come    

Theory of mechanochemical patterning in biphasic biological tissues

Pierre Recho, Adrien Hallou,

Theory of mechano-chemical patterning in biphasic biological tissues Pierre Recho * § , Adrien Hallou † § and Edouard Hannezo ‡ §

The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a biologically realistic and unifying approach to emergent pattern formation. Our biphasic model of multicellular tissues incorporates turnover and transport of morphogens controlling cell differentiation and tissue mechanics in a single framework, where one tissue phase consists of a poroelastic network made of cells and the other is the extracellular fluid permeating between cells.

While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing's reactiondiffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics thanks to mechanically induced cross-diffusion flows. Moreover, we unravel a qualitatively different advection-driven instability which allows for the formation of patterns with a single morphogen and which single mode pattern scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.

How symmetry is broken in the early embryo to give rise to a complex organism, is a central question in developmental biology. To address this question, Alan Turing proposed an elegant mathematical model where two reactants can spontaneously form periodic spatial patterns through an instability driven by their difference in diffusivity [START_REF] Turing | The chemical basis of morphogenesis[END_REF]. Molecular evidence of such a reactiondiffusion scheme in vivo remained long elusive, until pairs of activator-inhibitor morphogens were proposed to be responsible of pattern formation in various embryonic tissues [START_REF] Gierer | A theory of biological pattern formation[END_REF][START_REF] Murray | Mathematical Biology[END_REF][START_REF] Kondo | Reaction-diffusion model as a framework for understanding biological pattern formation[END_REF][START_REF] Marcon | Turing patterns in development: what about the horse part?[END_REF][START_REF] Sick | WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism[END_REF][START_REF] Economou | Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate[END_REF][START_REF] Inomata | Scaling of dorsal-ventral patterning by embryo sizedependent degradation of Spemann's organizer signals[END_REF][START_REF] Raspopovic | Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients[END_REF][START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF]. Interestingly, these studies also highlight some theoretical and practical limitations of existing reaction-diffusion models, including the fact that Turing patterns require the inhibitor to diffuse at least one order of magnitude faster than the activator (D I /D A > 10) [START_REF] Murray | Mathematical Biology[END_REF], although most morphogens are small proteins of similar molecular weights, implying that D I /D A ≈ 1. As a consequence, the formation of Turing patterns in vivo should result from other properties of the system such as selective morphogen immobilisation [START_REF] Lengyel | Modeling of Turing structures in the chlorite-iodide-malonic Acid-starch reaction system[END_REF][START_REF] Rauch | The role of transmembrane signal transduction in turing-type cellular pattern formation[END_REF][START_REF] Castets | Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern[END_REF] or active transport [START_REF] Rovinsky | Chemical instability induced by a differential flow[END_REF] as demonstrated in synthetic sytems. Moreover, reaction-diffusion models of pattern formation entail a number of restrictions regarding the number and interactions of morphogens, and pattern scaling with respect to the tissue size, which have been all limiting their quantitative applicability in vivo [START_REF] Marcon | High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals[END_REF]. While the genetic and biochemical aspects of developmental pattern formation have been the focus of most investigations, the interplay between mechanics and biochemical processes in morphogenesis started to unfold following some pioneering contributions [START_REF] Oster | Mechanical aspects of mesenchymal morphogenesis[END_REF][START_REF] Oster | A model for chondrogenic condensations in the developing limb: the role of extracellular matrix and cell tractions[END_REF].

The crucial role played by multiphasic tissue organisation and active cell behaviours in biological pattern formation is now an active field of research [START_REF] Bois | Pattern formation in active fluids[END_REF][START_REF] Howard | Turing's next steps: the mechanochemical basis of morphogenesis[END_REF][START_REF] Hiscock | Mathematically guided approaches to distinguish models of periodic patterning[END_REF][START_REF] Naganathan | Mechanochemical coupling and developmental pattern formation[END_REF][START_REF] Gross | How Active Mechanics and Regulatory Biochemistry Combine to Form Patterns in Development[END_REF][START_REF] Weber | Differential activity-driven instabilities in biphasic active matter[END_REF].

