accuracy subpixel image registration [38, 4], taking advantage of the stronger intensities. After additional image
processing is made, we test the method on benchmark problems, corresponding to shear, rotations and elongations
of the network. Finally we apply the method to cancer cells migrating in different collagen networks – from low to
high concentrations – and compare the displacement fields as well as the mechanisms used by these cells to migrate
in this complex environment.
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2 | MATERIALS AND METHODS

2.1 | Cell culture

The cell line J82 was purchased from ATCC (HTB-1, ATCC Rockville, MD). This cell line was isolated from invasive
bladder transitional cell carcinoma [23]. Cells were cultured at 37oC in a humidified 5% CO2 atmosphere, in RPMI
1640 medium (Gibco, Saint Aubin, France) supplemented with 10% fetal bovine serum (FBS), 100 UI/mL penicillin
and 100 µg/mL streptomycin (complete RPMI medium). The cells were stably transfected with a plasmid expressing
lifeact-GFP to stain F–actin [28], and these GFP–transfected cells were used for all experiments.

2.2 | Collagen gel preparation and cell seeding

Collagen gels prepared from rat tail collagen type I solutions (BD Biosciences) were cast in Nunc LabTek II chambered
coverglass 8 wells. In order for the collagen gel to strongly adhere to the bottom glass surface of the wells, LabTeks
were treated using the following protocol slightly modified from [41]: after a brief treatment (1 min) with sodium
hydroxide (NaOH 0.1N), the LabTek was allowed to dry. 3–Aminopropyltrimethoxysilane (APTMS) was then added
for 10 min. After removing the chemical, the LabTek was cleaned 5 times with distilled water and dried. Finally,
glutaraldehyde (0.5% in PBS) was added for 30 min, the solution was removed, the Labtek was cleaned 5 times with
distilled water and allowed to dry before adding the collagen solution. All the following preparation was carried out in
ice to prevent polymerization of the collagen before adding it in the Labteks. The collagen solution consisted of RPMI
medium supplemented with glutamine, FBS and antibiotics – at the same concentration as in the culture medium
in which the cells were grown – 10 µg/mL of fibronectin, and three different concentrations of collagen (0.95, 1.8
and 4.5mg/mL). After addition of NaOH (0.1 M) to reach a pH of 7.4, freshly harvested J82 cells were included into
the collagen mixture to obtain a final cell density of 2,000 cells/µL. This solution was inserted into the LabTeks and
transferred to an incubator at 37oC for 30 min for the gel to polymerize. Fresh RPMI complete medium was added
onto the gel after polymerization in order to make sure the cells would not lack nutrients during the experiment.
Overall, the time between preparation of the gel and the beginning of the experiment was one hour.

2.3 | Image acquisition and cell segmentation

The structure of the collagen gels was visualized using confocal reflection microscopy. Image stacks of the gel were
acquired on a Zeiss LSM 710 confocal microscope (Carl Zeiss, Jena, Germany) as previously described [15]. Collagen
fibres were visualized, with a 40x/1.1NA water immersion objective (Zeiss) and imaged at a wavelength of 633 nm.
Imaging of fluorescently labeled actin was conducted with the same objective, at a wavelength of 488 nm. During
the experiments, samples were placed in a temperature and CO2 controlled on-stage incubator (37oC, 5% CO2). By
denoising with a Gaussian filter, and thresholding the intensities of the GFP–fluorescence (green channel), the cell vol-
ume was defined. From this segmentation [8], the cell volume was removed from the red channel. As a consequence,
the collagen signal was left without the cell, since this is the relevant information to use. In addition, only the most
intense levels were kept. Fig. 1(A) shows the red channel with both cell and collagen whereas Fig. 1(B) shows the
green channel allowing to identify the cell contour.
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3 | DISPLACEMENT FIELD ALGORITHM

3.1 | Definitions

In this work, we propose to use the PhaseOnly-Correlation (POC) function to estimate the displacement field between
two volumesV1 andV2 at two consecutive time steps t1 and t2. Typically volume sizes are chosen to be 512x512xNz
(Nz is the number of slices in the range [30; 100]). Indeed, during typical elapsed time (10min), cells have moved within
the filamentous gel and have displaced the fibres. These fibres are used as tracers to determine displacements. Thus
once they are localized at time t1 using a maximum intensity criterion, it is easier to locate them at time t2 using the
POC function.

