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Abstract 

A global and rigorous understanding of the signaling pathways and cross-regulatory processes 

involved in mast cell activation requires the integration of published information with novel 

functional datasets into a comprehensive computational model. Based on an exhaustive curation of 

the existing literature and using the software CellDesigner, we have built and annotated a 

comprehensive molecular map for the FceRI signaling network. This map can be used to visualize 

and interpret high-throughput expression data. Furthermore, leaning on this map and using the 

logical modeling software GINsim, we have derived a qualitative dynamical model, which 

recapitulates the most salient features of mast cell activation. The resulting logical model can be 

used to explore the dynamical properties of the system and its responses to different stimuli, in 

normal or mutant conditions. 
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1. Introduction 

Mast cell activation is a pivotal event in the initiation of inflammatory reactions associated with 

allergic disorders. It is triggered by the aggregation of high affinity IgE receptors (FcεRI) on the 

mast cell surface, which is in turn induced by the binding of a multivalent allergen to FcεRI-bound 

IgE antibodies. Mast cell activation is a complex process relying on multiple layers of tightly 

controlled intracellular signaling molecules, which form an intricate network. Mast cells are 

crucially important for innate immunity and further play an effective role in the amplification of 

adaptive immunity. Mast cells are key players in biological responses, both in harmless and harmful 

situations, and it has been long known that they play a central role in type I hypersensitivity 

reactions and allergic disorders. 

A global and rigorous understanding of the signaling pathways and cross-regulatory processes 

involved in mast cell activation ultimately requires the integration of published information with 

novel functional genomic datasets, in particular proteomic data, into a comprehensive 

computational model. In this respect, we engaged into an integrative approach involving two main 

steps: (i) the construction of a comprehensive and extensively annotated molecular map: (ii) the 

derivation of a qualitative dynamical model. 

The construction of detailed molecular pathway maps is becoming an important component of 

system biology as attested by the release of various maps dealing, for example, with mTOR 

signaling (Caron et al., 2010), EGFR (Oda et al., 2005), RB/E2F (Calzone et al., 2008), and 

MAPKs (Grieco et al., 2013). These maps are integrated in dedicated databases, such as KEGG 

(Kanehisa and Goto, 2000), Transpath (Krull et al., 2006), Reactome (Joshi-Tope et al., 2005), and 

the Atlas of Cancer Signaling Networks (http://acsn.curie.fr). 

The use of graphical representations of complex networks and pathways is spreading as a 

consequence of the rising of Systems Biology and Synthetic Biology fields. The presence of a 

consistent, standardized way of representation and interpretation of molecular maps is of outmost 

importance to enable exchange of information in a quick, unambiguous and systematic way. A 

consistent notation also helps improving biological curation (Hucka et al., 2003). An important 

effort towards this direction has been made recently with the Systems Biology Graphical Notation 

(SBGN) (Le Novere et al., 2005; Klipp et al., 2007).  

To cope with large cellular networks for which precise kinetic data are lacking, logical modeling is 

increasingly used to derive global qualitative insights about network dynamics (for recent reviews, 

see Glass and Siegelmann, 2010; Bérenguier et al., 2013).  Recent applications to mammalian 

networks include logical models for T-helper cell differentiation (Mendoza, 2006; Naldi et al., 

2011), T cell receptor signaling (Saez-Rodriguez et al., 2007), Erb-b receptor signaling (Sahin et al., 

2009; Samaga et al., 2009; Helikar et al., 2013), as well as for the main MAPK pathways, including 

feedbacks and cross-talks (Grieco et al., 2013). Finally, several kinetic models dealing with subparts 

of the mast cell FcεRI signaling pathway have already been published, especially focusing on the 

early signaling events mediated by FceRI (Goldstein et al., 2002; Nag et al., 2010). 

If not absolutely required, a detailed molecular map is certainly an excellent basis to build a 

dynamical model. Perhaps less intuitively, the derivation of a dynamical model forces the biologist 

to scrutinize the mapped pathways with specific emphases, often provoking the reconsideration of 

some aspects of the map. Finally, model simulations often result in inconsistencies, thereby 

fostering the need for further refinements. 

In short, the computational modeling of complex signaling networks thus involves various iterations 

of data curation, molecular mapping and dynamical modeling, until sufficient consistency is 

reached (see flowchart in Figure 1). 
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2. A comprehensive map of FcεRI signaling during mast cell activation 

Molecular maps of several pathways associated with FcεRI signaling events during mast cell 

activation can be found in public databases, with variable levels of detail and different 

representations (see Table I). These maps can take the form of simplified graphs focusing on 

selected components or events, while others are much more comprehensive, encompassing various 

related pathways. They also differ regarding the number of references, as well as updating 

frequency. 

At this stage, however, we felt that existing maps still lack details to support the development of 

predictive models. Consequently, we engaged in the development of a novel, comprehensive 

molecular map of the signaling network underlying mast cell activation, based on an extensive 

analysis of relevant scientific papers and reviews, and taking into account existing pathways 

available in public databases (Figure 2). This map has been built using the software CellDesigner 

(versions 4.2 and 4.3; Funahashi et al., 2003).  

