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Lie-Symmetry Group and Modelling in Non-IsothermalFluid MehanisAziz Hamdouni⋆, Dina Raza�ndralandy⋆⋆, Nazir Al Sayed⋆⋆⋆LEPTIAB, Université de La Rohelle, Avenue Mihel Crépeau, 17042 La Rohelle Cedex 1, FraneE-Mail: ⋆ahamdoun�univ-lr.fr, ⋆⋆draza�n�univ-lr.fr, ⋆⋆⋆nalsay01�univ-lr.fr1 IntrodutionThe physial properties of a phenomenon whih has been modelized into a set of equationsare ontained in the symmetry group of these equations. This fat is well illustrated byN÷ther's theorem [5, 7℄ whih states that for a Lagrangian system, eah symmetry ofthe equations orresponds to a onservation law. For example, a system having a time-translation symmetry is energy onserving.In �uid mehanis, the symmetry group theory has been used to study, among others,the dynamis of vorties in a �uid �ow [3, 4℄ and to investigate spetral properties of the�ow [9℄. Oberlak [6℄ also used the symmetry theory to dedue saling laws, suh as thealgebrai law whih has been on�rmed in the enter and in the near-wall region of ahannel �ow, the usual logarithmi wall law, a linear law whih is observed in the enterregion of a ouette �ow. He also found a new exponential law whih has been on�rmedlater in the mid-wake region of the boundary layer.The �rst part of this paper extends the work of Oberlak to non-isothermal and parallel�ow, suh as a pipe �ow. Saling laws for both veloity and temperature will be given.The seond part is devoted to the onstrution of a lass of turbulene models of a non-isothermal �ow, whih respet the physis of the �ow.Indeed, in spite of many deades of studies, turbulene modelling still onstitutes an im-portant hallenge in engineering siene. No turbulene model, either with RANS methodor with large-eddy simulation (LES) approah, is really satisfying regarding their math-ematial and physial properties. Moreover, the subgrid heat �ux model is, most of thetime, simply dedued from the subgrid stress tensor model by a Reynolds analogy. Thisanalogy limits the sope of the models for strongly oupled problems (natural and mixedonvetion). In this paper, we propose a general lass of subgrid stress and heat �ux mod-els based on the preservation of the symmetry group (and then the underlying physialproperties) of the non-isothermal Navier�Stokes equations (1).2 Saling laws in a parallel �owConsider the Navier�Stokes equations for an inompressible, non-isothermal Newtonian�uid, with kinemati visosity ν and thermal di�usivity κ:
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In these expressions, τr = 2νS and hr = κ∇θ are respetively the visous stress tensorand the heat �ux, and S = ∇u+T
∇u

2
is the strain rate tensor. β is the thermal expansionand g the aeleration due to gravity.Using the RANS approah, we deompose the veloity, the pressure and the temperatureinto a mean and a �utuating quantities:

f = F + f ′. (2)As we are seeking for stationnary bidimensional saling laws in a parallel �ow, we assumethat the mean pressure is of the form P (x2) − x1K, that U2 = U3 = 0 and that U1 and
Θ depend only on the wall normal oordinate x2. The �utuating quantities verify thefollowing set of equations:






∂u′
i

∂t
+ U1

∂u′
i

∂x1

+ u′
2

dU1dx2

δi1 −

(

K + ν
∂2U1

∂x2
2

)

δi1 +

(
∂P

∂x2

− βgΘ − βgθ′

)

δi2

+
∂u′

iu
′

k

∂xk
+

∂p′

∂xi
− ν

∂2u′
i

∂x2
k

= 0

∂θ′

∂t
+

∂θ′u′
j

∂xj
− κ

∂2θ′

∂x2
j

− κ
∂2Θ

∂x2
2

+ u′
2

∂Θ

∂x2

+ U1

∂θ′

∂x1

= 0

∂u′

k

∂xk
= 0

(3)
For simpliity, we also designate system (3) by

E(t, x, U , u′, P, p′, Θ, θ′, ν, κ) = 0 (4)Saling laws are self-similar solutions of (3). In what follows, we use Lie's theory to �ndthe symmetries of the equations and to dedue the self-similar solutions.A (Lie point-)symmetry of (3) is a transformation
(t, x, U , u′, P, p′, Θ, θ′, ν, κ) 7→ (t̂, x̂, Û , û′, P̂ , p̂′, Θ̂, θ̂′, ν̂, κ̂) (5)depending ontinuously on a parameter a, whih maps a solution of (3) into another solu-tion. Knowing transformation (5) is equivalent to knowing its generator
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∂a

