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Lie-Symmetry Group and Modelling in Non-IsothermalFluid Me
hani
sAziz Hamdouni⋆, Dina Raza�ndralandy⋆⋆, Nazir Al Sayed⋆⋆⋆LEPTIAB, Université de La Ro
helle, Avenue Mi
hel Crépeau, 17042 La Ro
helle Cedex 1, Fran
eE-Mail: ⋆ahamdoun�univ-lr.fr, ⋆⋆draza�n�univ-lr.fr, ⋆⋆⋆nalsay01�univ-lr.fr1 Introdu
tionThe physi
al properties of a phenomenon whi
h has been modelized into a set of equationsare 
ontained in the symmetry group of these equations. This fa
t is well illustrated byN÷ther's theorem [5, 7℄ whi
h states that for a Lagrangian system, ea
h symmetry ofthe equations 
orresponds to a 
onservation law. For example, a system having a time-translation symmetry is energy 
onserving.In �uid me
hani
s, the symmetry group theory has been used to study, among others,the dynami
s of vorti
es in a �uid �ow [3, 4℄ and to investigate spe
tral properties of the�ow [9℄. Oberla
k [6℄ also used the symmetry theory to dedu
e s
aling laws, su
h as thealgebrai
 law whi
h has been 
on�rmed in the 
enter and in the near-wall region of a
hannel �ow, the usual logarithmi
 wall law, a linear law whi
h is observed in the 
enterregion of a 
ouette �ow. He also found a new exponential law whi
h has been 
on�rmedlater in the mid-wake region of the boundary layer.The �rst part of this paper extends the work of Oberla
k to non-isothermal and parallel�ow, su
h as a pipe �ow. S
aling laws for both velo
ity and temperature will be given.The se
ond part is devoted to the 
onstru
tion of a 
lass of turbulen
e models of a non-isothermal �ow, whi
h respe
t the physi
s of the �ow.Indeed, in spite of many de
ades of studies, turbulen
e modelling still 
onstitutes an im-portant 
hallenge in engineering s
ien
e. No turbulen
e model, either with RANS methodor with large-eddy simulation (LES) approa
h, is really satisfying regarding their math-emati
al and physi
al properties. Moreover, the subgrid heat �ux model is, most of thetime, simply dedu
ed from the subgrid stress tensor model by a Reynolds analogy. Thisanalogy limits the s
ope of the models for strongly 
oupled problems (natural and mixed
onve
tion). In this paper, we propose a general 
lass of subgrid stress and heat �ux mod-els based on the preservation of the symmetry group (and then the underlying physi
alproperties) of the non-isothermal Navier�Stokes equations (1).2 S
aling laws in a parallel �owConsider the Navier�Stokes equations for an in
ompressible, non-isothermal Newtonian�uid, with kinemati
 vis
osity ν and thermal di�usivity κ:





∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p − div τr − βgθ e2 = 0

∂θ

∂t
+ div(θu) − div hr = 0

div u = 0

(1)
1



In these expressions, τr = 2νS and hr = κ∇θ are respe
tively the vis
ous stress tensorand the heat �ux, and S = ∇u+T
∇u

2
is the strain rate tensor. β is the thermal expansionand g the a

eleration due to gravity.Using the RANS approa
h, we de
ompose the velo
ity, the pressure and the temperatureinto a mean and a �u
tuating quantities:

f = F + f ′. (2)As we are seeking for stationnary bidimensional s
aling laws in a parallel �ow, we assumethat the mean pressure is of the form P (x2) − x1K, that U2 = U3 = 0 and that U1 and
Θ depend only on the wall normal 
oordinate x2. The �u
tuating quantities verify thefollowing set of equations:






∂u′
i

∂t
+ U1

∂u′
i

∂x1

+ u′
2

dU1dx2

δi1 −

(

K + ν
∂2U1

∂x2
2

)

δi1 +

(
∂P

∂x2

− βgΘ − βgθ′

)