The nodes (vertices) of this map represent proteins and their post-transcriptional variants, protein 

complexes, metabolites, or genes, while links (arcs) represent molecular reactions (complex 

formation or dissociation, post-transcriptional modification of proteins, etc.). All nodes and links 

are extensively annotated with textual information tracing experimental support, along with links to 

databases, e.g. to relevant scientific papers in PubMed, or to representative entries in genomic 

databases such as EntrezGene, UniProt or HUGO. 

Our current mast cell activation signaling network includes information derived from over 200 

peer-reviewed journal articles. We primarily focused on human data, but we incorporated 

information coming from studies in mice or rats whenever human data were lacking.  Similarly, we 

primarily focused on mast cell-specific data, but we further took into account results of studies 

dealing with B and T lymphocytes to fill gaps in our current knowledge of mast cell signaling. 

Inference by homology (from different species or from different cell types) is systematically 

emphasized in component annotations. 

The resulting map encompasses a total of 122 distinct chemical species (proteins, ion channels, 

ions, receptors, complexes, chemical entities/ compounds) and 73 reactions (arcs) taking place in 

five main compartments (cytoplasm, plasma membrane, Golgi apparatus, endoplasmic reticulum, 

nucleus). The reactions encompass 39 state transitions (including catalysis), 30 heterodimer 

association, 2 transports and 2 dissociations.  Hereafter, we describe the main data integrated in our 

molecular map in more details (the CellDesigner map is available on request). 

 

3. Signaling events covered in the CellDesigner molecular map 

3.1. FceRI mediated signaling 

The mast cell receptors FcεRI belong to the Fc receptor family and can bind a variety antibodies 

(Ab). On mast cells, Fc receptors bind exclusively IgE or IgG (Fcγ receptors).  FcεRI consist of 

three subunits: an IgE-binding alpha subunit, a signal-amplifying beta subunit, and a signal-

initiating homodimeric gamma subunit (Kinet, 1999). The beta and gamma subunits contain one 

tyrosine activation motif (ITAM) each. The phosphorylation of ITAM canonical tyrosine residues 

initiates a cascades or intracellular events.  

 

3.2. FcεRI aggregation and Lyn/Syk/Fyn-dependent events  

The Src protein tyrosine kinase Lyn is responsible for the phosphorylation of the ITAM motifs of 

FcεRI. Like other Src family kinases, Lyn is anchored in the lipid rafts via its palmitoyl or 
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myristoyl moieties. FcεRI stimulation causes an accumulation of these protein tyrosine kinases 

(PTKs) in lipid raft domains (Kovárová et al., 2001). Moreover, the localization of Lyn in lipid rafts 

is necessary to sustain FcεRI phosphorylation and to maintain an active Lyn kinase (Young et al., 

2003). Following FcεRI aggregation on the mast cell surface, Lyn phosphorylates the ITAMs of the 

beta and gamma chains. When phosphorylated, these motifs can recruit Syk (Spleen tyrosine 

kinase). Syk is then phosphorylated by Lyn and autophosphorylates. 

Active Syk in turns phosphorylates the transmembrane adaptors LAT1 and LAT2, as well as several 

cytosolic proteins including Gab2, Clnk, SLP76, Shc and Btk (Simon et al., 2005). 

Activated Lyn further phosphorylates Fyn, which is important for the activation of Btk and Gab2. 

Fyn is also needed for the activation of PI3K via Fyn-dependent phosphorylation of Gab2.  PI3K is 

essential for the production of PIP3 (Kraft & Kinet, 2007). PIP3 is the product of PI3K 

phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP2). Residing on the membrane, this 

phospholipid causes various proteins with a PH domain to translocate to the plasma membrane and 

affects their activity accordingly. This includes Akt activation, which in turn activates downstream 

anabolic signaling pathways required for cell growth and survival.  

Fyn activity is regulated by Cbp/PAG adaptor. This adaptor recruits the negatively regulatory 

kinase Csk, which in turns phosphorylates Fyn and thereby inactivates it (Alvarez- Errico et al., 

2009).  

 

3.3. FcγRIIB-mediated signaling 

The single-chain low-affinity IgG receptors FcγRIIB are widely expressed by hematopoietic cells, 

including mast cells. They inhibit FcεRI-dependent mast cell activation (Daëron et al., 1995a,b). 

When IgG-allergen immune complexes co-aggregate FcεRI and FcγRIIB, Lyn phosphorylates the 

ITAMs of FcεRI and the ITIM (Immune receptor Tyrosine based Inhibitory Motif) of FcγRIIB 

(Malbec et al., 1998). Phosphorylation of the FcγRIIB ITIM results in the recruitment of SHIP1, 

which in turn recruits Dok1 and RasGAP. RasGAP inhibits SOS, thereby interrupting Ras 

activation, as well as subsequent transcriptional regulation and lipid mediator production. 

