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1 Introduction

The physical properties of a phenomenon which has been modelized into a set of equations
are contained in the symmetry group of these equations. This fact is well illustrated by
Neether’s theorem [5, 7] which states that for a Lagrangian system, each symmetry of
the equations corresponds to a conservation law. For example, a system having a time-
translation symmetry is energy conserving.

In fluid mechanics, the symmetry group theory has been used to study, among others,
the dynamics of vortices in a fluid flow [3, 4| and to investigate spectral properties of the
flow [9]. Oberlack [6] also used the symmetry theory to deduce scaling laws, such as the
algebraic law which has been confirmed in the center and in the near-wall region of a
channel flow, the usual logarithmic wall law, a linear law which is observed in the center
region of a couette flow. He also found a new exponential law which has been confirmed
later in the mid-wake region of the boundary layer.

The first part of this paper extends the work of Oberlack to non-isothermal and parallel
flow, such as a pipe flow. Scaling laws for both velocity and temperature will be given.
The second part is devoted to the construction of a class of turbulence models of a non-
isothermal flow, which respect the physics of the flow.

Indeed, in spite of many decades of studies, turbulence modelling still constitutes an im-
portant challenge in engineering science. No turbulence model, either with RANS method
or with large-eddy simulation (LES) approach, is really satisfying regarding their math-
ematical and physical properties. Moreover, the subgrid heat flux model is, most of the
time, simply deduced from the subgrid stress tensor model by a Reynolds analogy. This
analogy limits the scope of the models for strongly coupled problems (natural and mixed
convection). In this paper, we propose a general class of subgrid stress and heat flux mod-
els based on the preservation of the symmetry group (and then the underlying physical
properties) of the non-isothermal Navier-Stokes equations (1).

2 Scaling laws in a parallel flow

Consider the Navier-Stokes equations for an incompressible, non-isothermal Newtonian
fluid, with kinematic viscosity v and thermal diffusivity x:
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In these expressions, 7. = 2vS and h, = KV are respectively the viscous stress tensor
and the heat flux, and S = w is the strain rate tensor. (3 is the thermal expansion
and g the acceleration due to gravity.

Using the RANS approach, we decompose the velocity, the pressure and the temperature
into a mean and a fluctuating quantities:

f=F+/. (2)

As we are seeking for stationnary bidimensional scaling laws in a parallel flow, we assume
that the mean pressure is of the form P(zs) — 21K, that Uy = Us = 0 and that U; and
© depend only on the wall normal coordinate x,. The fluctuating quantities verify the
following set of equations:
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For simplicity, we also designate system (3) by
Et,z,U,u,Pp,0,0 v,rk) =0 (4)

Scaling laws are self-similar solutions of (3). In what follows, we use Lie’s theory to find
the symmetries of the equations and to deduce the self-similar solutions.
A (Lie point-)symmetry of (3) is a transformation

(t,x,U,u, P,p,0,0,v,x) — (& U,u, P,p,0,0,0,7) (5)

depending continuously on a parameter a, which maps a solution of (3) into another solu-
tion. Knowing transformation (5) is equivalent to knowing its generator

X = 8+ 8+ 8+ 8+ a+ a+ a+ 0 (6)
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According to Lie’s theory, transformation (5) is a symmetry of (4) if and only if
E=0 = X.E=0. 8)

This last condition permits to compute the components of the symmetry generators X of
(3), which are
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where n, m, the ¢;s and the a/s, which are arbitrary constants and functions, are the
parameters of the symmetries.
(U1, ©) represents a self-similar solution of (3) if

XU, =0 and  X.0=0,

that is, if
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In the particular case where the «;’s are constant, the resolution of (10) leads to particular
scaling laws.
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e A logarithmic velocity profile arises if m = 0 and n # 0:
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e A linear law appears when m =n = 0:
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e We obtain an exponential law when m = n # 0:
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As noticed in the introduction, the corresponding scaling laws in the isothermal case
have all been confirmed either by experiments or by DNS data.