In this article, we derive a general mathematical formulation of tissues as active biphasic media coupled with reaction-diffusion processes, where morphogen turnover inside cells, import/export at the cell membrane and active mechanical transport in the extracellular fluid are coupled together through tissue mechanics. While encompassing classical reaction-diffusion results [START_REF] Turing | The chemical basis of morphogenesis[END_REF][START_REF] Gierer | A theory of biological pattern formation[END_REF][START_REF] Murray | Mathematical Biology[END_REF][START_REF] Kondo | Reaction-diffusion model as a framework for understanding biological pattern formation[END_REF][START_REF] Marcon | Turing patterns in development: what about the horse part?[END_REF], for instance allowing import-export mechanisms to rescale diffusion coefficients and to form patterns with equally diffusing morphogens [START_REF] Rauch | The role of transmembrane signal transduction in turing-type cellular pattern formation[END_REF], this theory provides multiple new routes to robust pattern formation. In particular, assuming a generic coupling between intracellular morphogen concentration and poroelastic tissue mechanics, we demonstrate the existence of two fundamentally different non-Turing patterning instabilities, respectively assisted and driven by advective extracellular fluid flows, explaining pattern formation with only a single morphogen with robust scaling properties, and how patterning can be independent of underlying morphogen reaction schemes. Finally, we provide numerical simulations to verify our analytical predictions and discuss the biological relevance of such a model, and in particular, its detailed predictions that could be verified in vivo.

Results

Derivation of the model

As sketched in Fig. 1(a), we model multicellular tissues as continuum biphasic porous media of typical length l, with a first phase consisting of a poroelastic network made of adhesive cells of arbitrary shape and typical size l c (with volume fraction φ( r, t) ∈ [0, 1], where r denotes the spatial position in the tissue and t > 0, the time), and a second phase of aqueous extracellular fluid permeating in-between cells in gaps of a characteristic size l i . These two internal length scales disappear in the coarse-graning averaging over a representative volume element (RVE) of RV E ≥ lc, at which tissue properties and behaviours can be coarse-grained. (Right) Schematic of the model at the cellular scale. Biochemical interactions between morphogens, A and I, take place inside the cell and are described by their respective turnover rate functions f (A, I) and g(A, I). A and I are exported across the cell membrane at rates λA,I and imported at rates γA,I , respectively. In the extracellular space, both A and I spread freely by diffusion at the same rate D, or can be advected by the fluid at velocity ve. (b) Evolution of the effective diffusion coefficient as a function of time and space scales, set by the tissue spatial structure and cell physiology. At shorter distances and times, diffusive behaviour of morphogens is described by a molecular diffusion coefficient, D Fick . At intermediate space and time scales, the diffusive motion of morphogens starts to be hindered by cells and the global diffusion coefficient, D, depends of the tissue spatial organisation through φ * . At longer space and time scales, morphogen transport is controlled by dynamic interactions with cells (import/export, adsorption/desorption, etc) and characterised by an effective diffusion coefficient DKA,I [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF][START_REF] Grimm | Modelling the Bicoid gradient[END_REF].

typical lengthscale l r satisfying l i,c l r l. Both phases are separated by cell membranes, actively regulating the interfacial exchange of water and other molecules thanks to genetically controlled transport mechanisms [START_REF] Bokel | Endocytosis and Signaling during Development[END_REF]. At the boundary of the domain, no-flux boundary conditions are imposed such that the system is considered in isolation. We present below the main steps of the model derivation, which are detailed in Supplementary Information (S.I.).

Intracellular morphogen dynamics

Morphogens enable cell-cell communication across the tissue and determine cell fate decisions. Importantly, most known morphogens cannot directly react together and as such, have to interact "through" cells (or cell membranes) where they are produced and degraded [START_REF] Kicheva | Investigating the principles of morphogen gradient formation: from tissues to cells[END_REF]. Concentration fields of two morphogens, A i,e ( r, t) and I i,e ( r, t), are thus defined separately in each phase of the system, indices (i, e) denoting intra-and extracellular phases, respectively. The conservation laws of the intracellular phase read:

∂ t (φA i ) = f (A i , I i ) + γ A A e -λ A A i ∂ t (φI i ) = g(A i , I i ) + γ I I e -λ I I i (1) 
where ∂ t denotes the partial derivative with respect to time and γ A,I (resp. λ A,I ) the import (resp. export) rates of morphogens. We also introduce f and g, the non-linear morphogen turnover rates describing their production and degradation by cells, with a single stable equilibrium solution f (A * i , I * i ) = g(A * i , I * i ) = 0. Finally, we introduce the transmembrane transport equilibrium constants by K A = λ A /γ A and K I = λ I /γ I . Although the import/export coefficients K A,I could in principle depend on morphogen concentrations, this constitutes a non-linear effect that we ignore in our linear theory.