δi2

+
∂u′

iu
′

k

∂xk
+

∂p′

∂xi
− ν

∂2u′
i

∂x2
k

= 0

∂θ′

∂t
+

∂θ′u′
j

∂xj
− κ

∂2θ′

∂x2
j

− κ
∂2Θ

∂x2
2

+ u′
2

∂Θ

∂x2

+ U1

∂θ′

∂x1

= 0

∂u′

k

∂xk
= 0

(3)
For simpli
ity, we also designate system (3) by

E(t, x, U , u′, P, p′, Θ, θ′, ν, κ) = 0 (4)S
aling laws are self-similar solutions of (3). In what follows, we use Lie's theory to �ndthe symmetries of the equations and to dedu
e the self-similar solutions.A (Lie point-)symmetry of (3) is a transformation
(t, x, U , u′, P, p′, Θ, θ′, ν, κ) 7→ (t̂, x̂, Û , û′, P̂ , p̂′, Θ̂, θ̂′, ν̂, κ̂) (5)depending 
ontinuously on a parameter a, whi
h maps a solution of (3) into another solu-tion. Knowing transformation (5) is equivalent to knowing its generator

X = ξt

∂

∂t
+ ξxi

∂

∂xi

+ ξU1

∂

∂U1

+ ξP

∂

∂P
+ ξΘ

∂

∂Θ
+ ξu′

i

∂

∂u′

i

+ ξp′
∂

∂p′
+ ξθ′

∂

∂θ′
(6)where

ξq =
∂q̂

∂a

∣∣∣∣∣
a=0

. (7)A

ording to Lie's theory, transformation (5) is a symmetry of (4) if and only if
E = 0 ⇒ X.E = 0. (8)This last 
ondition permits to 
ompute the 
omponents of the symmetry generators X of(3), whi
h are 2



ξν = nν,
ξκ = mκ,
ξt = [n − 2m] t + c1,
ξx1

= [n − m] x1 + α1(t) + c2,
ξx2

= [n − m] x2 + c3,
ξx3

= [n − m] x3 + α2(t) + g,
ξU1

= mU1 − α3(t) + α4(x2) + α̇1(t),
ξP = 2mP + βgx2α5(t, x1, x3) + α6(t, x1, x3) + α9(t, x2),
ξΘ = [3m − n] Θ − α7(x2) + α5(t, x1, x3),
ξu′

1
= mu′

1 + α3(t) − α4(x2),
ξu′

2
= mu′

2,
ξu′

3
= mu′

3 + α̇2(t),
ξp′ = 2mp′ + [K(n − 3m) − α̇3(t)]x1 − α̈2(t)x3 + α8(t) − α9(t, x2),
ξθ′ = [3m − n] θ′ + α7(x2).

(9)
where n, m, the c′is and the α′

is, whi
h are arbitrary 
onstants and fun
tions, are theparameters of the symmetries.
(U1, Θ) represents a self-similar solution of (3) if

X.U1 = 0 and X.Θ = 0,that is, if
dU1

ξU1

=
dΘ

ξΘ

=
dx2

ξx2

(10)In the parti
ular 
ase where the αi's are 
onstant, the resolution of (10) leads to parti
ulars
aling laws.
• If m 6= 0, n 6= m, n 6= 3m, we get the following algebrai
 s
aling law:

U1 = C1

[
x2 +

b

n − m

] m

n−m

+
C3

m
, Θ = C2

[
x2 +

b

n − m

] 3m−n

n−m

+
C4

3m − n
. (11)

• A logarithmi
 velo
ity pro�le arises if m = 0 and n 6= 0:
U1 =

C1

n
ln

(
x2 +

b

n

)
+ C3, Θ = C2

[
x2 +

b

n

]−1

+
C4

n
. (12)

• A linear law appears when m = n = 0:
U1 = C1x2 + C3, Θ = C2x2 + C4. (13)

• We obtain an exponential law when m = n 6= 0:
U1 = C1 exp

(mx2

b

)
+

C3

m
, Θ = C2 exp

(
2mx2

b

)
+

C4

2m
. (14)As noti
ed in the introdu
tion, the 
orresponding s
aling laws in the isothermal 
asehave all been 
on�rmed either by experiments or by DNS data.As we 
ould see, the symmetry group are of paramount importan
e in modelling phys-i
al phenomena. It 
ontains, among other, the s
aling laws of �uid �ows. In parti
ular,turbulen
e models should also preserve the symmetry group of the equations. In the nextse
tion, we build a 
lass of LES turbulen
e models, whi
h are 
ompatible with the symme-try group of the non-isothermal Navier�Stokes equations. These models should naturallyreprodu
e the physi
al properties of the �ow, su
h as s
aling laws.3