∣∣∣∣∣
a=0

. (7)Aording to Lie's theory, transformation (5) is a symmetry of (4) if and only if
E = 0 ⇒ X.E = 0. (8)This last ondition permits to ompute the omponents of the symmetry generators X of(3), whih are 2



ξν = nν,
ξκ = mκ,
ξt = [n − 2m] t + c1,
ξx1

= [n − m] x1 + α1(t) + c2,
ξx2

= [n − m] x2 + c3,
ξx3

= [n − m] x3 + α2(t) + g,
ξU1

= mU1 − α3(t) + α4(x2) + α̇1(t),
ξP = 2mP + βgx2α5(t, x1, x3) + α6(t, x1, x3) + α9(t, x2),
ξΘ = [3m − n] Θ − α7(x2) + α5(t, x1, x3),
ξu′
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ξp′ = 2mp′ + [K(n − 3m) − α̇3(t)]x1 − α̈2(t)x3 + α8(t) − α9(t, x2),
ξθ′ = [3m − n] θ′ + α7(x2).

(9)
where n, m, the c′is and the α′

is, whih are arbitrary onstants and funtions, are theparameters of the symmetries.
(U1, Θ) represents a self-similar solution of (3) if

X.U1 = 0 and X.Θ = 0,that is, if
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=
dx2
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(10)In the partiular ase where the αi's are onstant, the resolution of (10) leads to partiularsaling laws.
• If m 6= 0, n 6= m, n 6= 3m, we get the following algebrai saling law:
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• A logarithmi veloity pro�le arises if m = 0 and n 6= 0:
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• A linear law appears when m = n = 0:
U1 = C1x2 + C3, Θ = C2x2 + C4. (13)

• We obtain an exponential law when m = n 6= 0:
U1 = C1 exp
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b

)
+

C4

2m
. (14)As notied in the introdution, the orresponding saling laws in the isothermal asehave all been on�rmed either by experiments or by DNS data.As we ould see, the symmetry group are of paramount importane in modelling phys-ial phenomena. It ontains, among other, the saling laws of �uid �ows. In partiular,turbulene models should also preserve the symmetry group of the equations. In the nextsetion, we build a lass of LES turbulene models, whih are ompatible with the symme-try group of the non-isothermal Navier�Stokes equations. These models should naturallyreprodue the physial properties of the �ow, suh as saling laws.3



3 Symmetry-preserving turbulene modelsLet us onsider equations (1). Using the same approah as above, the symmetry generatorof these equations an be omputed. Its omponents are
ξt = c1 + 2tc3,
ξx1

= c2x2 + [c3 + c5]x1 + α1(t),
ξx2

= −c2x1 + [c3 + c5]x2 + α2(t),
ξx3

= [c3 + c5]x3 + α3(t),
ξu1

= c2u2 + [c5 − c3]u1 + α̇1(t),
ξu2

= −c2u1 + [c5 − c3]u2 + α̇2(t),
ξu3

= [c5 − c3]u1 + α̇3(t),
ξp = ζ(t) + 2[c5 − c3]p − ρ(x � α̈(t)) + c4βgx3,
ξθ = [c5 − 3c3]θ + c4/ρ,
ξν = 2c5ν,
ξκ = 2c5κ.

(15)
With the generator, one get the following list of symmetries of the non-isothermalNavier�Stokes equations (1):
• the group of time translations: (t, x, u, p, θ) 7−→ (t + a, x, u, p, θ)

• the group of pressure translations: (t, x, u, p, θ) 7−→ (t, x, u, p + ζ(t), θ)

• the group of pressure-temperature translations:
(t, x, u, p, θ) 7−→ (t, x, u, p + a βg x3, θ + a/ρ)

• the group of horizontal rotations: (t, x, u, p, θ) 7−→ (t, Rx, Ru, p, θ)where R is a 2D (onstant) rotation matrix,
• the group of generalized Galilean transformations:

(t, x, u, p, θ) 7−→ (t, x + α(t), u + α̇(t), p + ρ x � α̈(t), θ)

• the group of the �rst sale transformations:
(t, x, u, p, θ) 7−→ (e2a t, ea x, e−a u, e−2a p, e−3a θ)