Extracellular fluid dynamics

Next, we write a mass conservation equation for the incompressible fluid contained in the tissue interstitial space between cells:

∂ t φ -∇.((1 -φ)v e ) = φ h (Ai,Ii)-φ τ (2)
where v e is the velocity of the extracellular fluid. The right-hand side of this equation describes the fact that cells actively regulate their relative volume fraction to an homeostatic value φ h (A i , I i ) at a timescale τ [START_REF] Hoffmann | Physiology of cell volume regulation in vertebrates[END_REF]. Note that, [START_REF] Gierer | A theory of biological pattern formation[END_REF] with v e = 0 implies a recirculation of internal fluid, via gap junctions [START_REF] Zehnder | Cell Volume Fluctuations in MDCK Monolayers[END_REF] (cf. S.I for details).

As detailed below, we assume that local cellular morphogen concentrations have an influence on the volume fraction φ which couples tissue mechanics to morphogens concentration fields in our theory. At linear order, this coupling generically reads φ

h (A i , I i ) = φ * + χ A (A i -A * i )/A * i + χ I (I i -I * i )/I * i where we denote φ * = φ h (A * i , I * i )
, the equilibrium cell volume fraction, and the χ A,I terms account for the sensitivity of cell volume to intracellular morphogen concentrations. Such a mechano-chemical effect on the tissue packing fraction, φ, can occur either via the active control of individual cell volume [START_REF] Hoffmann | Physiology of cell volume regulation in vertebrates[END_REF] or through the active balance between cell proliferation and loss (cf. S.I. for details), with χ A,I > 0 for morphogens acting as growth factors and χ A,I < 0 for morphogens working as growth inhibitors.

This is a reasonable assumption, as a number of morphogens involved in cell fate decisions can act as growth factor/inhibitors [START_REF] Smith | Growth factors and pattern formation[END_REF][START_REF] Ginzberg | On being the right (cell) size[END_REF]. Moreover, in vitro experiments have shown that cells, upon exposure to factors such as FGF or EGF, elicit a series of signaling mediated responses involving an increase in transmembrane ion flux [START_REF] Reuss | Mitogens and ion fluxes[END_REF], cell volume changes [START_REF] Hoffmann | Physiology of cell volume regulation in vertebrates[END_REF] and subsequent cell growth/division [START_REF] Zetterberg | The relative effects of different types of growth factors on DNA replication, mitosis, and cellular enlargement[END_REF]. Moreover, during digits pattern formation in the limb bud, which has been proposed to rely on a Turing instability, morphogens such as BMP participate in both the reaction-diffusion scheme [START_REF] Raspopovic | Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients[END_REF] and in morphogenetic events such as cell condensation [START_REF] Bénazet | Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds[END_REF], with skeletal formation being associated with large cell volume fraction changes [START_REF] Cooper | Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions[END_REF]. The cell volume fraction is thus highly modulated in space and time, concomitantly with morphogen pattern formation [START_REF] Bénazet | Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds[END_REF], advocating for the need of a global mechano-chemical theory taking into account both effects.

Extracellular morphogen dynamics

Morphogens, once secreted by cells, are transported by diffusion and advection in the extracellular fluid:

∂t((1 -φ)Ae) + ∇. ((1 -φ)Aeve -D∇Ae) = -γAAe + λAAi ∂t((1 -φ)Ie) + ∇. ((1 -φ)Ieve -D∇Ie) = -γI Ie + λI Ii ( 3 
)
where D is the global Fickian diffusion coefficient of both morphogens depending on tissue packing and tortuosity [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF][START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF][START_REF] Grimm | Modelling the Bicoid gradient[END_REF][START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF]. As we are interested in a linear theory, we consider here D = D(φ * ) as a constant. We neglect here, for the sake of simplicity, phenomena such as extracellular morphogen degradation or the influence of extracellular morphogen concentrations on reaction terms, as they do not modify qualitatively the dynamics (cf. S.I. for details). Note that one could also take into account, at the mesoscopic level, some effective non-local interactions such as cell-cell communication via long-ranged cellular protrusions [START_REF] Kondo | An updated kernel-based Turing model for studying the mechanisms of biological pattern formation[END_REF]. This may require to consider spatial terms in [START_REF] Turing | The chemical basis of morphogenesis[END_REF] to introduce an additional characteristic lengthscale from non-local cell-cell transport.