Constitutively bound to Shc in the cytoplasm, Grb2 is then further recruited (Jabril-Cuenod et al., 

1996). Moreover, SHIP1 hydrolizes PIP3, resulting in a decrease of PLCγ, IP3 and Ca2+ fluxes.  

FcγRIIB cooperate with FceRI for the activation of Ca2+ fluxes, as well as of MAPK pathway 

(Kraft & Kinet, 2007).  

SHIP1 is an important regulator of intracellular levels of PIP3. PtdIns(3,4,5)P3 is dephosphorylated 

by SHIP1 (SH2-containing inositol phosphatase) on the 5' position of the inositol ring, producing PI(3,4)P2, 

thereby down-regulating Akt activity.  

 

3.4 LAT1-dependent protein complex formation 

LAT1 is a transmembrane protein that is essential for the propagation of FcεRI-mediated signaling. 

It acts as an adaptor molecule and enables the association of different proteins such as Grb2, Gads, 

SLP76, Btk, Vav1, PLCγ (Saitoh et al., 2000). LAT1 undergoes lipid modification such as 

palmitoylation and acylation, which determines its cellular localization (Gilfillan & Tkaczyk, 2006). 

Syk phosphorylates LAT1 shortly after antigen stimulation. Phosphorylated LAT1 plays the role of 

a signaling platform. It provides binding sites for the direct binding of Grb2, Gads and PLCγ 

(Saitoh et al., 2000). Grb2/SOS complex recruits activated Shc. LAT1 binds SOS and Shc via Grb2. 

Gads recruits activated SLP76, which in turns recruits Btk and Vav, while Btk phosphorylates 

PLCγ.  

Tyrosine-phosphorylated PLCγ in the membrane hydrolyzes PIP2, forming the second messengers 

IP3 and 1,2-diacylglycerol, which lead to the release Ca2+ from internal stores and activate PKC, 

respectively. The binding of IP3 to specific receptors in the endoplasmic reticulum results in a 

http://en.wikipedia.org/wiki/Phosphatidylinositol_(4,5)-bisphosphate
http://en.wikipedia.org/wiki/PH_domain
http://en.wikipedia.org/wiki/AKT
http://en.wikipedia.org/w/index.php?title=SH2-containing_inositol_phosphatase&action=edit&redlink=1
http://en.wikipedia.org/wiki/Inositol
http://en.wikipedia.org/wiki/Phosphatidylinositol_(3,4)-bisphosphate
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depletion of Ca2+ stores, which activates store-operated Ca2+ entry (ICRAC) from the extracellular 

medium.  

The importance of LAT1 in mast cell activation was demonstrated by experiments in LAT1-

deficient mice. LAT1 deficiency did not alter mast cell development and maturation, neither in vivo 

nor in vitro (Saitoh et al., 2000), but LAT1 deficient mice are resistant to IgE-mediated passive 

systemic anaphylaxis, while PLCγ and SLP76 phosphorylation is markedly reduced (Alvarez-Errico 

et al., 2009).  

 

3.5. LAT2-dependent protein complex formation 

Similar to LAT1, LAT2 contains a palmitoylation site adjacent to the transmembrane domain 

involved in its localization to the lipid rafts. Its exact role in mast cells remains to be elucidated, but 

it has been shown to affect actin polymerization via Rac and Rho (Tumova et al., 2010). Like 

LAT1, it is able to recruit PLCγ, but in an indirect way, via Gab2, since LAT2 lacks the PLCγ 

binding motif contained in LAT1 (Alvarez-Errico et al., 2009). LAT2 further affects degranulation 

through this indirect recruitment of PLCγ. However, in vivo experiments showed that the response 

of LAT2-deficient mice to systemic anaphylactic challenge is similar to that of wild type mice (Zhu 

et al., 2004). LAT2 may also regulate an inhibitory pathway for FcεRI-mediated mast cell 

degranulation, at least in mouse bone marrow macrophages. LAT2 knock down in human mast cells 

and the RBL 2H3 rat mast cell line attenuates FcεRI-mediated degranulation through reduction of 

the calcium signal. Subsequent studies suggested that this interaction may be occurring through 

SLP76. This maintenance/amplification pathway for antigen-mediated responses in mast cells may 

be the portal by which signaling pathways initiated by other mast cell receptors allow synergistic 

potentiation of FcεRI-mediated degranulation and cytokine production (Gilfillan and Beaven, 

2011). Upon FcεRI aggregation, LAT2 is phosphorylated by Lyn, Syk and KIT on different 

tyrosines. Phosphorylated LAT2 likely contributes to the activation of mast cells by providing 

docking sites for the recruitment of critical signaling molecules into the lipid raft. LAT2 contains 

about ten tyrosines, five of which are principally phosphorylated by SYK, whereas others are 

phosphorylated by Lyn and KIT (Iwaki et al., 2008). After proper palmitoylation and 

phosphorylation, LAT2 recruits Grb2, which in turns recruits phosphorylated Gab2. The 

LAT2/Grb2/Gab2 complex recruits PI3K. In a different scenario, Grb2 binds to SOS, and the 

complex recruits activated Shc. The complex Shc/Grb2/SOS associates with LAT2. 