• and the group of the seond sale transformations:
(t, x, u, p, θ, ν, κ) 7−→ (t, ea x, ea u, e2a p, ea θ, e2a ν, e2a κ).Equations (1) own other known symmetries. These symmetries are not loal ontinuoustransformations like the previous ones and annot be dedued from Lie's theory. They are:

• the re�etions whih are disrete symmetries:: (t, x, u, p, θ) 7→ (t, Λx, Λu, p, ι3θ)where Λ is a re�etion matrix, Λ = diag(ι1, ι2, ι3) with ιi = ±1,
• and the material indi�erene in the limit of a 2D horizontal �ow [2℄ whih is atime-dependent rotation: (t, x, u, p) 7→ (t, x̂, û, p̂)with

x̂ = R(t) x, û = R(t) u + Ṙ(t) x, p̂ = p − 3ωφ + ω2‖x‖2/24



where R(t) is an horizontal 2D rotation matrix with angle ωt, ω a real parameter,
φ the usual 2D stream funtion suh that (u = curl(φe3)) and ‖•‖ indiates theEulidian norm. The material indi�erene onstitutes a non-loal symmetry of theequations.The ombination of all these symmetries onstitutes the symmetry group of (1).In LES approah, one does not solve diretly equations (1). Instead, one omputes anapproximate solution (u, p, θ) whih ontains only the large sales of the atual veloity

u, pressure p and temperature θ of the �uid. The separation of large and small sales isde�ned by a �ltering. The equations of (u, p, θ) are:





∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p − div(τ r − τ) − βgθ e2 = 0

∂θ

∂t
+ div(θu) − div(hr − h) = 0

div u = 0.

(16)
In these equations, τ = u ⊗ u − u ⊗ u is the subgrid stress tensor and h = θu − θu thesubgrid heat �ux. In order to lose the equations, these two terms must be modelled, i.e.,replaed by funtions of (u, p, θ), alled turbulene model. A �good� turbulene model isone with whih (u, p, θ) has the same properties as (u, p, θ) from ertain point of view.In our approah, we require that (u, p, θ) has the same symmetry properties as (u, p, θ).This requirement is important beause, as underlined earlier, the symmetry group ontainsimportant physial information on the �ow.More preisely, the model should be suh that eah symmetry of (1) applied to (u, p, θ)is also a symmetry of (16) applied to (u, p, θ). When it is the ase, the model will be saidinvariant. Unfortunately, as analyzed in ([8℄), the major part of existing LES turbulenemodels do not omply with this requirement. In what follows, we propose new modelsbased on the preservation of the symmetry group of the equations.Time, pressure, and pressure-temperature translations, and the galilean transforma-tions remain symmetries of (16) if τ and h depend only on S and T = ∇θ:

−τ = −τ(S, T), −h = −h(S, T) (17)Next, rotations, re�etions and the material indi�erene are symmetries of (16) if the modelhas the following form
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(18)where the oe�ients Ei are salar funtions of:
X = tr S

2
, ξ = det S, ϑ = T

2
, ω1 = T � S T, ω2 = S T � S T (19)and Adj is the adjoint operator. Next, equations (16) are invariant under the �rst saletransformations if

τ̂ = e−2a τ and T̂ = e−4a
T. (20)5



This ondition is full�lled if
Ei(X , ξ, ϑ, ω1, ω2) = X siE ′

i(v1, v2, v3, v4) (21)where the vi's are the invariants:
v1 =

ξ

X 3/2
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ϑ

X 2
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X 5/2
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ω2

X 3.
(22)and
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2
, s3 = −3

2
, s4 = −2, s5 = −5

2
, s6 = 0, s7 = −1

2
, s8 = −1Finally, the seond sale transformation are symmetries of equations (16) if

E ′

i = νFi, i = 1, ..., 5 and E ′

i = κFi, i = 6, ..., 8.To sum up, we get the following lass of subgrid models whih are onsistent with thesymmetry group of (1):





−τd = νF1S + νX−1/2F2 Adjd S + νX−3/2F3(T ⊗ T)d
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2
)

T

(23)
In order to redue the degree of freedom of the model, we propose to restrain the lass(23) to models whih derive from a potential. This restrition is legitimated by the fatthat, like τr and hr, τ and h represent respetively a (subgrid) stress and a (subgrid) heat�ux. Moreover, τr and hr are derived from the potentials ν trS

2 and κ||T||2/2, in the sensethat
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2
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2
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) (24)Hene, τ and h should also be derived from potentials. This ondition leads to thefollowing lass of models (see [8℄):
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(25)
where gm and gt are arbitrary funtions of the vi's. Note that the assumption that themodel derives from a onvex potential ensures the stability of the model [8℄.Further simpli�ations an be done on lass (25) aording to the type of model thatwe wish to obtain. For example, 6



• if gm and gt are only funtions of v1 and v2, we get a strongly oupled model:
−τd = ν

(

2gm − 3v1

∂gm

∂v1
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∂gm
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)

S + ν
1

||S||
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.