Mechanical behaviour of the cellular phase

To complete our description of a multicellular tissue, we need to specify a relation linking cell volume fraction to interstitial fluid velocity, for which we use a poroelastic description of the tissue. Taking an homogeneous tissue as reference state, locally changing the cell volume fraction creates elastic stresses and gradients of interstitial fluid pressure p, which in turn drive interstitial fluid flows. We show (cf. S.I for details) that this reduces to a simple Darcy's law between cell volume fraction and fluid flow [START_REF] Coussy | Poromechanics[END_REF]:

(1 -φ)v e = -κ η ∇p = D m ∇φ. (4) 
This relation introduces the hydrodynamic diffusion coefficient of the extracellular fluid, D m = Kκ/η, a key mechanical parameter of the model which feeds back on the reaction diffusion dynamics (3), with κ the tissue permeability, K the elastic drained bulk modulus and η the fluid viscosity. The hydrodynamic length scale l m = √ D m τ is associated to such fluid movement. The applicability of such theory to describe the mechanical response of biological tissues has been thoroughly investigated in various contexts [START_REF] Netti | Role of extracellular matrix assembly in interstitial transport in solid tumors[END_REF][START_REF] Roose | Solid stress generated by spheroid growth estimated using a linear poroelasticity model?[END_REF][START_REF] Fraldi | Cells competition in tumor growth poroelasticity[END_REF].Importantly, we only explore here the simplest tissue rheology for the sake of simplicity and concision. Nevertheless, we also investigate in the S.I the role of growth and plastic cell rearrangements and show that they can be readily incorporated in our model, leading to different types of patterning instabilities. However, we would like to highlight here that the results presented thereafter are all robust to small to intermediate levels of tissue rearrangements.

Model of an active biphasic tissue

Eqs.(1-4) define a full set of equations describing the chemo-mechanical behaviour of an active biphasic multicellular tissue (cf. S.I. for details on mathematical formulation). To provide clear insights on the biophysical behaviour of the system, we focus on a limit case where γ A,I λ A,I f, g such that K A,I 1. This corresponds to an ubiquitous biological situation where rates of membrane transport are order of magnitudes faster than transcriptionaly controled morphogen turnover rates, and where endocytosis occurs at a much faster rate than exocytosis. In that case, the relations A e K A A i and I e K I I i always hold and even if a significant fraction of morphogens is immobilized inside the cells [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF], the import/export terms cannot be neglected as γ A,I are very large, so that γ A (A e -K A A i ) and γ I (I e -K I I i ) are indeterminate quantities (cf. S.I for details). Thus, summing both internal (1) and external (3) conservation laws, we obtain a simplified description of the system (cf. S.I for details):

∂ t (φA i ) + ∇. (A i K A D m ∇φ -K A D∇A i ) = f (A i , I i ) ∂ t (φI i ) + ∇. (I i K I D m ∇φ -K I D∇I i ) = g(A i , I i ) -l 2 m ∆φ + φ = φ h (A i , I i ).
(5) Non-dimensionalizing times with τ A associated with the degradation of A i in the morphogen turnover functions f and g and lengths with l A = √ K A Dτ A we find that (5) is controlled by a few non-dimensional parameters: K I /K A describes the mismatch of morphogen membrane transport, D m /D compares the global hydrodynamic and Fickian diffusion of the morphogens, τ /(K A τ A ) compares the response time of cell volume fraction to the effective morphogen turnover rate, and χ A and χ I account for the sensitivity of φ to morphogen levels. Using this restricted set of parameters encapsulating the behaviour of the model, we investigate several of its biologically relevant limits, demonstrating that they provide independent routes towards tissue patterning.

