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Theory of mechano-chemical patterning in biphasic biological tissues

Pierre Recho∗§, Adrien Hallou†§and Edouard Hannezo‡§

The formation of self-organized patterns is key
to the morphogenesis of multicellular organisms,
although a comprehensive theory of biological
pattern formation is still lacking. Here, we propose
a biologically realistic and unifying approach to
emergent pattern formation. Our biphasic model
of multicellular tissues incorporates turnover
and transport of morphogens controlling cell
differentiation and tissue mechanics in a single
framework, where one tissue phase consists
of a poroelastic network made of cells and
the other is the extracellular fluid permeating
between cells. While this model encompasses
previous theories approximating tissues to inert
monophasic media, such as Turing’s reaction-
diffusion model, it overcomes some of their
key limitations permitting pattern formation
via any two-species biochemical kinetics thanks
to mechanically induced cross-diffusion flows.
Moreover, we unravel a qualitatively different
advection-driven instability which allows for the
formation of patterns with a single morphogen and
which single mode pattern scales with tissue size.
We discuss the potential relevance of these findings
for tissue morphogenesis.

How symmetry is broken in the early embryo to give
rise to a complex organism, is a central question in
developmental biology. To address this question, Alan
Turing proposed an elegant mathematical model where
two reactants can spontaneously form periodic spatial
patterns through an instability driven by their difference
in diffusivity [1]. Molecular evidence of such a reaction-
diffusion scheme in vivo remained long elusive, until pairs
of activator-inhibitor morphogens were proposed to be
responsible of pattern formation in various embryonic
tissues [2–10]. Interestingly, these studies also highlight
some theoretical and practical limitations of existing
reaction-diffusion models, including the fact that Turing
patterns require the inhibitor to diffuse at least one order
of magnitude faster than the activator (DI/DA > 10)
[3], although most morphogens are small proteins of
similar molecular weights, implying that DI/DA ≈ 1.
As a consequence, the formation of Turing patterns in
vivo should result from other properties of the system
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such as selective morphogen immobilisation [11–13] or
active transport [14] as demonstrated in synthetic sytems.
Moreover, reaction-diffusion models of pattern formation
entail a number of restrictions regarding the number
and interactions of morphogens, and pattern scaling with
respect to the tissue size, which have been all limiting
their quantitative applicability in vivo [15]. While the
genetic and biochemical aspects of developmental pattern
formation have been the focus of most investigations, the
interplay between mechanics and biochemical processes in
morphogenesis started to unfold following some pioneering
contributions [17, 18]. The crucial role played by
multiphasic tissue organisation and active cell behaviours
in biological pattern formation is now an active field of
research [19–24].

In this article, we derive a general mathematical
formulation of tissues as active biphasic media coupled
with reaction-diffusion processes, where morphogen
turnover inside cells, import/export at the cell membrane
and active mechanical transport in the extracellular fluid
are coupled together through tissue mechanics. While
encompassing classical reaction-diffusion results [1–5],
for instance allowing import-export mechanisms to
rescale diffusion coefficients and to form patterns with
equally diffusing morphogens [12], this theory provides
multiple new routes to robust pattern formation.
In particular, assuming a generic coupling between
intracellular morphogen concentration and poroelastic
tissue mechanics, we demonstrate the existence of
two fundamentally different non-Turing patterning
instabilities, respectively assisted and driven by advective
extracellular fluid flows, explaining pattern formation
with only a single morphogen with robust scaling
properties, and how patterning can be independent of
underlying morphogen reaction schemes. Finally, we
provide numerical simulations to verify our analytical
predictions and discuss the biological relevance of such
a model, and in particular, its detailed predictions that
could be verified in vivo.