Let us first define vectors to be used in the phase correlation method and subvoxel estimation. We need to use
voxel position vectors xwith components (x1, x2, x3) and volume fluorescence intensityV (x, t ) at position x and time
t . The volume intensityVt1 (x) =V (x, t1) at time t1 will be deformed toVt2 (x) =V (x, t2) at time t2.

We define a discrete set E =
{
x(i ); i = 1, ...,M

}
with M positions, at which we estimate the local displacements

u(i ). We define this set E from the initial volumeVt1 by selectingx(i ) voxels corresponding to local fluorescence peaks,
i.e. local three-dimensional maxima above a threshold given by the well–known Otsu method [26]. This ensures a
selection of positions located on collagen fibres with a high local signal to noise ratio.

To estimate the local displacement between t1 and t2 at a given position x(i ), we define two sub-volumes v (i )t1 and
v
(i )
t2

centered on this position, and perform discrete calculations:

v
(i )
t (x) = a(x)Vt

(
x1 + x

(i )
1 −

N1
2
, x2 + x

(i )
2 −

N2
2
, x3 + x

(i )
3 −

N3
2

)
x1 ∈ {0, ...N1 − 1}, x2 ∈ {0, ...N2 − 1}, x3 ∈ {0, ...N3 − 1},

(1)

with (N1,N2,N3) the sub-volume sizes (i.e. width, height and depth, denoted later byN1 xN2 xN3), and a(x) theweight
defined by the type of window function (e.g. Hamming, Blackman etc...) [14]. (N1,N2,N3) are chosen as powers of
two, since Discrete Fourier Transform algorithms are usually optimized for such signal sizes.

We will now determine the displacementu(i ) which will be estimated in two steps : first we calculate the discrete
part u(i )

d
, and then the sub-voxel estimation δu(i ). Finally, we will find u(i ) = u(i )

d
+ δu(i ) (see Figure 2).

3.2 | First step : discrete estimation of displacement field

The phase correlation method is a well known frequency domain method to relate two signals. In order to estimate
the shift between v (i )t1 (x) and v

(i )
t2
(x), we calculate their normalized cross–power spectrum:

R (i )(ω) =
v
(i )
1 (ω) v

(i )
2 (ω)����v (i )1 (ω) v (i )2 (ω) ���� ,v

(i )
1 (ω) = F

(
v
(i )
t1
(x)

)
,v
(i )
2 (ω) = F

(
v
(i )
t2
(x)

)
(2)

where F denotes Fourier transform and v (i )1 (ω) denotes the complex conjugate of v (i )1 (ω). The inverse Fourier trans-
form of R (i )(ω) gives the so called Phase–Only Correlation (POC) function:

r (i )(x) = F−1
(
R (i )(ω)

)
(3)
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The most noticeable property of the POC function is that it exhibits a unique sharp peak when the signal v (i )t2 is a
shifted version of v (i )t1 . Using this property, we obtain the required displacement u(i )

d
in voxels, by locating the position

of the peak of r (x)(i ):

u
(i )
d
= argmax

x

(
r (i )(x)

)
(4)

An example of the peak determination from the normalized cross–correlation r (i )(x) – or POC – is shown in the
following Figure 3, where two typical images at times t1 and t2 are shown, and the POC, in the (x1,x2) coordinate
system, shows a clear maximum, indicating the coordinates of the displacement vector.

3.3 | Second step : sub-voxel estimation of displacement field

The size of sub-volumes in the previous step are chosen large enough to estimate the expected value of ud , but
in practice the maximum of correlation and peak location precision obtained from equation (4) decrease if voxels in
subvolumes are submitted to various shifts [22, 18]. Therefore we first started with a large window and obtained
the estimate u(i )

d
of the displacement using phase correlation as described above, where displacements are expressed

in voxels. Then a smaller box was used to estimate the extra displacement, as shown previouvsly. The sub–pixel
resolution as explained by Foroosh [9] was found quite appropriate to calculate δu(i ). Basically, the method corrects
the value of the displacement in voxels, by adding/subtracting a number corresponding to the ratio of POC values of
the peak and its neighbors. This is sketched in Fig. 2. The final displacement u(i ) is the sum of the first one u(i )

d
and

the second one, δu(i ) obtained during the second step, u(i ) = u(i )
d
+ δu(i ).

Note that this method is insensitive to the type of images that are used. We only use the most intense levels (as
explained in §2.3), underlying the structure of the objects. So these objects can be of different kinds, as long as the
fluorescence levels are well defined. Any other sub–structures can be treated, not necessary filaments.