• A deoupled model an be obtained if gm is funtion only of v1 and gt funtion of v2:
−τd = ν(2gm − 3vġm)S + ν

1

||S||
ġm Adjd S, −h = κht T. (27)

• Finally, we get a linear model when gm and ht are linear funtions of v:
−τd = νCm

(

− detS
1

∥∥S
∥∥3

S + Adjd S
1
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)

, −h = κCt

detS
∥∥S
∥∥3

T (28)where Cm are Ct are the onstants of the model, whih may depend on the gridsize. These onstants may also be evaluated dynamially, using the Germano-Lillyproedure.The simpliest model (28) (alled invariant model) and its dynamial version (alleddynami invariant model) have been implemented for the simulation of an air �ow in aventilated 3D room (see Figure 1). The �oor is heated at 35◦C and the other walls aremaintained at 15◦C. The ode used for the simulation is based on a �nite volume sheme,with Crank-Niholson sheme in time [1℄. The grid size is (86 × 86 × 12).
Figure 1: Ventilated and heated room.The mean veloity and temperature pro�les along the vertial line (x = 0.502, z = 0.35)are shown on Figure 2. A good agreement with experimental data [10℄, and better resultsompared to Smagorinsky and its dynamial version an be observed. These results arepartiularly good near the walls (no wall model were used). This may be explained by thepreservation of saling laws in the onstrution of the invariant models.4 ConlusionsWe showed that the symmetry theory provides a powerfull modelling tool in �uid mehan-is, as well for theoretial as for numerial developpements. In partiular, we saw thatit ould be used to establish saling laws, whih are essential for the understanding ofturbulene. The symmetry approah has also been used for the onstrution of turbulenemodels whih naturally have good physial properties, sine they preserve the symmetriesof the equations. The numerial test on�rms this good behaviour.7



Figure 2: Mean streamwise veloity (left) and mean temperature (right) at x = 0.502 m.Referenes[1℄ F. Arhambeau, N. Mehitoua, and M. Sakiz. Code saturne: a �nite volume ode for theomputation of turbulent inompressible �ows - industrial appliations. InternationalJournal On Finite Volumes, (1), 2004.[2℄ B.J. Cantwell. Similarity transformations for the two-dimensional, unsteady, stream-funtion equation. Journal of Fluid Mehanis, 85:257�271, 1978.[3℄ V. Grassi, R.A. Leo, G. Soliani, and P. Tempesta. Vortiies and invariant surfaesgenerated by symmetries for the 3D Navier-Stokes equation. Physia A, 286:79�108,2000.[4℄ V. Grassi, R.A. Leo, G. Soliani, and P. Tempesta. Temperature behaviour of vortiesof a 3D thermoonduting visous �uid. Physia A: Statistial Mehanis and itsAppliations, 305(3-4):371 � 380, 2002.[5℄ E. N÷ther. Invariante Variationsprobleme. In Königlihe Gesellshaft der Wis-senshaften, pages 235�257, 1918.[6℄ M. Oberlak. A uni�ed approah for symmetries in plane parallel turbulent shear�ows. Journal of Fluid Mehanis, 427:299�328, 2001.[7℄ P. Olver. Appliations of Lie groups to di�erential equations. Graduate texts inmathematis. Springer-Verlag, 1986.[8℄ D. Raza�ndralandy, A. Hamdouni, and M. Oberlak. Analysis and development ofsubgrid turbulene models preserving the symmetry properties of the Navier�Stokesequations. European Journal of Mehanis/B, 26, 2007.[9℄ G. Ünal. Appliation of equivalene transformations to inertial subrange of turbulene.Lie Group and Their Appliations, 1(1):232�240, 1994.[10℄ W. Zhang and Q. Chen. Large eddy simulation of indoor air �ow with a �ltered dy-nami subgrid sale model. International Journal of Heat and Mass Transfer, 43:3219�3231, 2000. 8