Orders of magnitude on morphogen transport

In the simplest limit of the model, the cell fraction remains constant, φ = φ * , which is valid if the effect of the morphogens on φ is very small compared to the restoring mechanical forces (i.e. χ A,I 1). The model then reduces to Turing's original system, with diffusion coefficients being renormalised by morphogens transmembrane transport equilibrium constants, K A,I D, similar to results obtained in [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF][START_REF] Rauch | The role of transmembrane signal transduction in turing-type cellular pattern formation[END_REF]. This implies that even species with similar D, can exhibit effective diffusion coefficients widely differing from each other on longer timescales and produce Turing patterns when K I K A (cf. S.I. for details). In Fig. 1(b), we depict scaling arguments for the changes in effective diffusion coefficient at various time/length scales, associated both with tissue structure and import/export kinetics [START_REF] Grimm | Modelling the Bicoid gradient[END_REF]. At small timescales, diffusion is characterised by a local Fickian diffusion coefficient, theoretically expected to be of the order of D Fick ≈ 10 -11 m 2 s -1 , in line with fluorescence correlation spectroscopy (FCS) measurements [START_REF] Inomata | Scaling of dorsal-ventral patterning by embryo sizedependent degradation of Spemann's organizer signals[END_REF][START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF][START_REF] Kicheva | Investigating the principles of morphogen gradient formation: from tissues to cells[END_REF]. This occurs across a typical cell-to-cell distance of l i ≈ 10 -7 -10 -9 m [START_REF] Tschumperlin | Mechanotransduction through growth-factor shedding into the extracellular space[END_REF][START_REF] Barua | Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm[END_REF], so that this regime is valid for time scales below l 2 i /D Fick ≈ 10 -2 -10 -6 s, which is much faster than the typical import/export kinetics of 1/γ A,I ≈ 10 1 -10 2 s [START_REF] Smith | Simultaneous independent measurement of endocytosis and exocytosis[END_REF]. At intermediate timescales, the coefficient of diffusion needs to be corrected by volume exclusion effects. This effect can be very large, as the cell volume fraction can be close to one. An upper bound for global diffusion can be computed, irrespective of the microscopic details of tissue geometry, as D(φ * ) ≤ D Fick (1 -φ * )/(1 + φ * /2) [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF], which would suggest, in the case of φ * ≈ 0.8 -0.9, that it should be around an order of magnitude smaller than local diffusion, D(φ * ) ≈ 10 -12 m 2 s -1 . Finally, at the time scales larger than 1/γ A,I described by the present model, the diffusion is decreased further by a factor K A,I , i.e. by the relative concentrations of morphogens "trapped" cellularly (i.e. a 1 -10 ratio). This is consistent with effective diffusion coefficients DK A,I ≈ 10 -12 -10 -13 m 2 s -1 measured from tissue-wide fluorescence recovery after photobleaching (FRAP) over minutes to hours time scales [START_REF] Inomata | Scaling of dorsal-ventral patterning by embryo sizedependent degradation of Spemann's organizer signals[END_REF][START_REF] Kicheva | Investigating the principles of morphogen gradient formation: from tissues to cells[END_REF]. Interestingly, Lefty diffusion coefficient in the zebrafish embryo varies only by a factor 2 between FCS (local) and FRAP (effective) measurements [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF], which is paradoxical given the large cell volume fraction inferred in this system (φ * ≈ 0.8 -0.9 [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF]). Indeed, even in the best-case scenario of K Lefty = 1 (i.e all morphogens being extracellular), the aforementioned upper bound would impose at least a factor 10 difference. These measurements are thus in apparent contradiction with the hypothesis of a purely passive extracellular diffusion, raising the intriguing possibility of active contributions to morphogen transport.

Moreover, from a purely theoretical perspective, quite stringent conditions on the ratio of intracellular and extracellular morphogen levels are still necessary for Turing pattern formation under this rescaled passive morphogen transport scenario. Exploring further the effect of a variable cell volume fraction φ, we demonstrate that coupling morphogen dynamics and tissue mechanics relaxes this limitation via active transport of morphogens.

Turing-Keller-Segel instabilities

To assess the regions in parameter space where stable patterns can form in our mechano-chemical framework, we perform a linear stability analysis on (5) (cf. S.I.). Here, we consider a classical Gierer-Meinhardt activatorinhibitor scheme [START_REF] Gierer | A theory of biological pattern formation[END_REF]: f (A, I) = ρA 2 /I -A/τ A and g(A, I) = ρA 2 -I/τ I , where ρ is the rate of activation and inhibition and τ A,I the timescales of degradation of A and I [2] and the particular case of a single morphogen capable of increasing φ h (χ A > 0, χ I = 0).

In the phase diagram in Fig. 2 (a), we show that two distincts instabilities can be captured by this simplified theory. The first instability, identified here as "Turing patterns", corresponds to a classical Turing instability, where diffusive transport of morphogens dominates over their advection by interstitial fluid (D m D) and with instability threshold given by

K I τ I -K A τ A > 2 √
τ A τ I K A K I for l A /l 1(dashed red line on Fig. 2 (a)) which, as expected, is always true regardless of the value of τ A,I if K I K A . The second instability in this phase diagram, labelled "Keller-Segel patterns" [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] is highly generic for active transport, and can even occur for a single morphogen. In this limit, patterning occurs if