3 Symmetry-preserving turbulen
e modelsLet us 
onsider equations (1). Using the same approa
h as above, the symmetry generatorof these equations 
an be 
omputed. Its 
omponents are
ξt = c1 + 2tc3,
ξx1

= c2x2 + [c3 + c5]x1 + α1(t),
ξx2

= −c2x1 + [c3 + c5]x2 + α2(t),
ξx3

= [c3 + c5]x3 + α3(t),
ξu1

= c2u2 + [c5 − c3]u1 + α̇1(t),
ξu2

= −c2u1 + [c5 − c3]u2 + α̇2(t),
ξu3

= [c5 − c3]u1 + α̇3(t),
ξp = ζ(t) + 2[c5 − c3]p − ρ(x � α̈(t)) + c4βgx3,
ξθ = [c5 − 3c3]θ + c4/ρ,
ξν = 2c5ν,
ξκ = 2c5κ.

(15)
With the generator, one get the following list of symmetries of the non-isothermalNavier�Stokes equations (1):
• the group of time translations: (t, x, u, p, θ) 7−→ (t + a, x, u, p, θ)

• the group of pressure translations: (t, x, u, p, θ) 7−→ (t, x, u, p + ζ(t), θ)

• the group of pressure-temperature translations:
(t, x, u, p, θ) 7−→ (t, x, u, p + a βg x3, θ + a/ρ)

• the group of horizontal rotations: (t, x, u, p, θ) 7−→ (t, Rx, Ru, p, θ)where R is a 2D (
onstant) rotation matrix,
• the group of generalized Galilean transformations:

(t, x, u, p, θ) 7−→ (t, x + α(t), u + α̇(t), p + ρ x � α̈(t), θ)

• the group of the �rst s
ale transformations:
(t, x, u, p, θ) 7−→ (e2a t, ea x, e−a u, e−2a p, e−3a θ)

• and the group of the se
ond s
ale transformations:
(t, x, u, p, θ, ν, κ) 7−→ (t, ea x, ea u, e2a p, ea θ, e2a ν, e2a κ).Equations (1) own other known symmetries. These symmetries are not lo
al 
ontinuoustransformations like the previous ones and 
annot be dedu
ed from Lie's theory. They are:

• the re�e
tions whi
h are dis
rete symmetries:: (t, x, u, p, θ) 7→ (t, Λx, Λu, p, ι3θ)where Λ is a re�e
tion matrix, Λ = diag(ι1, ι2, ι3) with ιi = ±1,
• and the material indi�eren
e in the limit of a 2D horizontal �ow [2℄ whi
h is atime-dependent rotation: (t, x, u, p) 7→ (t, x̂, û, p̂)with

x̂ = R(t) x, û = R(t) u + Ṙ(t) x, p̂ = p − 3ωφ + ω2‖x‖2/24



where R(t) is an horizontal 2D rotation matrix with angle ωt, ω a real parameter,
φ the usual 2D stream fun
tion su
h that (u = curl(φe3)) and ‖•‖ indi
ates theEu
lidian norm. The material indi�eren
e 
onstitutes a non-lo
al symmetry of theequations.The 
ombination of all these symmetries 
onstitutes the symmetry group of (1).In LES approa
h, one does not solve dire
tly equations (1). Instead, one 
omputes anapproximate solution (u, p, θ) whi
h 
ontains only the large s
ales of the a
tual velo
ity

u, pressure p and temperature θ of the �uid. The separation of large and small s
ales isde�ned by a �ltering. The equations of (u, p, θ) are:





∂u

∂t
+ div(u ⊗ u) +

1

ρ
∇p − div(τ r − τ) − βgθ e2 = 0

∂θ

∂t
+ div(θu) − div(hr − h) = 0

div u = 0.