 

4. Access to the mast cell activation map 

4.1. CellDesigner file 

As it was initially built using CellDesigner, the molecular map integrating all the aforementioned 

data is provided in the form of an xml file to be open with this software (xml file available on 

request). In this respect, the user must download, install and open this CellDesigner 

(http://www.celldesigner.org), and then import the xml file, which will enable navigation through 

the map with access to all annotations. 

 

4.2. Import into Cytoscape  

It is also possible to view the network through the popular software Cytoscape (http://cytoscape.org; 

Shannon et al., 2003) using the plugin BiNoM (http://apps.cytoscape.org/apps/binom). This requires 

to download and install the proper versions of Cytoscape 2.8.3 and BiNoM 2.3. Using these tools, 

the user can import the CellDesigner XML file and perform various kinds of analysis (examples of 

such analyses are provided below). 

http://cytoscape.org/
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4.3. REACTOME database 

REACTOME is an open-source, open-access, manually-curated and peer-reviewed pathway 

database, which includes an intuitive interface along with various software tools to support the 

analysis of complex experimental and computational datasets. 

An interface based on the Systems Biology Graphical Notation (SBGN), Pathway Browser, 

facilitates the visualization of Reactome data and supports zooming, scrolling and event 

highlighting. It further exploits web services (PSIQUIC) to overlay molecular interaction data from 

the Reactome Functional Interaction Network and external interaction databases, such as IntAct, 

ChEMBL, BioGRID and iRefIndex. 

A first version of the mast cell signaling map has been integrated into REACTOME and can thus be 

browsed and queried directly from the corresponding website (http://www.reactome.org). In the 

course of the import of our map into REACTOME, all documented interactions were re-evaluated, 

the list of references enriched, and the resulting map was reviewed by experts before public release. 

Navigation into the REACTOME map can be done using a standard web browser, including access 

to all textual annotations, list of references and links to other databases, thereby avoiding the burden 

of downloading and installing a dedicated software such as CellDesigner or Cytoscape. 

Furthermore, all REACTOME maps can be easily exported into SBML, BioPAX and other formats to 

facilitate data exchange with other analysis and modeling tools. 

 

4.4. NaviCell 

Finally, the mast cell signaling map has been also integrated in the atlas developed by the Cancer 

Systems Biology team at Institute Curie (http://acsn.curie.fr). This atlas is published online using 

the software NaviCell, a web tool for exploring large maps of molecular interactions 

(https://navicell.curie.fr). NaviCell allows easy map navigation and access to the network 

components through the Google maps engine. Navigation, scrolling, zooming, pop-up bubbles have 

been adapted from Google maps. Semantic zooming enables users to explore the maps at different 

levels of detail. NaviCell further contains a web-based blog system (Wordpress) to collect 

feedbacks and facilitate exchange of knowledge between specialists and map managers (Kuperstein 

et al., 2013). The user can select species and reactions from a panel and get access to all annotations 

that were manually entered during map construction. Links to relevant PubMed entries are 

provided. Note that our original map includes protein nodes corresponding to more than one HUGO 

name (e.g ERK node denotes both MAPK1 and MAPK3 isoforms); in such cases we have selected 

unique representative identifiers. 

 

5. Community driven update of mast cell activation map 

The molecular map for mast cell signaling presented here is more detailed and comprehensive than 

the previous diagrams published in scientific journals or available in public databases. It should 

help biologists to better deal with the complexity of mast cell signaling network and help them to 

identify potential intervention points to block uncontrolled inflammation. Furthermore, as we shall 

see, this map can be used as a scaffold for systems biologists to derive dynamical models for mast 

cell activation.  However, as novel data will accumulate, regular revisions of the map will be 

necessary. In this respect, wide availability of the map should foster feedbacks, comments and 

suggestions from the scientific community. 
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6. Visualization of proteomic data on the CellDesigner map 

The molecular map for mast cell signaling can be used as a template for the visualization of 

expression data, such as transcriptomic or proteomic data. For this purpose, CellDesigner provides a 

plugin (Mapping Array Mass) (version 4.0 and onward) that allows the import of an attribute file 

with the corresponding values.  The color of the species is set according to the data value. An 

alternative way to color CellDesigner map components with expression data is provided by the 

Cytoscape plugin BiNoM (Zinovyev et al., 2008).  

We illustrate this approach through the visualization of proteomic data on SLP-76 interactome 

published by Bounab et al. (2013) for activated BMMCs (Figure 3). Such coloration facilitates the 

interpretation of expression and interaction data in the context of the known network. 

 

7. Modularization and decomposition of the molecular map using BiNoM 

To get insights into the organization of the mast cell signaling network, we used the Cytoscape 

plugin BiNoM (Zinovyev et al., 2008). Among other features, BiNoM allows the decomposition of 

complex networks and the generation of several modular views. Such high level representations are 

fully based on the underlying detailed map and helps navigation through it. When necessary, the 

user can easily refer to the detailed mechanisms underlying a given module. A similar approach for 

modular pathway modeling has been implemented in the ProMoT system (Saez-Rodriguez et al., 

2006). 