√ χ A > D/D m + τ /(τ A K A ) when l A /l
1 so that the volume fraction sensitivity χ A is above a critical value (dashed blue line in Fig. 2 (a), which captures well the phase boundary in the limit K A K I , although the instability occurs generically for any value of K A,I ). The physical origin of this instability is similar to active fluid instabilities [START_REF] Bois | Pattern formation in active fluids[END_REF][START_REF] Weber | Differential activity-driven instabilities in biphasic active matter[END_REF][START_REF] Recho | Mechanics of motility initiation and motility arrest in crawling cells[END_REF][START_REF] Recho | Contraction-driven cell motility[END_REF][START_REF] Hannezo | Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes[END_REF]: local stochastic changes in morphogen concentration result in cell patterning changes. If these changes are associated with an increase in cell volume, fluid must flow inside cells, resulting in largescale extracellular fluid flows from regions of low to high morphogen concentration, resulting in a positive feedback loop (Fig. 3 (a)). Thus, coupling tissue mechanical behaviour to morphogen reaction-diffusion provides, via the generation of advective fluid flows, a new route to stable pattern formation with a single morphogen. Moreover, this instability has two remarkable features. First, it only requires the presence of a single morphogen (cf. S.I. for details) which could correspond to many practical situations where a pair of activator/inhibitor has not been clearly identified, for instance the role of Wnt in the antero-posterior pattern of planarians [START_REF] Stuckemann | ) Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians[END_REF]. Second, it possesses spatial scaling properties regarding to its fundamental mode, as compared to a Turing instability. Indeed, when morphogen turnover rate is small compared to its effective hydrodynamic and Fickian diffusion (f → 0), the fundamental mode, i.e. a single two-zones pattern, is the most unstable in a robust manner, given that morphogen turnover f stabilises specifically this mode (cf. S.I. for details), whereas in the case of a Turing instability, this would require fine-tuning and marginally stable reaction kinetics. We illustrate such a scaling property in Fig. 3. This mechanism could potentially apply to situations where a binary spatial pattern is independent of system size such as dorso-ventral or left-right patterns in early vertebrate embryos [START_REF] Inomata | Scaling of dorsal-ventral patterning by embryo sizedependent degradation of Spemann's organizer signals[END_REF][START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF], or planarian antero-posterior pattern [START_REF] Werner | Scaling and regeneration of self-organized patterns[END_REF][START_REF] Stuckemann | ) Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians[END_REF]. If so, it could provide a simpler alternative to previously proposed mechanisms involving additional species or complex biochemical signaling pathways [START_REF] Inomata | Scaling of dorsal-ventral patterning by embryo sizedependent degradation of Spemann's organizer signals[END_REF][START_REF] Werner | Scaling and regeneration of self-organized patterns[END_REF].

Importantly, simple estimates can be used to demonstrate the biological plausibility of such mechanical effects during morphogenetic patterning. A key parameter driving Keller-Segel instabilities is the hydrodynamic diffusion coefficient D m , which can be estimated from values of the drained bulk modulus K ≈ 10 4 Pa [START_REF] Netti | Role of extracellular matrix assembly in interstitial transport in solid tumors[END_REF][START_REF] Dolega | Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression[END_REF] and the tissue permeability upper bound [START_REF] Hashin | A variational approach to the theory of the effective magnetic permeability of multiphase materials[END_REF] κ ≈ l 2

i (1 -φ * )/(1 + φ * /2) with l i ≈ 10 -7 -10 -9 m and φ * ≈ 0.85 as above. Using η ≈ 10 -3 Pa.s (water viscosity), we obtain D m ≈ 10 -12 -10 -8 m 2 s -1 , showing that the hydrodynamic diffusion can be similar or even much larger than Fickian diffusion. In agreement with typical timescales involved in regulatory volume increase or decrease of cells following an osmotic perturbation [START_REF] Hoffmann | Physiology of cell volume regulation in vertebrates[END_REF], we estimate that τ ≈ 10 2 s, while morphogen turnover time scale has been measured as τ A ≈ 10 4 -10 5 s [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF].

With K A ≈ 0.1 as above, we obtain τ /(K A τ A ) ≈ 0.01 -0.1, which is used in Fig. 2, and displays broad regions of instability, although parameters like sensitivities χ A,I would need to be better assessed in vivo in future works.

Cross-diffusion Turing instabilities

Finally, we investigate the behaviour of our model (( 5)), when cell fraction sensitivity to morphogen concentration is negative (χ A,I < 0), eliminating the possibility of up-hill morphogen diffusion at the origin of the Keller-Segel instability. We also consider that f and g do not necessarily follow an activator-inhibitor kinetics, but any possible interaction scheme between two morphogens. For mathematical clarity on the physical nature of the instability studied here, we make the simplifying assumptions that τ = 0 and χ A,I 1, with D ∼ D m χ A,I in [START_REF] Marcon | Turing patterns in development: what about the horse part?[END_REF]. This relates to a realistic biological situation, where cell volume fraction relaxes rapidly after perturbation and depends weakly on morphogen levels, yielding:

φ * ∂tAi + ∇. (AiKADm∇φ h (Ai, Ii) -KAD∇Ai) = f (Ai, Ii) φ * ∂tIi + ∇. (IiKI Dm∇φ h (Ai, Ii) -KI D∇Ii) = g(Ai, Ii). (6) 
In this limit, the conditions for linear stability of the homogeneous solution are exactly the ones of a classical Turing system but with cross-diffusion terms (cf. S.I.). Such a scenario has been studied in the framework of monophasic reaction-diffusion systems with ad hoc crossdiffusion terms [START_REF] Madzvamuse | Cross-diffusion-driven instability for reactiondiffusion systems: alysis and simulations[END_REF], which arise generically in various chemical and biological systems [START_REF] Vanag | Cross-diffusion and pattern formation in reaction-diffusion systems[END_REF]. Our work thus provides a particular biophysical interpretation of these terms in multicellular tissues, which we show to originate from intrinsically mechano-chemical feedbacks between morphogen dynamics and tissue mechanics. As shown in [START_REF] Madzvamuse | Cross-diffusion-driven instability for reactiondiffusion systems: alysis and simulations[END_REF], such cross diffusion terms result in a dramatic broadening of the phase space for patterns. In particular, any two-morphogen reaction scheme can now generate spatial patterns and not just the classical activator-inhibitor schemes. For instance, it becomes possible to obtain patterns with activator-activator or inhibitor-inhibitor kinetics similar to those observed in numerous gene regulatory networks or signaling pathways involved in cell fate decisions [START_REF] Zhou | Understanding gene circuits at cell-fate branch points for rational cell reprogramming[END_REF]. We illustrate this result by considering an inhibitor-inhibitor kinetic scheme, which cannot yield patterns in the classical Turing framework. Directly using our model ( 5), we demonstrate analytically and numerically the existence of a region of stable patterns, where a cross-diffusion driven Turing instability can develop (Fig. 4).

Discussion

In this paper, we have introduced a generalisation of Turing's work on pattern formation in biological tissues by coupling equations describing the structure and mechanical properties of multicellular tissues with a classical reaction-diffusion scheme. In particular, our work highlights two important features of multicellular tissues, as of yet largely unexplored in this context: their biphasic nature, i.e. the fact that morphogen production/degradation is controlled by cells while transport takes place extracellularly requiring active membrane exchanges (effectively rescaling diffusion [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF][START_REF] Rauch | The role of transmembrane signal transduction in turing-type cellular pattern formation[END_REF]), and the possibility for active large scale flows to develop within the tissue interstitial space. We demonstrate that coupling tissue cell volume fraction to local morphogen levels provides a biophysically realistic route towards two qualitatively different modes of patterning instability.

First, a Keller-Segel type instability where advective flows feed back on the concentration of a single (or various) morphogen(s) to drive spatial pattern formation, and a second type of instability, where resulting advective flows create cross-diffusion terms for morphogens.

This relaxes the condition that import/export ratios of morphogens should be very different for a pattern to form and also renders the patterning mechanism robust and weakly dependent on morphogens reaction scheme. In this respect, our approach, which has the advantage of parsimony, taking into account the manifest biphasic nature of multicellular tissues, is complementary to others which have been proposed to solve limitations of Turing's model by introducing additional morphogen regulators [START_REF] Marcon | High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals[END_REF][START_REF] Werner | Scaling and regeneration of self-organized patterns[END_REF], and also displays connections with recent development in the mechano-chemical descriptions of active fluids such as the cell cytoskeleton [START_REF] Bois | Pattern formation in active fluids[END_REF][START_REF] Howard | Turing's next steps: the mechanochemical basis of morphogenesis[END_REF]. Nevertheless, further quantitative experiments would be needed to probe the role of transmembrane import/export kinetics or similar phenomena such as transmembrane signaling [START_REF] Rauch | The role of transmembrane signal transduction in turing-type cellular pattern formation[END_REF], morphogen adsorption/desorption on cell surface [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF] and long-distance cellular protrusions [START_REF] Kondo | An updated kernel-based Turing model for studying the mechanisms of biological pattern formation[END_REF], on effective morphogen diffusion rates. Systems such as digits patterning, where cell volume fraction spatial pattern appears concomitant to morphogen patterns [START_REF] Bénazet | Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds[END_REF], or planarian antero-posterior patterning, where pairs of activator/inhibitor have not been clearly identified [START_REF] Stuckemann | ) Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians[END_REF], provide possible testing grounds for our model. Interestingly, we show that the proposed mechanism has robust scaling properties for the fundamental mode, compared to conventional Turing models, which could have also interesting implications concerning recent experimental evidences for robust scaling of the Nodal/Lefty pattern in the early zebrafish embryo [START_REF] Almuedo-Castillo | Scale-invariant patterning by size-dependent inhibition of Nodal signalling[END_REF].