(16)
In these equations, τ = u ⊗ u − u ⊗ u is the subgrid stress tensor and h = θu − θu thesubgrid heat �ux. In order to 
lose the equations, these two terms must be modelled, i.e.,repla
ed by fun
tions of (u, p, θ), 
alled turbulen
e model. A �good� turbulen
e model isone with whi
h (u, p, θ) has the same properties as (u, p, θ) from 
ertain point of view.In our approa
h, we require that (u, p, θ) has the same symmetry properties as (u, p, θ).This requirement is important be
ause, as underlined earlier, the symmetry group 
ontainsimportant physi
al information on the �ow.More pre
isely, the model should be su
h that ea
h symmetry of (1) applied to (u, p, θ)is also a symmetry of (16) applied to (u, p, θ). When it is the 
ase, the model will be saidinvariant. Unfortunately, as analyzed in ([8℄), the major part of existing LES turbulen
emodels do not 
omply with this requirement. In what follows, we propose new modelsbased on the preservation of the symmetry group of the equations.Time, pressure, and pressure-temperature translations, and the galilean transforma-tions remain symmetries of (16) if τ and h depend only on S and T = ∇θ:

−τ = −τ(S, T), −h = −h(S, T) (17)Next, rotations, re�e
tions and the material indi�eren
e are symmetries of (16) if the modelhas the following form





−τd = E1S + E2(AdjS)d + E3(T ⊗ T)d + E4

[
S(T ⊗ T)

]d
+ E5

[
S(T ⊗ T)S

]d

−h = E6T + E7S T + E8S
2
T

(18)where the 
oe�
ients Ei are s
alar fun
tions of:
X = tr S

2
, ξ = det S, ϑ = T

2
, ω1 = T � S T, ω2 = S T � S T (19)and Adj is the adjoint operator. Next, equations (16) are invariant under the �rst s
aletransformations if

τ̂ = e−2a τ and T̂ = e−4a
T. (20)5



This 
ondition is full�lled if
Ei(X , ξ, ϑ, ω1, ω2) = X siE ′

i(v1, v2, v3, v4) (21)where the vi's are the invariants:
v1 =

ξ

X 3/2
, v2 =

ϑ

X 2
, v3 =

ω1

X 5/2
, v4 =

ω2

X 3.
(22)and

s1 = 0, s2 = −1

2
, s3 = −3

2
, s4 = −2, s5 = −5

2
, s6 = 0, s7 = −1

2
, s8 = −1Finally, the se
ond s
ale transformation are symmetries of equations (16) if

E ′

i = νFi, i = 1, ..., 5 and E ′

i = κFi, i = 6, ..., 8.To sum up, we get the following 
lass of subgrid models whi
h are 
onsistent with thesymmetry group of (1):





−τd = νF1S + νX−1/2F2 Adjd S + νX−3/2F3(T ⊗ T)d

+ νX−2F4[S(T ⊗ T)]d] + νX−5/2F5S[(T ⊗ T)S]d]

−h = κ
(
F6 + X−1/2F7S + X−1F8S

2
)

T

(23)
In order to redu
e the degree of freedom of the model, we propose to restrain the 
lass(23) to models whi
h derive from a potential. This restri
tion is legitimated by the fa
tthat, like τr and hr, τ and h represent respe
tively a (subgrid) stress and a (subgrid) heat�ux. Moreover, τr and hr are derived from the potentials ν trS

2 and κ||T||2/2, in the sensethat
τr =

∂ν tr S
2

∂S
and hr =

∂

∂T

(
1

2
κ||T||2

) (24)Hen
e, τ and h should also be derived from potentials. This 
ondition leads to thefollowing 
lass of models (see [8℄):





−τd = ν

[
2gm − 3v1

∂gm

∂v1

− 4v2

∂gm

∂v2

− 5v3

∂gm

∂v3

− 6v4

∂gm

∂v4

]
S

+ ν

[
X−1/2

∂gm

∂v1

Adjd S + X−3/2
∂gm

∂v3

(T ⊗ T)d + 2X−2
∂gm

∂v4

[S(T ⊗ T)]d

]

−h = κ

(
∂gt

∂v2

I3 + X−1/2
∂gt

∂v3

S + X−1
∂gt

∂v4

S
2

)

T

(25)
where gm and gt are arbitrary fun
tions of the vi's. Note that the assumption that themodel derives from a 
onvex potential ensures the stability of the model [8℄.Further simpli�
ations 
an be done on 
lass (25) a

ording to the type of model thatwe wish to obtain. For example, 6



• if gm and gt are only fun
tions of v1 and v2, we get a strongly 
oupled model:
−τd = ν

(

2gm − 3v1

∂gm

∂v1

− 4v2

∂gm

∂v2

)

S + ν
1

||S||

∂gm

∂v1

Adjd S, −h = κhtT (26)where ht =
∂gt

∂v2

.