Results

Derivation of the model

As sketched in Fig. 1(a), we model multicellular tissues
as continuum biphasic porous media of typical length l,
with a first phase consisting of a poroelastic network made
of adhesive cells of arbitrary shape and typical size lc
(with volume fraction φ(~r, t) ∈ [0, 1], where ~r denotes the
spatial position in the tissue and t > 0, the time), and
a second phase of aqueous extracellular fluid permeating
in-between cells in gaps of a characteristic size li. These
two internal length scales disappear in the coarse-graning
averaging over a representative volume element (RVE) of
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Figure 1: Model for pattern formation in active biphasic tissues. (a) (Left) Schematic of the model at the tissue
scale. Cells form a poroelastic network, permeated by extracellular fluid, where three natural length scales can be defined:
the interstitial space size (li), the characteristic cell size (lc) and the tissue size (l). The representative volume element (RVE)

defines a spatial scale, l ≥ V
1/3
RV E ≥ lc, at which tissue properties and behaviours can be coarse-grained. (Right) Schematic

of the model at the cellular scale. Biochemical interactions between morphogens, A and I, take place inside the cell and are
described by their respective turnover rate functions f(A, I) and g(A, I). A and I are exported across the cell membrane at
rates λA,I and imported at rates γA,I , respectively. In the extracellular space, both A and I spread freely by diffusion at the
same rate D, or can be advected by the fluid at velocity ve. (b) Evolution of the effective diffusion coefficient as a function
of time and space scales, set by the tissue spatial structure and cell physiology. At shorter distances and times, diffusive
behaviour of morphogens is described by a molecular diffusion coefficient, DFick. At intermediate space and time scales, the
diffusive motion of morphogens starts to be hindered by cells and the global diffusion coefficient, D, depends of the tissue spatial
organisation through φ∗. At longer space and time scales, morphogen transport is controlled by dynamic interactions with cells
(import/export, adsorption/desorption, etc) and characterised by an effective diffusion coefficient DKA,I [10, 36].

typical lengthscale lr satisfying li,c � lr � l. Both phases
are separated by cell membranes, actively regulating the
interfacial exchange of water and other molecules thanks
to genetically controlled transport mechanisms [25]. At
the boundary of the domain, no-flux boundary conditions
are imposed such that the system is considered in isolation.
We present below the main steps of the model derivation,
which are detailed in Supplementary Information (S.I.).

Intracellular morphogen dynamics

Morphogens enable cell-cell communication across the
tissue and determine cell fate decisions. Importantly,
most known morphogens cannot directly react together
and as such, have to interact “through” cells (or cell
membranes) where they are produced and degraded [26].
Concentration fields of two morphogens, Ai,e(~r, t) and
Ii,e(~r, t), are thus defined separately in each phase of
the system, indices (i, e) denoting intra- and extra-
cellular phases, respectively. The conservation laws of the
intracellular phase read:

∂t(φAi) = f(Ai, Ii) + γAAe − λAAi
∂t(φIi) = g(Ai, Ii) + γIIe − λIIi

(1)

where ∂t denotes the partial derivative with respect to
time and γA,I (resp. λA,I) the import (resp. export)
rates of morphogens. We also introduce f and g,
the non-linear morphogen turnover rates describing their
production and degradation by cells, with a single stable
equilibrium solution f(A∗

i , I
∗
i ) = g(A∗

i , I
∗
i ) = 0. Finally,

we introduce the transmembrane transport equilibrium
constants by KA = λA/γA and KI = λI/γI . Although the
import/export coefficients KA,I could in principle depend
on morphogen concentrations, this constitutes a non-linear
effect that we ignore in our linear theory.

Extracellular fluid dynamics

Next, we write a mass conservation equation for the
incompressible fluid contained in the tissue interstitial
space between cells:

∂tφ−∇.((1− φ)ve) = φh(Ai,Ii)−φ
τ

(2)

where ve is the velocity of the extracellular fluid. The
right-hand side of this equation describes the fact that
cells actively regulate their relative volume fraction to an
homeostatic value φh(Ai, Ii) at a timescale τ [27]. Note
that, (2) with ve 6= 0 implies a recirculation of internal
fluid, via gap junctions [28] (cf. S.I for details).

As detailed below, we assume that local cellular
morphogen concentrations have an influence on the
volume fraction φ which couples tissue mechanics to
morphogens concentration fields in our theory. At linear
order, this coupling generically reads φh(Ai, Ii) = φ∗ +
χA(Ai − A∗