Interestingly, large-scale extracellular fluid flows have been increasingly observed during embryo development, not only in the classical case of cilia driven flows [START_REF] Freund | Fluid flows and forces in development: functions, features and biophysical principles[END_REF], but also due to mechanical forces arising from cellular contractions as well as osmotic and poro-viscous effects [START_REF] Krens | Interstitial fluid osmolarity modulates the action of differential tissue surface tension in progenitor cell segregation during gastrulation[END_REF][START_REF] Ruiz-Herrero | Organ size control via hydraulically gated oscillations[END_REF][START_REF] Latorre | and Trepat X (2018) Active superelasticity in three-dimensional epithelia of controlled shape[END_REF]. Furthermore, active flows have been proven to be crucial for patterning events such as left-right asymmetry emergence in zebrafish [START_REF] Freund | Fluid flows and forces in development: functions, features and biophysical principles[END_REF], strengthening the biological plausibility of the physical effects discussed in our paper, and calling for a more systematic understanding of passive vs. active transport mechanisms during embryonic pattern formation. A key assumption underlying these last two results is our proposed relationship between morphogen levels (i.e. cell state) and cell volume fraction in tissues, coupling biochemistry and mechanics in the model via advective transport, and based on the dual role of morphogens in patterning and cell growth/volume regulation [START_REF] Smith | Growth factors and pattern formation[END_REF][START_REF] Ginzberg | On being the right (cell) size[END_REF][START_REF] Reuss | Mitogens and ion fluxes[END_REF][START_REF] Conlon | Size control in animal development[END_REF]. Although active transport coupled to mechanics has remained overlooked in the context of Turing patterns, it is interesting to note that effective tissue-wide diffusion coefficients measured in vivo are larger than expected from upper bounds implied by cell volume exclusion within the tissue [START_REF] Muller | Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[END_REF], which would need to be interpreted through a mechano-chemical theory of morphogen transport. Whether biological examples of Turing patterning instabilities, such as left-right or dorso-ventral patterning, digits pattern formation or skin appendages patterns are causally associated with concomitant changes in cell volume and/or cell packing remains a result to be experimentally investigated.

Methods

Methods, including any associated references, are available in the S.I section.
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 1 Figure 1: Model for pattern formation in active biphasic tissues. (a) (Left) Schematic of the model at the tissue scale. Cells form a poroelastic network, permeated by extracellular fluid, where three natural length scales can be defined: the interstitial space size (li), the characteristic cell size (lc) and the tissue size (l). The representative volume element (RVE) defines a spatial scale, l ≥ V 1/3

Figure 2 :

 2 Figure 2: Linear stability analysis and numerical simulations of pattern formation in active biphasic tissues. (a) Phase diagram of (5) in the (KI /KA, Dm/D) parameter space for τ /(KAτA) = 0.01 and τ /(KAτA) = 0.1 (inset). The red and blue dashed lines correspond to analytical thresholds of instability (given in the text) for Turing and Keller-Segel patterns respectively. The black dashed line is the analytical phase boundary between both regimes in the limit KI KA given by χA = D/Dm + τ /(τAKA). This limit is shifted up when the ratio τ /τAKA is increased, while a pronounced notch appears in the "Keller-Segel patterns" domain (see inset). Other parameters are set to χA = 0.25, χI = 0 , τI /(KAτA) = 0.2, KAτAρ = 1, φ * = 0.85 and large tissue size (lA/l 1). (b) 1D numerical simulations of (5) with random initial conditions for several choices of parameters identified by letters A, B, C & D, with lA/l = 0.1.

Figure 3 :

 3 Figure 3: Scaling properties of the Keller-Segel instability with one morphogen.(a) Schematic of the Keller-Segel instability in a 1D tissue. Morphogens gradients generate cell volume fraction gradients (via local fluid exchanges, blue arrows in inset), which in return cause mechanically-induced self-amplifying extracellular flows that advect morphogens from morphogen-poor to morphogen-rich regions (green arrow). (b) Normalized pattern size (cf. S.I. for definition) as a function of system size in the single morphogen case with f = 0. (c) Morphogen concentration and cell packing fraction (inset) profiles remain quasi-stationary as system size increases. Parameters are χA = 0.25, Dm/D = 10 and φ * = 0.85

Figure 4 :

 4 Figure 4: Pattern formation for cross-diffusion Turing instabilities. (a) Phase diagram of (5) in the (χA, χI ) space obtained by numerical linear stability analysis. Parameters are τ /(KAτA) = 0.01, Dm/D = 10, KI /KA = 10, τI /(KAτA) = 0.9, φ * = 0.85 and lA/l 1. (b) 1D numerical simulation of (5) using a simple inhibitor-inhibitor reaction scheme (cf. S.I. for details).
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