• A de
oupled model 
an be obtained if gm is fun
tion only of v1 and gt fun
tion of v2:
−τd = ν(2gm − 3vġm)S + ν

1

||S||
ġm Adjd S, −h = κht T. (27)

• Finally, we get a linear model when gm and ht are linear fun
tions of v:
−τd = νCm

(

− detS
1

∥∥S
∥∥3

S + Adjd S
1
∥∥S
∥∥

)

, −h = κCt

detS
∥∥S
∥∥3

T (28)where Cm are Ct are the 
onstants of the model, whi
h may depend on the gridsize. These 
onstants may also be evaluated dynami
ally, using the Germano-Lillypro
edure.The simpliest model (28) (
alled invariant model) and its dynami
al version (
alleddynami
 invariant model) have been implemented for the simulation of an air �ow in aventilated 3D room (see Figure 1). The �oor is heated at 35◦C and the other walls aremaintained at 15◦C. The 
ode used for the simulation is based on a �nite volume s
heme,with Crank-Ni
holson s
heme in time [1℄. The grid size is (86 × 86 × 12).
Figure 1: Ventilated and heated room.The mean velo
ity and temperature pro�les along the verti
al line (x = 0.502, z = 0.35)are shown on Figure 2. A good agreement with experimental data [10℄, and better results
ompared to Smagorinsky and its dynami
al version 
an be observed. These results areparti
ularly good near the walls (no wall model were used). This may be explained by thepreservation of s
aling laws in the 
onstru
tion of the invariant models.4 Con
lusionsWe showed that the symmetry theory provides a powerfull modelling tool in �uid me
han-i
s, as well for theoreti
al as for numeri
al developpements. In parti
ular, we saw thatit 
ould be used to establish s
aling laws, whi
h are essential for the understanding ofturbulen
e. The symmetry approa
h has also been used for the 
onstru
tion of turbulen
emodels whi
h naturally have good physi
al properties, sin
e they preserve the symmetriesof the equations. The numeri
al test 
on�rms this good behaviour.7



Figure 2: Mean streamwise velo
ity (left) and mean temperature (right) at x = 0.502 m.Referen
es[1℄ F. Ar
hambeau, N. Mehitoua, and M. Sakiz. Code saturne: a �nite volume 
ode for the
omputation of turbulent in
ompressible �ows - industrial appli
ations. InternationalJournal On Finite Volumes, (1), 2004.[2℄ B.J. Cantwell. Similarity transformations for the two-dimensional, unsteady, stream-fun
tion equation. Journal of Fluid Me
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s, 85:257�271, 1978.[3℄ V. Grassi, R.A. Leo, G. Soliani, and P. Tempesta. Vorti
ies and invariant surfa
esgenerated by symmetries for the 3D Navier-Stokes equation. Physi
a A, 286:79�108,2000.[4℄ V. Grassi, R.A. Leo, G. Soliani, and P. Tempesta. Temperature behaviour of vorti
esof a 3D thermo
ondu
ting vis
ous �uid. Physi
a A: Statisti
al Me
hani
s and itsAppli
ations, 305(3-4):371 � 380, 2002.[5℄ E. N÷ther. Invariante Variationsprobleme. In Königli
he Gesells
haft der Wis-sens
haften, pages 235�257, 1918.[6℄ M. Oberla
k. A uni�ed approa
h for symmetries in plane parallel turbulent shear�ows. Journal of Fluid Me
hani
s, 427:299�328, 2001.[7℄ P. Olver. Appli
ations of Lie groups to di�erential equations. Graduate texts inmathemati
s. Springer-Verlag, 1986.[8℄ D. Raza�ndralandy, A. Hamdouni, and M. Oberla
k. Analysis and development ofsubgrid turbulen
e models preserving the symmetry properties of the Navier�Stokesequations. European Journal of Me
hani
s/B, 26, 2007.[9℄ G. Ünal. Appli
ation of equivalen
e transformations to inertial subrange of turbulen
e.Lie Group and Their Appli
ations, 1(1):232�240, 1994.[10℄ W. Zhang and Q. Chen. Large eddy simulation of indoor air �ow with a �ltered dy-nami
 subgrid s
ale model. International Journal of Heat and Mass Transfer, 43:3219�3231, 2000. 8