4 | EXPERIMENTAL RESULTS

4.1 | Displacements and errors

In order to estimate the method accuracy, we have created nine data–sets from real volume acquisition at three
different collagen concentrations : 0.95 mg/mL, 1.8 mg/mL and 4.5 mg/mL (three data sets per concentration). From
these acquisitions we created in silico experiments, i.e. we built synthetic volumes by applying numerically known
deformations to real collagen images and interpolated with quintic splines to reduce numerical errors [24]. Each data
set is formed by the real raw volume (first time step t1) and its deformed version (second time step t2).

The theoretical displacement U (x) is given by the following expressions in shear and uni–axial elongation.
Shear case : U1(x) = γx2; U2(x) = 0; U3(x) = 0.
Elongation case : U1(x) = εx1; U2(x) = − ε2 x2; U3(x) = −

ε
2 x3.

where γ is the shear strain and ε the elongation. Note that the displacement U (x) is calculated in terms of x
corresponding to the position of the fibres in the undeformed volume. Then we use our algorithm on the deformed
network to verify whether the method is efficient for the determination of the displacements. The errors E are given
by the square of the norm of the difference between calculated and expected displacements E = ‖u −U ‖2. Values
of γ and ε are chosen so that displacements do not exceed 16 voxels. Generally we used three concentrations with
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three cases (i.e. three collagen gels) for each concentration, leading to nine data sets. Fig. 4(A) shows the theoretical
displacement field corresponding to a mixed combination of shear and elongation using γ = 0.039 and ε = 0.031. The
result of the algorithm is shown in Fig. 4(B), corresponding to reconstruction of the displacements. Relative errors are
given w.r.t. to the voxel size in Figs 4(C-D). Here we used the voxel diagonal as a measure of its size.

Finally, results of another test case, called the ’dipole’, are presented in Fig.5. The idea was here to be close to a
real situation where a cell applies more localized forces, for example during migration. This could correspond to two
rapidly decaying opposed displacements localized at points A(xA1 , x

A
2 , x

A
3 ) and B(xB1 , x

B
2 , x

B
3 ). The displacement field

is given by U (x) = U0 exp (−K |rA |2) − U0 exp (−K |rB |2), with |rA | =
√
(x1 − x

A
1 )
2 + (x2 − x

A
2 )
2 + (x3 − x

A
3 )
2, and

|rB | =
√
(x1 − x

B
1 )
2 + (x2 − x

B
2 )
2 + (x3 − x

B
3 )
2. U0 is a displacement vector pointing from A to B, and K is a constant

that can be adjusted to obtain a large strain, in order to test the method robustness. We find that the method allows
good reconstruction of the imposed displacements, even for a large value of K , when the decrease is sharp, leading to
large strains. Fig. 5 also represents a real cell, with the chosen end points A and B, where displacements are localized.
For this case, relative errors are also presented in Fig. 6.

4.2 | Parameter optimisation

Different parameters were tested in what follows. In particular, calculation of the displacement field can lead to a
first approximation using a large initial window. Generally, it is better to consider a second pass, leading to a better
approximation of displacements. Then, as shown in Fig. 2, one reiterates this procedure to get a better accuracy. The
second window should be smaller in order to avoid edge effects, while the initial one was larger to account for larger
displacements. The influence of window sizes has been tested in Fig. 4(C). The first graph shows the role of window
dimensions (32x32x16 vs. 64x64x16) in voxels on the relative error, given as the percentage of voxel diagonal. One
can see that using a larger window size for a first pass works better, since displacements can be large. The optimal
window is 32x32x16 in this case. In Fig. 4(C), we also show the influence of the second pass using different window
sizes (4x4x4, 8x8x8, 16x16x16 and 64x64x16). The relative error is minimum for the size 16x16x16. Obviously the
smaller size 4x4x4 leads to numerical errors in the Fourier transform. Increasing this size leads a better accuracy (i.e.
smaller errors), but as window size increases, edge effects appear again so one finds a best compromise using window
size 16x16x16 for the second pass. All results (except for the size 4x4x4) show that improved accuracy is obtained
for two passes (i.e. sub–voxel resolution), as compared to one only. Finally, the influence of window filtering is tested
in Fig. 4(D) and shows very similar values of the relative error (in terms of voxel size again) whatever the window
function. Blackman, Cosine, Hamming, Hann, Tukey and Welch windowing effects were tested and give similar low
relative errors, whereas a rectangular window is less accurate. In what follows, the Hamming window will be used.