Modularization consists in a semi-automatic procedure to delineate modules and ensures their 

coherence. Modules often represent detailed sequences of events involving either a particular 

protein or a particular complex. Compressing such sequences into modules enables a simplified and 

compact representation of complex pathways.  

The decomposition of biological networks can be performed in different ways. First, we can 

separate unconnected network subparts, keeping only the connected components, i.e. decompose 

the network into (strongly) connected components. BiNoM further implements an algorithm 

enabling the generation of a pruned graph consisting in three main parts: the incoming flux part, 

from which all paths lead to the central core, the cyclic part that consists of strongly connected 

components, and the outgoing flux part, devoid of paths leading back to the central core. Figure 4 

shows the pruned graph obtained from the application of this algorithm to our mast cell signaling 

network. Using another feature of BiNoM, the central core can be further decomposed into 12 

simple cycles.  

Still using BiNoM, the network can be decomposed into material components, each corresponding 

to one protein, either as a distinct chemical species or as part of a complex. As a protein can 

participate in different complexes, these subnetworks are usually largely overlapping. Another 

BiNoM function enables a clustering of these components based on common proteins or complexes 

and on an intersection percentage threshold specified by the user (Bonnet et al., 2013). Automatic 

decomposition of our molecular map resulted into 45 material components, which were then 

clustered for an intersection threshold set to 35%. Manual curation led us to merge some of the 24 

resulting components, ultimately defining the 12 modules shown in Figure 5. 

Structural graph analysis gives us a first estimation of the complexity of the biological network and 

can also reveal important properties that are not obvious at first sight (e.g. non connected 

components, overlapping cycles). The modularization process enables a simplification of the 

network representation, allowing the user to supervise and check more easily the main events 

occurring in the network. Especially for very large networks containing hundreds of interactions, 

modularization greatly facilitates navigation. 

Both modular views (pruned graph and material components graph) are useful for the development 



A. Niarakis et al.  

9 

of a proper dynamical model (cf. following section), in particular to define the main variables and 

check that no important interaction is missed. 

 

8. Logical modeling of mast cell activation network 

Our mast cell signaling molecular map can be used as a reference to build a predictive dynamical 

model accounting for the most salient events following mast cell receptor activation. In the absence 

of detailed kinetic data, we decided to rely upon a sophisticated logical formalism implemented in 

the software GINsim (Chaouiya et al., 2012). In this framework, a regulatory network is modeled in 

terms of a regulatory graph, where nodes represent regulatory components (proteins, complexes, 

transcription factors, etc), whereas arcs represent interactions between these components. In 

addition, each regulatory component is associated with a logical variable denoting its qualitative 

concentration or level of activity. In most cases, Boolean variables (0 or 1) are sufficient to 

represent the most relevant situations, but whenever needed, multivalued variables can be used.  

Based on available data on co-aggregation of FcεRI with the inhibitory receptor FcγRIIB, we 

abstracted relevant information from the reaction map to define a regulatory graph. Beyond 

molecular interactions delineated using low-throughput approaches, we have used the proteomic 

data reported in Bounab et al. (2013), which point to novel SLP76 interactants, some previously 

reported in T or B cell activation processes, but now specifically identified in mastocytes.  

Based on the 45 material components extracted with BiNoM (Figure 5A), we have considered 42 

molecular species in the regulatory graph shown in Figure 6. The following step is the assignment 

of logical rules for each regulatory component in order to specify its target activity level according 

to the levels of its regulators. In most cases, this is straightforward, but it becomes tricky when 

many regulators converge onto a single component. Figure 7 illustrates the relationship between 

regulatory interactions and logical rules on the one hand, and the underlying molecular subnetworks 

on the other hand. The structure of the regulatory network and the logical rules are iteratively 

refined based on the comparison between simulation and documented network properties. 

Once a regulatory graph and a set of regulatory rules are defined, the user can select a set of initial 

values for the components and use GINsim to compute a state transition graph, highlighting stable 

states and cyclic attractors. However, as the number of components considered increases, such 

simulations become rapidly challenging from a computational point of view. In this respect, the 

recent development of a rigorous logical model reduction approach and its implementation into 

GINsim currently allow the simulation and analysis of regulatory networks encompassing hundreds 

of components (Naldi et al., 2011). The basic idea consists in enabling the user to select a series of 

components to hide. The software then hides them iteratively one at a time and recomputes the 

logical rules of their targets. Provided that no regulatory circuit is eliminated in this process (which 

is forbidden by the algorithm), it has been proven that the most salient dynamical properties are 

preserved, including all stable states, which typically represent different cellular states. 

 

9. Coherence of the logical model behavior with published data 

In order to evaluate the coherence of the global behavior of the model with current biological 

knowledge, we compared its dynamical properties with published data. First, we computed the 

stable states of the model and compared them with available data. Next, we performed 

asynchronous simulations for specific initial conditions (input levels, initial states, in the presence 

of perturbations or not). Inconsistencies were progressively fixed through appropriate modifications 

of the logical rules and/ or adding or removing an interaction or a model component.  