As we could see, the symmetry group are of paramount importance in modelling phys-
ical phenomena. It contains, among other, the scaling laws of fluid flows. In particular,
turbulence models should also preserve the symmetry group of the equations. In the next
section, we build a class of LES turbulence models, which are compatible with the symme-
try group of the non-isothermal Navier-Stokes equations. These models should naturally
reproduce the physical properties of the flow, such as scaling laws.
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3 Symmetry-preserving turbulence models

Let us consider equations (1). Using the same approach as above, the symmetry generator
of these equations can be computed. Its components are

& = o+ 2tes,

Eor = CTo+ 3+ cslT + g (),

£y = —Cox1+ [c3+ 5T + a(t),

fo = [63 + 05]1’3 + Oég(t),

ful = ColUo + [05 — Cg]ul -+ dl (t),

€u2 = —CUq + [05 — Cg]Ug + OZQ(t), (15)
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With the generator, one get the following list of symmetries of the non-isothermal
Navier—Stokes equations (1):

e the group of time translations: (t,z,u,p,0) — (t+a,x,u,p,b)
e the group of pressure translations: (t,z,u,p,0) — (t,xz,u,p+ ((t),0)
e the group of pressure-temperature translations:

(t,z,u,p,0) — (t,x,u,p+aflgxs,0+a/p)
e the group of horizontal rotations: (t,z,u,p,0) — (t,Rx,Ru,p,0)

where R is a 2D (constant) rotation matrix,
e the group of generalized Galilean transformations:
(t,z,u,p,0) — (t,z+at),uta(l),p+pz.a(t),0)
e the group of the first scale transformations:
(t,z,u,p,0) — (2%t e’ x, e u,e 2 p e 30)
e and the group of the second scale transformations:

(t,x,u,p,0,v,k) — (t,e*x, e u,e* p el e v,e* k).

Equations (1) own other known symmetries. These symmetries are not local continuous

transformations like the previous ones and cannot be deduced from Lie’s theory. They are:

e the reflections which are discrete symmetries:: (t,x,u,p,0)— (t,Ax,\u,p, 130)
where A is a reflection matrix, A = diag(iq, L2, t3) with ¢; = £1,

e and the material indifference in the limit of a 2D horizontal flow [2| which is a

time-dependent rotation: (t,x,u,p) — (t,Z,u,p)

with .
F=R®)@,  a=ROu+RO®,  p=p-3we+w?lz]?/2
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where R(t) is an horizontal 2D rotation matrix with angle wt, w a real parameter,
¢ the usual 2D stream function such that (u = curl(¢es)) and ||.|| indicates the
Euclidian norm. The material indifference constitutes a non-local symmetry of the
equations.

The combination of all these symmetries constitutes the symmetry group of (1).

In LES approach, one does not solve directly equations (1). Instead, one computes an

approximate solution (@, p, ) which contains only the large scales of the actual velocity
u, pressure p and temperature 6 of the fluid. The separation of large and small scales is

defined by a filtering. The equations of (w,p, 0) are:

ou 1 _

ot divimem) + VB div(F, 1)~ fghes =0

o0 _ — 16
T + div(fw) — div(h, —h) =0 (16)
divu = 0.

In these equations, 7 = u @ uw — @ ® @ is the subgrid stress tensor and h = fu — 6w the
subgrid heat flux. In order to close the equations, these two terms must be modelled, i.e.,

replaced by functions of (w,p, ), called turbulence model. A “good” turbulence model is

one with which (w,p, ) has the same properties as (u,p,6) from certain point of view.
In our approach, we require that (@, p,#) has the same symmetry properties as (u, p, ).
This requirement is important because, as underlined earlier, the symmetry group contains
important physical information on the flow.

More precisely, the model should be such that each symmetry of (1) applied to (u, p, )
is also a symmetry of (16) applied to (@, D, ). When it is the case, the model will be said
invariant. Unfortunately, as analyzed in ([8]), the major part of existing LES turbulence
models do not comply with this requirement. In what follows, we propose new models
based on the preservation of the symmetry group of the equations.