Next, the influence of different mechanical deformations has been tested, in particular a shear, an elongation, a
combined shear/stretch, and finally a displacement dipole (i.e. two opposed local displacements). The distinct calcula-
tion of relative errors in XY and Z–planes show the influence of the confocal resolutionwhich is poor in the Z–direction
due to various reasons already discussed [10]. But the relative errors found here remain rather small. In the dipole
case, the relative errors are larger, due to the higher deformation in the Z–direction, whereas the other cases mostly
involve deformations in the XY-plane. This can be seen in Fig. 6(A). Note that the mean Z–error is 0.113 ± 0.088 µm,
which is larger than the mean XY–error (0.061 ± 0.028 µm). When plotted in terms of relative error with respect to
voxel size (0.277 µm for XY and 0.77 µm for Z), the relative error is slightly higher for the Z–direction. To summarize,
the errors remain small.

In addition, Fig. 6(B) shows the effect of noise. The noise was chosen as a proportion of the input image variance.
Noise only gives rise to large errors when it becomes quite large (greater than 50%). This demonstrates the ability of
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our technique to describe accurately the proper fibre deformations.

4.3 | Displacement field de–noising

To reduce the effect of noise, two additional steps to improve the computation of the displacement field u(x) were
validated. First a test on outliers was used in order to eliminate those measurements that are irrelevant. This was
achieved by collecting all the displacements measured and making use of a threshold criterion to eliminate data cor-
responding to small correlation coefficients. Fig. 7 displays noisy data on a 16x16x16 grid. The graph shows a lot
of uncorrelated data and a smaller number of data points exhibit high correlation. The threshold used here is 8.7,
meaning a percentile of 1%. This value will be used in what follows, in particular in Figures 8(A-B).

The second step is to get rid of more unrelevant data, such as the ones left in Fig. 8(B), with wrong direction. A
few uncorrelated vectors still remain that will be discarded. For this purpose, the local coherence of displacement
vector directions (u1,u2,u3) was used as a selection criterion. Using the nearest neighbors within a given sphere (a
radius of 10 µm was chosen), we compared the current components with those of the neighbors. If the direction of
one of the components was found out of the range [Q1 − 1.5 ∗ I QR ;Q3 + 1.5 ∗ I QR ] (see definitions in Fig. 8), we
simply removed the vector. This does not eliminate so many vectors in the end, as seen in Fig. 8(C), where it is clear
that the most relevant data remains.

4.4 | Application to a real biological case : cancer cell migration in 3D collagen gel

In order to apply the method to a particular biological experiment, we chose to use three collagen concentrations.
Cancer cells of invasive type (J82 epithelial bladder cancer cell line) were seeded in collagen gels at three different
concentrations 0.95 mg/mL, 1.8 mg/mL and 4.5 mg/mL. The behavior of such cells was followed in time and confocal
images were acquired in order to exhibit the motion of cells in such media. The method described above was applied
to exhibit displacement fields, in particular in the vicinity of J82 cells. An example of such displacement fields is shown
in Fig. 9(A-B-C) for the three collagen concentrations (0.95 mg/mL, 1.8 mg/mL and 4.5 mg/mL). One can see clearly
the decrease of the norm of the displacement (see color code) when collagen concentration is increasing. Values range
from 4.5µm down to 1.6µm respectively from the low concentration to the high concentration. This is relevant as we
expect cells to displace low concentration collagen fibres more easily, since the network is looser. Further details will
be discussed in what follows.

5 | DISCUSSION AND CONCLUSIONS

The main motivation of the current work was to construct a robust method enabling to determine accurate displace-
ment fields in the context of cell migration within soft matrices, in particular collagen or biological gels for which
information about fibres is known. This is indeed the case when using collagen fibres reflecting naturally incoming
light from a laser [11, 15].

Recent works have been devoted to such analyses. In particular, Ravichandran and co–authors [10, 25] developed
3D digital volume correlation (DVC) on sub–volumes to determine full–field displacements with a very good accuracy
(0.2µm) and low noise (0.05–0.1µm). This was achieved thanks to 3D confocal stacks on labeled fibrin gels, an extra
step providing more contrast. They obtained sub–voxel accuracy with 3D quadratic polynomial fitting of the correla-
tion function near the peak. Their method can be extended to large deformations using stretch correlation procedures
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[10]. The interesting idea of their work was to couple matrix deformations together with the matrix microstructural
details, as also shown in our previous work [15].