i )/A
∗
i + χI(Ii − I∗i )/I∗i where we denote

φ∗ = φh(A∗
i , I

∗
i ), the equilibrium cell volume fraction,

and the χA,I terms account for the sensitivity of cell
volume to intracellular morphogen concentrations. Such
a mechano-chemical effect on the tissue packing fraction,
φ, can occur either via the active control of individual
cell volume [27] or through the active balance between
cell proliferation and loss (cf. S.I. for details), with
χA,I > 0 for morphogens acting as growth factors
and χA,I < 0 for morphogens working as growth
inhibitors. This is a reasonable assumption, as a
number of morphogens involved in cell fate decisions can
act as growth factor/inhibitors [29, 30]. Moreover, in
vitro experiments have shown that cells, upon exposure
to factors such as FGF or EGF, elicit a series of
signaling mediated responses involving an increase in
transmembrane ion flux [31], cell volume changes [27] and
subsequent cell growth/division [32]. Moreover, during
digits pattern formation in the limb bud, which has been
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proposed to rely on a Turing instability, morphogens such
as BMP participate in both the reaction-diffusion scheme
[9] and in morphogenetic events such as cell condensation
[33], with skeletal formation being associated with large
cell volume fraction changes [34]. The cell volume fraction
is thus highly modulated in space and time, concomitantly
with morphogen pattern formation [33], advocating for
the need of a global mechano-chemical theory taking into
account both effects.

Extracellular morphogen dynamics

Morphogens, once secreted by cells, are transported by
diffusion and advection in the extracellular fluid:

∂t((1− φ)Ae) +∇. ((1− φ)Aeve −D∇Ae) = −γAAe + λAAi

∂t((1− φ)Ie) +∇. ((1− φ)Ieve −D∇Ie) = −γIIe + λIIi
(3)

where D is the global Fickian diffusion coefficient of both
morphogens depending on tissue packing and tortuosity
[10, 35–37]. As we are interested in a linear theory, we
consider here D = D(φ∗) as a constant. We neglect here,
for the sake of simplicity, phenomena such as extracellular
morphogen degradation or the influence of extracellular
morphogen concentrations on reaction terms, as they
do not modify qualitatively the dynamics (cf. S.I. for
details). Note that one could also take into account, at
the mesoscopic level, some effective non-local interactions
such as cell-cell communication via long-ranged cellular
protrusions [38]. This may require to consider spatial
terms in (1) to introduce an additional characteristic
lengthscale from non-local cell-cell transport.

Mechanical behaviour of the cellular phase

To complete our description of a multicellular tissue, we
need to specify a relation linking cell volume fraction to
interstitial fluid velocity, for which we use a poroelastic
description of the tissue. Taking an homogeneous tissue as
reference state, locally changing the cell volume fraction
creates elastic stresses and gradients of interstitial fluid
pressure p, which in turn drive interstitial fluid flows. We
show (cf. S.I for details) that this reduces to a simple
Darcy’s law between cell volume fraction and fluid flow
[39]:

(1− φ)ve = −κη∇p = Dm∇φ. (4)

This relation introduces the hydrodynamic diffusion
coefficient of the extracellular fluid, Dm = Kκ/η, a
key mechanical parameter of the model which feeds
back on the reaction diffusion dynamics (3), with κ
the tissue permeability, K the elastic drained bulk
modulus and η the fluid viscosity. The hydrodynamic
length scale lm =

√
Dmτ is associated to such

fluid movement. The applicability of such theory to
describe the mechanical response of biological tissues
has been thoroughly investigated in various contexts
[40–42].Importantly, we only explore here the simplest
tissue rheology for the sake of simplicity and concision.
Nevertheless, we also investigate in the S.I the role of
growth and plastic cell rearrangements and show that
they can be readily incorporated in our model, leading
to different types of patterning instabilities. However,

we would like to highlight here that the results presented
thereafter are all robust to small to intermediate levels of
tissue rearrangements.

Model of an active biphasic tissue

Eqs.(1-4) define a full set of equations describing
the chemo-mechanical behaviour of an active biphasic
multicellular tissue (cf. S.I. for details on mathematical
formulation). To provide clear insights on the biophysical
behaviour of the system, we focus on a limit case where
γA,I � λA,I � f, g such that KA,I � 1. This
corresponds to an ubiquitous biological situation where
rates of membrane transport are order of magnitudes
faster than transcriptionaly controled morphogen turnover
rates, and where endocytosis occurs at a much faster rate
than exocytosis. In that case, the relations Ae ' KAAi
and Ie ' KIIi always hold and even if a significant
fraction of morphogens is immobilized inside the cells [10],
the import/export terms cannot be neglected as γA,I are
very large, so that γA(Ae − KAAi) and γI(Ie − KIIi)
are indeterminate quantities (cf. S.I for details). Thus,
summing both internal (1) and external (3) conservation
laws, we obtain a simplified description of the system (cf.
S.I for details):