Of particular interest are the sets of states forming attractors, i.e. groups of states from which the 

system cannot escape, which represent potential asymptotic behaviors. Attractors can be classified 
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into two main categories: stable states and cyclic attractors (denoting periodic or homeostatic 

behavior). From a biological point of view, the asymptotic behavior represents the ultimate cellular 

outcome induced by an initial configuration. 

The three inputs of the model correspond to antigen activity on the receptors (considering three 

levels: Ag=0, 1 or 2), cCbl activity, and PIP2 activity, respectively. Ag=1 corresponds to the 

aggregation of FcεRI, while Ag=2  denotes co-aggregation of FcεRI with FcγRIIB. The second 

input, PIP2 activity is important for the activation of certain pathways (PIP3, Ca2+ ). Finally, cCbl 

stands for an ubiquitin-protein ligase targeting Syk and Lyn tyrosine kinases for degradation. 

The six outputs of the model and one intermediate component (component Ca, denoting Ca2+) are 

used to define the functional outcome. AP1, Elk1, Akt, NF-kB, NFAT are associated with cytokine 

release, PLA with the synthesis of lipidic mediators, and Ca with degranulation. 

Table II lists the stable states (ss) obtained for the unperturbed model. For wild type conditions, the 

model shows that, in the absence of antigen, no matter of the values of the other inputs, signaling is 

abolished (ss1 and ss2). However, the stable state ss3 correspond to a situation where transient but 

substantial activation would nevertheless lead to cytokine release, degranulation and lipidic 

mediator synthesis. Indeed, this state can only be attained when Syk is provided in the initial 

conditions (cf. Model file available in the model repository on GINsim website, at 

http://www.ginsim.org). 

For medium receptor activation (Ag=1), we have two possible stable states, ss4 and ss5. In the first 

case (ss4), the FcεRI dependent pathways are activated provided that Lyn, Syk and PIP2 are 

initially present, while in the second case (ss5), in the absence of Lyn and Syk, no matter  the values 

of the other two inputs, FcεRI dependent pathways are not activated.  

For high receptor activation (Ag=2), we obtain three stable states, ss6, ss7 and ss8. The first one 

(ss6) is very similar to ss5, meaning again that, in the absence of Lyn and Syk, no matter the values 

of the other two inputs, we have no activation. In the second case (ss7) , the presence of Lyn and 

Syk in the absence of the other inputs can result in the activation of intermediate components, but 

we have a final down-regulation of  NFkB, NFAT, AP1, PLA, and Elk1. The third case (ss8) 

corresponds to a full pathway activation in the presence of Lyn, Syk and PIP2. 

To further assess the behavior of our model in comparison with published data we designed and 

performed a series of in silico experiments (simulations) combining different initial conditions and 

virtual perturbations (loss of functions, gain of functions of selected model components). As already 

mentioned above, for the simulation part, we reduced our model using a specific function of 

GINsim, resulting in reduced model version encompassing 31 components.  

Table III shows the results obtained for simulations corresponding to two different genetic 

backgrounds. 

Analysis of FcεRI signaling pathways in Syk-deficient mast cells indicates that Syk is not required 

for the activation of Lyn. In contrast, FcεRI-induced rise in intracellular Ca2+ and activation of the 

ERK and JNK MAP kinase pathways is completely abrogated in the absence of Syk. Furthermore, 

phosphorylation of phospholipase Cγ1 (PLCγ1) and of the Vav1 exchange factor is also Syk-

dependent (Simon et al., 2005). In Syk knockout experiments, degranulation and cytokine release 

are both abolished (Gilfillan et al., 2006). 

To check the consistency of our model with these data, we performed an in silico simulation of Syk 

knockout, with Lyn and PIP2 present and Ag set to level 2 at the initial state. Note that Lyn level 

needs to be set at its initial state as we lack information about its upstream regulator(s). The results 

of this simulation are shown in Table III (third column). In this situation, the system reaches a stable 

state where AP-1, ERK, JNK, Elk-1, NF-kB, NFAT, PKC, PLCG1, Ca2+ and Vav are all set to zero, 

in agreement with the published data. 
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In the case of Btk knockout, a decrease in degranulation and cytokine release, as well as a decrease 

of PLCG1, ERK and JUN levels have been observed (Kawakami et al., 2000; Setoguchi et al., 

1998). The simulation of Btk knockout indeed results into a decrease of PLCG1 and ERK (set to 

zero), in agreement with published data. 

Certain mutant phenotypes are not easy to assess because the data are still controversial (e.g. Lyn 

knockout and its effect on degranulation). Other mutant simulations give self-evident results (e.g. 

Gab2 knockout results in the blockage of PI3K dependent pathway). Comparing the results for WT 

and Gab2 knockout mutant, starting from initial conditions where PI3K and Gab2 are set to zero, we 

observed that their activation is only transient (data not shown).  