In another study, Kim et al. [16] used 3D confocal microscopy stacks together with a partial volume correlation
(PVC) method in two steps. FFT or direct–cross–correlation based particle image velocimetry were used on 2D–
slices using sub–windows. Then normalized cross–correlation in terms of ∆Z shifts was used to find the maximum
crossgrained Z–deformation, and sub–pixel resolution was obtained by fitting a gaussian around the maximum. We
actually used this method initially but it was found less accurate than doing a full 3D POC.

The method developed here is rather simple and involves sub–pixel accuracy [2, 4, 9]. It uses the most intense
levels, i.e. fluorescence peaks above a given level, giving rise to an unstructured mesh. The Phase–Only–Correlation
(POC) is directly applied on 3D sub–volumes, and exhibits sharp peaks (Fig. 3). Two passes are used, one to catch the
coarse displacement (large sub–window), and the second one (small sub–window) to attain sub–pixel resolution using
combinations of neighboring peaks [9]. So the method is fast, provides good resolution and low relative errors.

This was checked in details using benchmark cases (shear, elongation, mixed shear/elongation and dipole) on
numerically deformed collagen images. The first pass using the correlation algorithm needs a rather large box size
(step 1 in Fig. 2, and relevant tests in Fig. 4), for example 32x32x16, depending on the experiment. This is a good
compromise for accuracy. Indeed large displacements can be measured, and edge effects are not a problem. Then a
second pass was used with smaller box size, for example 16x16x16. Again this is an optimal solution for increasing
accuracy, as boxes can reach the main corners, and this size is small enough to refine the initial displacement field.
Benchmark solutions were shown to give good comparisons between theoretical and estimated displacements, in
the case of shear (thus involving rotations), stretch, combined shear/stretch (Fig. 4(A-B)), and the case of the dipole
(Fig. 5). Fig. 6(A) shows the good performance of the method on these various cases, both regarding the relative XY–
and Z–errors. Note that the Z–error is not as good but still quite reasonable, in the case of the dipole. The effect of
noise has also been studied and reveals a robustness for reasonable values of the noise (< 50 %).

This method could be applied to other types of fibres or sub–structures. It is general enough and applies to all
voxels in the field of view, not only points located on a regular grid [31, 17]. In particular this is important since we can
use the locations where the fluorescence is higher. This has been shown to be quite relevant here. Fig. 1, for example,
shows regions of space where very intense fibres are located, that can be used for better correlation estimations.
Several Traction Force Microscopy methods (TFM) based on finite element methods [3, 27, 30] use this advantage
because meshes can be made according to the nodes positions, therefore they do not need any further interpolation,
like the FTTC method [6, 32]. In addition, the method allows the determination of large displacements as opposed to
classical ones (PIV, etc.) requiring images to be close enough for adequate processing.

Application to cells in a collagen matrix gives quite interesting data. Accurate results are found everywhere even
close to the cell, as can be seen from the spatial distribution of the maximum of correlation in Fig. 8 (based on the
criterion in Fig. 7) and further refinements. High correlation is still found near the cell at distances of few microns.
Finally, the displacement norms were shown to decrease with the increase of the collagen concentration. This makes
sense, and further interesting local effects were observed. For the low concentration (0.95 mg/mL), strong displace-
ments up to 4 µm are found in the cell vicinity, indicating that cells are pulling on the collagen fibres. This effect
is also observed for the medium concentration (1.8mg/mL) in agreement with cell polarity, because displacements
point to the rear of the cell. This motion seemed to correspond to mesenchymal migration [36]. Finally, lateral effects
corresponding to symetric displacement of ≈ 1µm are found for the most concentrated gel (4.5mg/mL). These effects
possibly indicate a different mode of migration, the amoeboid type of motion [11], which is probably related to the
fact that this cell is constrained by the gel. Note that displacements seem to be correlated with cell shapes : at low
and medium concentrations cells are elongated, whereas at high concentration the cell looks round.
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Therefore not only we observe a clear effect of the gel concentration on the displacement of the cells (with inward
displacements), but also we showed that the technique can be interesting to determine variations in the modes of
migration. This opens up a new route for accurate determination of displacement fields, to be used in combination
with adequate TFM tools [40] allowing to determine forces exerted by cells.