∂t(φAi) +∇. (AiKADm∇φ−KAD∇Ai) = f(Ai, Ii)
∂t(φIi) +∇. (IiKIDm∇φ−KID∇Ii) = g(Ai, Ii)

−l2m∆φ+ φ = φh(Ai, Ii).
(5)

Non-dimensionalizing times with τA associated with the
degradation of Ai in the morphogen turnover functions
f and g and lengths with lA =

√
KADτA we find that

(5) is controlled by a few non-dimensional parameters:
KI/KA describes the mismatch of morphogen membrane
transport, Dm/D compares the global hydrodynamic and
Fickian diffusion of the morphogens, τ/(KAτA) compares
the response time of cell volume fraction to the effective
morphogen turnover rate, and χA and χI account for
the sensitivity of φ to morphogen levels. Using this
restricted set of parameters encapsulating the behaviour of
the model, we investigate several of its biologically relevant
limits, demonstrating that they provide independent
routes towards tissue patterning.

Orders of magnitude on morphogen
transport

In the simplest limit of the model, the cell fraction
remains constant, φ = φ∗, which is valid if the effect
of the morphogens on φ is very small compared to the
restoring mechanical forces (i.e. χA,I � 1). The
model then reduces to Turing’s original system, with
diffusion coefficients being renormalised by morphogens
transmembrane transport equilibrium constants, KA,ID,
similar to results obtained in [10, 12]. This implies that
even species with similar D, can exhibit effective diffusion
coefficients widely differing from each other on longer
timescales and produce Turing patterns when KI � KA

(cf. S.I. for details).
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Figure 2: Linear stability analysis and numerical simulations of pattern formation in active biphasic tissues. (a)
Phase diagram of (5) in the (KI/KA, Dm/D) parameter space for τ/(KAτA) = 0.01 and τ/(KAτA) = 0.1 (inset). The red
and blue dashed lines correspond to analytical thresholds of instability (given in the text) for Turing and Keller-Segel patterns
respectively. The black dashed line is the analytical phase boundary between both regimes in the limit KI � KA given by
χA = D/Dm + τ/(τAKA). This limit is shifted up when the ratio τ/τAKA is increased, while a pronounced notch appears in
the “Keller-Segel patterns” domain (see inset). Other parameters are set to χA = 0.25, χI = 0 , τI/(KAτA) = 0.2, KAτAρ = 1,
φ∗ = 0.85 and large tissue size (lA/l� 1). (b) 1D numerical simulations of (5) with random initial conditions for several choices
of parameters identified by letters A, B, C & D, with lA/l = 0.1.

In Fig. 1(b), we depict scaling arguments for the
changes in effective diffusion coefficient at various
time/length scales, associated both with tissue structure
and import/export kinetics [36]. At small timescales,
diffusion is characterised by a local Fickian diffusion
coefficient, theoretically expected to be of the order of
DFick ≈ 10−11m2s−1, in line with fluorescence correlation
spectroscopy (FCS) measurements [8, 10, 26]. This occurs
across a typical cell-to-cell distance of li ≈ 10−7 − 10−9m
[43, 44], so that this regime is valid for time scales below
l2i /DFick ≈ 10−2 − 10−6s, which is much faster than the
typical import/export kinetics of 1/γA,I ≈ 101−102s [45].
At intermediate timescales, the coefficient of diffusion
needs to be corrected by volume exclusion effects. This
effect can be very large, as the cell volume fraction can be
close to one. An upper bound for global diffusion can
be computed, irrespective of the microscopic details of
tissue geometry, as D(φ∗) ≤ DFick(1−φ∗)/(1+φ∗/2) [35],
which would suggest, in the case of φ∗ ≈ 0.8− 0.9, that it
should be around an order of magnitude smaller than local
diffusion, D(φ∗) ≈ 10−12m2s−1. Finally, at the time scales
larger than 1/γA,I described by the present model, the
diffusion is decreased further by a factor KA,I , i.e. by the
relative concentrations of morphogens “trapped” cellularly
(i.e. a 1 − 10 ratio). This is consistent with effective
diffusion coefficients DKA,I ≈ 10−12 − 10−13 m2s−1

measured from tissue-wide fluorescence recovery after
photobleaching (FRAP) over minutes to hours time scales
[8, 26].