In the case of Lyn knockout, it has been observed that PI3K activity is increased, while that FcRβ 

and FcRγ phosphorylation is decreased, and MAP and JUN phosphorylation prolonged (Gilfillan et 

al., 2006). Our model does not yet account for these results, pointing to gaps in our knowledge 

regarding Lyn activation and role. 

For LAT knockout and knockdown mice, a decrease on degranulation, cytokine release, SLP76 and 

PLCγ phosphorylation,  and MAPK activity have been observed, with no change in Syk and Vav 

phosphorylation (Gilfillan et al., 2006). Our model is partly coherent with experimental data, as the 

simulation of a LAT knockout mutant points to a decrease in cytokine release (decrease of AP-1, 

Erk, NFAT, NFkB),  in calcium ions and PLCγ,  with no change in Syk and Vav activity.  

On the other hand, for LAT2 knockout, an increase of degranulation and cytokine release, and a 

hyper-phosphorylation of ERK1 and 2, PLCγ and LAT have been observed (Gilfillan et al., 2006). 

Our model does not account for these results, since simulations of LAT2 loss-of-function shows no 

difference from the WT. This inconsistency can likely be attributed to gaps in our knowledge in the 

functioning of the inhibitory pathway. As more data will become available, a more refined modeling 

of this pathway could be established. Regarding SLP76 knockout, a decrease of degranulation, 

cytokine release, calcium signaling and PLCγ phosphorylation have been reported. The 

corresponding simulation leads to a decrease in cytokine release (decrease of AP-1, JNK, NFAT, 

NFkB), while calcium and PLCγ activity are preserved. Here also, our model could be refined to 

better take into account the different potential sources of calcium ions, once they will be better 

characterized. 

Loss of SHIP expression in vivo has been shown to lead to high Akt activation in bone marrow-

derived mast cells in response to cytokine stimulation (Liu et al., 1999).  

Simulations of SHIP1 knockout mutants indicates that its absence does not suffice to activate Akt. 

To reach full activation of Akt, our model suggests that Csk must be also inactive, thereby enabling 

Fyn to phosphorylate and activate Gab2. The simulation of a double SHIP-1 and Csk knock-out 

indeed results in the activation of Akt.  

Regulatory circuits (or feedback loops) have been reported to play crucial roles in the generation of 

specific dynamical properties, such as multistability or periodic behaviour. Multistationarity is 

related to the presence of positive circuits, while oscillatory behavior depends on the presence of 

negative ones (for a review, see Thieffry, 2007). In this respect, GINsim includes an algorithm 

enabling the identification of all regulatory circuits embedded in a logical model, along with the 

delineation of functionality conditions, i.e. conditions on the levels of external regulators enabling a 

circuit to generate the corresponding property.   

In the case of our mast cell activation model, the analysis of circuits emphasizes the functionality of 

two positive circuits, corresponding to Lyn and  Syk auto-phosphorylations, and of one negative 

comprising Raf, MEK, ERK, GRB2-SOS and RAS, suggesting a mechanism underlying the 

oscillatory behavior observed for medium Ag levels (data not shown).   

 

 

http://www.nature.com/onc/journal/v21/n34/full/1205650a.html
http://www.nature.com/onc/journal/v21/n34/full/1205650a.html
http://www.nature.com/onc/journal/v21/n34/full/1205650a.html
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10. Outlook 

In this article, we have reported a systematic effort to model FcεRI signaling using all the relevant 

information available.  

The molecular map presented here is the result of the integration of information found in the 

numerous publications. After taking into account suggestions and corrections from experts, the map 

has been released on the web. The feedback from the scientific community and the publication of 

novel results will lead to further updating. 

Subsequently, the map can be used as a template in order to visualize experimental data, gaining 

valuable insights about the specific parts of the signaling cascade that play a major role in response 

to specific stimuli. Using Cytoscape and BiNoM software, topological and material analyses have 

been performed to characterize the structure of the underlying network, decompose it into modules 

and thereby simplify its representation and ease navigation. 

The molecular map and its modular representations have in turn been used to build a dynamical 

model, using a logical formalism. The derivation of a logical model and its calibration (through the 

specification of the logical rules) lead us to reconsider and update specific parts of the map. 

Furthermore, model simulations resulted in some inconsistencies (e.g. regarding Lyn knockout), 

thereby fostering gaps in our knowledge and the need for further model refinements. 

This logical modeling approach enabled the recapitulation of several dynamical properties of an 

extremely complex biological system, such as Fc receptor signaling. Systematic testing of different 

initial conditions and stimuli could further lead to predictions regarding the outcomes of single or 

multiple perturbations (e.g. mutations, use of specific enzymatic inhibitors), as well as potential 

drug-able points. 