Further works are now needed to investigate the forces exerted by cells in 3D, and potential new effects might
be found by comparing cells of different invasiveness. This new indicator might correspond to a cell signature, to be
associated with cell invasiveness [19]. This new method may also reveal to be important for elucidating new modes
of migration, in particular MMP–driven mechanisms where matrix degradation is important, that still remain to be
understood [12, 42].
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(A)

(B)

20 µm

20 µm

F IGURE 1 (A) Cell among collagen fibres (red channel), collagen concentration c=0.95mg/mL. (B) Fluorescent
cell. In (A) and (B) the white line shows cell contour segmented from green channel.
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F IGURE 2 Box refinement method to increase displacement accuracy, sketched in 2D. In this drawing, an initial
rough box F1 of size 64x64 is chosen. A first correlation is made at position (x , y ) in order to obtain displacement
ud(x , y ), between F1 (time t1) and F2 (time t2), at pixel resolution. Then refinement is made using a smaller size box
(F ′1), here 16x16 giving a better estimate δu(x , y ), leading to the final displacement between F ′1 (t1) and F

′
2 (t2),

namely u(x , y ) = ud(x , y ) + δu(x , y ), with sub–pixel resolution. Remark: Box sizes are just for the sketch, and not
on scale.
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A

B

C

F IGURE 3 Bidimensional illustration of the POC function response. (A)-(B) Two images of collagen fibres at
respective times t1 and t2. A known shift ud = (−5, 6) is applied to image (A) to produce image (B). (C) POC function
or r (i )(x) in the (x1,x2) plane, with peak location indicating the coordinates of the displacement vector, see white
arrow.
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F IGURE 4 Shear combined with a stretch (γ = 0.039, ε = 0.031) (A) theoretical displacement, (B) calculated
displacement with optimal parameters: first pass with a 64x64x16 window and second pass 16x16x16, both passes
with a Hamming window function. (C) Relative error distributions (w.r.t. to voxel size) showing the superposition of
boxplot and violin plot, with one pass or two passes, as a function of window size. Using too small windows
(32x32x16) relatively to the applied displacement leads to large local errors (up to ten times voxel size) even if the
average relative errors remain small. Using a second pass can lead to a smaller relative error (16x16x16 here). (D)
Relative error distributions (w.r.t. voxel size) depending on windowing type. Window function does not affect the
results much.
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A

B

Displacement (µm)

Displacement (µm)

F IGURE 5 Dipole case. Prescribed deformations are used at two positions A(xA1 , x
A
2 , x

A
3 ) and B(xB1 , x

B
2 , x

B
3 ) with

opposed directions, simulating a cell migrating within a matrix. The corresponding imposed deformation field is
U (x) = U0 exp (−K |rA |2) −U0 exp (−K |rB |2), with K = 0.001 µm−2 and U0 = 4.7 µm (see definitions in §4.1).
Comparison between prescribed displacements (A) and calculated ones using the POC (B). Note that the cell is also
represented, with its ends A and B where the displacements are localized.
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F IGURE 6 (A) Relative errors for four cases. Shearing (γ = 0.0625), stretching (ε = 0.0625), combined shearing
and stretching experiments (γ = 0.039 and ε = 0.031) and ’dipole case’ (from Fig.5). For each case the relative error is
represented in the XY or Z–plane. Note that the relative errors in the Z–direction are relatively small, but slightly
higher for the dipole case. (B) Effect of noise on relative errors.
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F IGURE 7 Maximum correlation for noisy data on a 16x16x16 box. Most of the data (99%) has a very small
correlation coefficient whereas 1% of the data is above the threshold 8.7, and has a high correlation coefficient.
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F IGURE 8 Maximum correlation for (A) raw data, (B) data following thresholding with value of 8.7 from Fig. 7 (C)
data from (B) after removing displacement vectors with wrong direction not in range [Q1 − 1.5 ∗ I QR ;Q3 +1.5 ∗ I QR ],
using nearest neighbors to compute first and third quartiles (Q1 and Q3) and interquartile range I QR = Q1 − Q3.
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F IGURE 9 J82 cell migrating in three different gels (A) 0.95 mg/mL, (B) 1.8mg/mL, (C) 4.5 mg/mL, respectively
from top to bottom. On the left are shown two successive cell contours (yellow is for time t1 = 0 and cyan is at
t2 = 10 min). On the right are the results of the correlation algorithm showing 3D displacements in the whole field
with the cell image (in grey) superposed. Displacements are much larger for the soft gel at the concentration of 0.95
mg/mL. Images were made using Paraview software [1].