Interestingly, Lefty diffusion coefficient in the zebrafish
embryo varies only by a factor 2 between FCS (local) and
FRAP (effective) measurements [10], which is paradoxical
given the large cell volume fraction inferred in this
system (φ∗ ≈ 0.8 − 0.9 [10]). Indeed, even in the
best-case scenario of KLefty = 1 (i.e all morphogens
being extracellular), the aforementioned upper bound
would impose at least a factor 10 difference. These

measurements are thus in apparent contradiction with
the hypothesis of a purely passive extracellular diffusion,
raising the intriguing possibility of active contributions
to morphogen transport. Moreover, from a purely
theoretical perspective, quite stringent conditions on the
ratio of intracellular and extracellular morphogen levels
are still necessary for Turing pattern formation under this
rescaled passive morphogen transport scenario. Exploring
further the effect of a variable cell volume fraction
φ, we demonstrate that coupling morphogen dynamics
and tissue mechanics relaxes this limitation via active
transport of morphogens.

Turing-Keller-Segel instabilities

To assess the regions in parameter space where stable
patterns can form in our mechano-chemical framework,
we perform a linear stability analysis on (5) (cf. S.I.).
Here, we consider a classical Gierer-Meinhardt activator-
inhibitor scheme [2]: f(A, I) = ρA2/I − A/τA and
g(A, I) = ρA2 − I/τI , where ρ is the rate of activation
and inhibition and τA,I the timescales of degradation of
A and I [2] and the particular case of a single morphogen
capable of increasing φh (χA > 0, χI = 0).

In the phase diagram in Fig. 2 (a), we show that two
distincts instabilities can be captured by this simplified
theory. The first instability, identified here as “Turing
patterns”, corresponds to a classical Turing instability,
where diffusive transport of morphogens dominates over
their advection by interstitial fluid (Dm � D) and
with instability threshold given by KIτI − KAτA >
2
√
τAτIKAKI for lA/l � 1(dashed red line on Fig. 2 (a))

which, as expected, is always true regardless of the value
of τA,I if KI � KA. The second instability in this
phase diagram, labelled “Keller-Segel patterns” [46] is
highly generic for active transport, and can even occur
for a single morphogen. In this limit, patterning occurs
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if
√
χA >

√
D/Dm +

√
τ/(τAKA) when lA/l � 1 so

that the volume fraction sensitivity χA is above a critical
value (dashed blue line in Fig. 2 (a), which captures well
the phase boundary in the limit KA � KI , although
the instability occurs generically for any value of KA,I).
The physical origin of this instability is similar to active
fluid instabilities [19,24,47–49]: local stochastic changes in
morphogen concentration result in cell patterning changes.
If these changes are associated with an increase in cell
volume, fluid must flow inside cells, resulting in large-
scale extracellular fluid flows from regions of low to high
morphogen concentration, resulting in a positive feedback
loop (Fig. 3 (a)).

Figure 3: Scaling properties of the Keller-Segel
instability with one morphogen.(a) Schematic of the
Keller-Segel instability in a 1D tissue. Morphogens gradients
generate cell volume fraction gradients (via local fluid
exchanges, blue arrows in inset), which in return cause
mechanically-induced self-amplifying extracellular flows that
advect morphogens from morphogen-poor to morphogen-rich
regions (green arrow). (b) Normalized pattern size (cf. S.I. for
definition) as a function of system size in the single morphogen
case with f = 0. (c) Morphogen concentration and cell packing
fraction (inset) profiles remain quasi-stationary as system size
increases. Parameters are χA = 0.25, Dm/D = 10 and
φ∗ = 0.85