Time, pressure, and pressure-temperature translations, and the galilean transforma-

tions remain symmetries of (16) if 7 and h depend only on S and T = V#:
—7=—7(5,T), ~h = —h(S,T) (17)

Next, rotations, reflections and the material indifference are symmetries of (16) if the model
has the following form

—7 = B\5 + Ey(AdjS)? + E3(TeT) + B [SToT)]" + B [S(T o T)s]*

(18)
~h=FET +E8T +EsS T
where the coefficients E; are scalar functions of:
X=tr5, €t=detS, 9=T, w=T.8T, w=8T.8T (19)

and Adj is the adjoint operator. Next, equations (16) are invariant under the first scale

transformations if
—2a

T=e¢ "7 and T=e"T. (20)



This condition is fullfilled if
EZ(X, g, 19, w1, u)g) :XsiEZ((Ul,UQ,Ug,’UAl) (21)

where the v;’s are the invariants:

§ i w1 W2

U= =~ U

(22)
and

— — — — _ _5 — — —
81—0, S9 = —5, S3 = —35 84——2, 85——57 86—0, ST = —5 88——1

Finally, the second scale transformation are symmetries of equations (16) if
E! =vF, i=1,..,5 and E! = kF}, i=6,...,8.

To sum up, we get the following class of subgrid models which are consistent with the
symmetry group of (1):

—7=vF S + vX~V2F Adj? S 4+ v X 32 Fy(T @ T)¢
+vX2F[S(T@T)) + vX 52 FS[(T ® T)S) (23)

Ch—x <F6 FXV2RS 4 X*1F8§2) T

In order to reduce the degree of freedom of the model, we propose to restrain the class
(23) to models which derive from a potential. This restriction is legitimated by the fact
that, like 7, and h,, 7 and h represent respectively a (subgrid) stress and a (subgrid) heat
flux. Moreover, 7, and h, are derived from the potentials v tr 5% and #||T||?/2, in the sense
that .

_ s @ mo= 2 (LT (24)
T, = rS an r= o7 2I€||

Hence, 7 and h should also be derived from potentials. This condition leads to the
following class of models (see [8]):

4
agm agm agm agm rad
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+v Do, S + 03( ®T)* 4+ (%4[ (TeT)) (25)

~h=x <%13 L1 fg X—l%?) T
L 8’02 8’03 8’04
where g,, and g, are arbitrary functions of the v;’s. Note that the assumption that the
model derives from a convex potential ensures the stability of the model [8].
Further simplifications can be done on class (25) according to the type of model that
we wish to obtain. For example,



e if g,, and g, are only functions of v; and vy, we get a strongly coupled model:

Ogm Ogm \ = 1 Ogm .- —
d .d
=y |29, -3 g ) S+ v——" Adj?S, —h =xhT (26
T V(Q Ulal v28v2> VHSH31)1 J K (26)
dgi
here hy = —.
v ! 81)2
e A decoupled model can be obtained if g, is function only of v; and g, function of vy:
1 — _
—7% = (29 — 30Gm)S + V||S|| Gm AdjeS, —h = kh; T. (27)
e Finally, we get a linear model when g,, and h; are linear functions of v:
d 1 1 det S _
—7% =vCp, | —det S—=5 + Adj?S = kCi——= (28)
Is1° I51)° IS H

where (), are C; are the constants of the model, which may depend on the grid
size. These constants may also be evaluated dynamically, using the Germano-Lilly
procedure.

The simpliest model (28) (called invariant model) and its dynamical version (called
dynamic invariant model) have been implemented for the simulation of an air flow in a
ventilated 3D room (see Figure 1). The floor is heated at 35°C' and the other walls are
maintained at 15°C. The code used for the simulation is based on a finite volume scheme,
with Crank-Nicholson scheme in time [1]. The grid size is (86 x 86 x 12).

Room dimensions
length=height=0.018m
depth=0.7m

Inlet height=0.018m
Inlet velocity=0.57m/s
Outlet height=0.024m

Floor temperature=35°C
Wall temperature=15°C

Figure 1: Ventilated and heated room.

The mean velocity and temperature profiles along the vertical line (x = 0.502, z = 0.35)
are shown on Figure 2. A good agreement with experimental data [10], and better results
compared to Smagorinsky and its dynamical version can be observed. These results are
particularly good near the walls (no wall model were used). This may be explained by the
preservation of scaling laws in the construction of the invariant models.

4 Conclusions

We showed that the symmetry theory provides a powerfull modelling tool in fluid mechan-
ics, as well for theoretical as for numerical developpements. In particular, we saw that
it could be used to establish scaling laws, which are essential for the understanding of
turbulence. The symmetry approach has also been used for the construction of turbulence
models which naturally have good physical properties, since they preserve the symmetries
of the equations. The numerical test confirms this good behaviour.
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Figure 2: Mean streamwise velocity (left) and mean temperature (right) at x = 0.502 m.
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