Thus, coupling tissue mechanical behaviour to
morphogen reaction-diffusion provides, via the generation
of advective fluid flows, a new route to stable pattern
formation with a single morphogen. Moreover, this
instability has two remarkable features. First, it only
requires the presence of a single morphogen (cf. S.I.
for details) which could correspond to many practical
situations where a pair of activator/inhibitor has not
been clearly identified, for instance the role of Wnt in
the antero-posterior pattern of planarians [51]. Second,
it possesses spatial scaling properties regarding to its
fundamental mode, as compared to a Turing instability.
Indeed, when morphogen turnover rate is small compared
to its effective hydrodynamic and Fickian diffusion
(f → 0), the fundamental mode, i.e. a single two-zones
pattern, is the most unstable in a robust manner, given
that morphogen turnover f stabilises specifically this

mode (cf. S.I. for details), whereas in the case of a Turing
instability, this would require fine-tuning and marginally
stable reaction kinetics. We illustrate such a scaling
property in Fig. 3. This mechanism could potentially
apply to situations where a binary spatial pattern is
independent of system size such as dorso-ventral or
left-right patterns in early vertebrate embryos [8, 10], or
planarian antero-posterior pattern [50, 51]. If so, it could
provide a simpler alternative to previously proposed
mechanisms involving additional species or complex
biochemical signaling pathways [8, 50].

Importantly, simple estimates can be used to
demonstrate the biological plausibility of such mechanical
effects during morphogenetic patterning. A key parameter
driving Keller-Segel instabilities is the hydrodynamic
diffusion coefficient Dm, which can be estimated from
values of the drained bulk modulus K ≈ 104 Pa [40,
52] and the tissue permeability upper bound [35] κ ≈
l2i (1 − φ∗)/(1 + φ∗/2) with li ≈ 10−7 − 10−9m and
φ∗ ≈ 0.85 as above. Using η ≈ 10−3 Pa.s (water
viscosity), we obtain Dm ≈ 10−12 − 10−8 m2s−1, showing
that the hydrodynamic diffusion can be similar or even
much larger than Fickian diffusion. In agreement with
typical timescales involved in regulatory volume increase
or decrease of cells following an osmotic perturbation [27],
we estimate that τ ≈ 102 s, while morphogen turnover
time scale has been measured as τA ≈ 104 − 105 s [10].
With KA ≈ 0.1 as above, we obtain τ/(KAτA) ≈ 0.01 −
0.1, which is used in Fig. 2, and displays broad regions
of instability, although parameters like sensitivities χA,I
would need to be better assessed in vivo in future works.

Cross-diffusion Turing instabilities

Finally, we investigate the behaviour of our model ((5)),
when cell fraction sensitivity to morphogen concentration
is negative (χA,I < 0), eliminating the possibility of
up-hill morphogen diffusion at the origin of the Keller-
Segel instability. We also consider that f and g do
not necessarily follow an activator-inhibitor kinetics, but
any possible interaction scheme between two morphogens.
For mathematical clarity on the physical nature of
the instability studied here, we make the simplifying
assumptions that τ = 0 and χA,I � 1, with D ∼ DmχA,I
in (5). This relates to a realistic biological situation, where
cell volume fraction relaxes rapidly after perturbation and
depends weakly on morphogen levels, yielding:

φ∗∂tAi +∇. (AiKADm∇φh(Ai, Ii)−KAD∇Ai) = f(Ai, Ii)
φ∗∂tIi +∇. (IiKIDm∇φh(Ai, Ii)−KID∇Ii) = g(Ai, Ii).

(6)

In this limit, the conditions for linear stability of the
homogeneous solution are exactly the ones of a classical
Turing system but with cross-diffusion terms (cf. S.I.).
Such a scenario has been studied in the framework of
monophasic reaction-diffusion systems with ad hoc cross-
diffusion terms [53], which arise generically in various
chemical and biological systems [54]. Our work thus
provides a particular biophysical interpretation of these
terms in multicellular tissues, which we show to originate
from intrinsically mechano-chemical feedbacks between
morphogen dynamics and tissue mechanics.
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Figure 4: Pattern formation for cross-diffusion Turing
instabilities. (a) Phase diagram of (5) in the (χA, χI) space
obtained by numerical linear stability analysis. Parameters are
τ/(KAτA) = 0.01, Dm/D = 10, KI/KA = 10, τI/(KAτA) =
0.9, φ∗ = 0.85 and lA/l � 1. (b) 1D numerical simulation of
(5) using a simple inhibitor-inhibitor reaction scheme (cf. S.I.
for details).

As shown in [53], such cross diffusion terms result in
a dramatic broadening of the phase space for patterns.
In particular, any two-morphogen reaction scheme can
now generate spatial patterns and not just the classical
activator-inhibitor schemes. For instance, it becomes
possible to obtain patterns with activator-activator or
inhibitor-inhibitor kinetics similar to those observed in
numerous gene regulatory networks or signaling pathways
involved in cell fate decisions [55]. We illustrate this result
by considering an inhibitor-inhibitor kinetic scheme, which
cannot yield patterns in the classical Turing framework.
Directly using our model (5), we demonstrate analytically
and numerically the existence of a region of stable
patterns, where a cross-diffusion driven Turing instability
can develop (Fig. 4).

Discussion

In this paper, we have introduced a generalisation
of Turing’s work on pattern formation in biological
tissues by coupling equations describing the structure
and mechanical properties of multicellular tissues with
a classical reaction-diffusion scheme. In particular, our
work highlights two important features of multicellular
tissues, as of yet largely unexplored in this context:
their biphasic nature, i.e. the fact that morphogen
production/degradation is controlled by cells while
transport takes place extracellularly requiring active
membrane exchanges (effectively rescaling diffusion [10,
12]), and the possibility for active large scale flows
to develop within the tissue interstitial space. We
demonstrate that coupling tissue cell volume fraction
to local morphogen levels provides a biophysically
realistic route towards two qualitatively different modes
of patterning instability. First, a Keller-Segel type
instability where advective flows feed back on the
concentration of a single (or various) morphogen(s) to
drive spatial pattern formation, and a second type
of instability, where resulting advective flows create
cross-diffusion terms for morphogens. This relaxes
the condition that import/export ratios of morphogens
should be very different for a pattern to form and also
renders the patterning mechanism robust and weakly
dependent on morphogens reaction scheme. In this

respect, our approach, which has the advantage of
parsimony, taking into account the manifest biphasic
nature of multicellular tissues, is complementary to
others which have been proposed to solve limitations
of Turing’s model by introducing additional morphogen
regulators [15, 50], and also displays connections with
recent development in the mechano-chemical descriptions
of active fluids such as the cell cytoskeleton [19, 20].
Nevertheless, further quantitative experiments would be
needed to probe the role of transmembrane import/export
kinetics or similar phenomena such as transmembrane
signaling [12], morphogen adsorption/desorption on cell
surface [10] and long-distance cellular protrusions [38],
on effective morphogen diffusion rates. Systems such
as digits patterning, where cell volume fraction spatial
pattern appears concomitant to morphogen patterns [33],
or planarian antero-posterior patterning, where pairs
of activator/inhibitor have not been clearly identified
[51], provide possible testing grounds for our model.
Interestingly, we show that the proposed mechanism
has robust scaling properties for the fundamental
mode, compared to conventional Turing models, which
could have also interesting implications concerning
recent experimental evidences for robust scaling of the
Nodal/Lefty pattern in the early zebrafish embryo [56].

Interestingly, large-scale extracellular fluid flows have
been increasingly observed during embryo development,
not only in the classical case of cilia driven flows [58],
but also due to mechanical forces arising from cellular
contractions as well as osmotic and poro-viscous effects
[59–61]. Furthermore, active flows have been proven to be
crucial for patterning events such as left-right asymmetry
emergence in zebrafish [58], strengthening the biological
plausibility of the physical effects discussed in our paper,
and calling for a more systematic understanding of
passive vs. active transport mechanisms during embryonic
pattern formation. A key assumption underlying these
last two results is our proposed relationship between
morphogen levels (i.e. cell state) and cell volume fraction
in tissues, coupling biochemistry and mechanics in the
model via advective transport, and based on the dual
role of morphogens in patterning and cell growth/volume
regulation [29–31, 57]. Although active transport coupled
to mechanics has remained overlooked in the context of
Turing patterns, it is interesting to note that effective
tissue-wide diffusion coefficients measured in vivo are
larger than expected from upper bounds implied by cell
volume exclusion within the tissue [10], which would need
to be interpreted through a mechano-chemical theory
of morphogen transport. Whether biological examples
of Turing patterning instabilities, such as left-right or
dorso-ventral patterning, digits pattern formation or
skin appendages patterns are causally associated with
concomitant changes in cell volume and/or cell packing
remains a result to be experimentally investigated.

Methods

Methods, including any associated references, are available
in the S.I section.
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