As further experimental data will be gathered regarding the cascades of Fc receptor signaling, our 

logical model could serve as a template to design continuous or stochastic models enabling more 

quantitative predictions. Ultimately, dynamical model analyses should help to understand in more 

details how the different functional outcomes of mast cell activation (degranulation, synthesis of 

lipidic mediators, induction of cytokine transcription) are articulated at the level of the underlying 

molecular network, and to what extend it might be possible to uncouple these functions and 

delineate means to control them separately or collectively. 
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Table I. Main entries related to FceRI signaling in public pathway databases 

DATABASE and URL Pathway entry in the 

coressponding database 

Components and references (when 

specified) 

KEGG Pathway Database 

http://www.genome.jp/kegg/pathway.html 

map04664 33components 

7 references 

Pathway Interaction Database 

http://pid.nci.nih.gov 

Fcer1pathway2 78 components 

 

Biocarta 

http://www.biocarta.com 

Fc Epsilon Receptor I 

Signaling in Mast Cells 

32 components 

 

Pathway Maps 

http://pathwaymaps.com/maps/ 

Immune response_Fc epsilon 

RI pathway 

55 components 

13 references 
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Table II. Stable states of the logical model for mast cell activation (wild-type). All stable states of the 

model are listed, which differ regarding input (Ag, cCbl and PIP2) values, and downstream effects. The * 

refers to both values 0 and 1. 

 

Component ss1 ss2 ss3 ss4 ss5 ss6 ss7 ss8 

Ag (input) 0 0 0 1 1 2 2 2 

Akt * 0 0 0 * * 0 0 

AP1 * * 1 1 * * 0 1 

Bcr 0 0 0 0 0 0 0 0 

Btk 0 0 1 1 0 0 0 1 

Ca 0 0 1 1 0 0 1 1 

CCbl (input) 0 0 1 1 0 0 1 1 

Csk 0 0 1 1 0 0 0 1 

Elk1 0 1 1 1 0 0 1 1 

ERK 0 0 1 1 0 0 0 1 

FceRI-IgE_P 0 0 1 1 0 0 0 1 

FcgRIIB_P 0 0 0 1 0 0 1 1 

Gab2 0 0 0 0 0 0 1 1 

GRB2-SOS 0 0 0 0 0 0 0 0 

JNK 0 0 0 0 0 0 0 0 

LAT 0 0 1 1 0 0 1 1 

LAT2 0 0 1 1 0 0 1 1 

Lyn 0 0 1 1 0 0 1 1 

NFAT 0 1 1 1 0 0 1 1 

NFkB 0 0 1 1 0 0 0 1 

PIP2 (input) 0 0 1 1 0 0 0 1 

PKC 0 0 1 1 0 0 0 1 

PLA 0 0 1 1 0 0 0 1 

PLCG1 0 0 1 1 0 0 1 1 

Rac1 0 0 1 1 0 0 1 1 

RAS 0 0 1 1 0 0 0 1 

RasGAP-Dok1 0 0 0 0 0 0 1 1 

SHIP1 0 0 0 0 0 0 1 1 

SLP76 0 0 1 1 0 0 1 1 

Syk 0 0 1 1 0 0 1 1 

Vav 0 0 1 1 0 0 1 1 
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Table III. Examples of simulations for full receptor activation. Columns 2, 3 and 4 correspond to wild-

type, and Syk and Btk knock-outs, respectively. In each case, we start with initial conditions with Ag=2, 

Lyn=PIP2=1, all other components being set to zero. For both mutants, calcium signaling (hence 

degranulation), NFkB, NFAT and AP1 activity (hence cytokine release), and PLA activation (hence 

membrane synthesis) are impaired, although we observe a broader impact of Syk KO on the activity of 

signaling components. 

 

Component WT Syk KO Btk KO 

Ag (input) 2 2 2 

Akt 0 0 0 

AP1 1 0 0 

Bcr 1 0 1 

Btk 1 0 0 

Ca 1 0 0 

CCbl (input) 0 0 0 

Csk 1 1 1 

Elk1 1 0 1 

ERK 1 0 0 

FceRI-IgE_P 1 1 1 

FcgRIIB_P 1 1 1 

Gab2 0 0 0 

GRB2-SOS 0 0 0 

JNK 1 0 1 

LAT 1 0 1 

LAT2 1 0 1 

Lyn 1 1 1 

NFAT 1 0 0 

NFkB 1 0 0 

PIP2 (input) 1 1 1 

PKC 1 0 0 

PLA 1 0 0 

PLCG1 1 0 0 

Rac1 1 0 1 

RAS 1 0 0 

RasGAP-Dok1 1 1 1 

SHIP1 1 1 1 

SLP76 1 0 1 

Syk 1 0 1 

Vav 1 0 1 
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Figures and Legends of the Figures 

 

Figure 1. Data integration workflow. The construction of a logical model is a multistep process involving 

several iterations. First, a map of relevant biological pathways integrating information from literature and 

public databases is built. Experts then curate this map, leading to the publication of an updated version on the 

web. Web publication facilitates community feedback and hence further refinements and extensions. 

Computational biologists can apply graph analysis tools to identify important nodes and pathways, or use it 

as a scaffold to build dynamical models allowing simulations. Interesting predictions can then be 

experimentally tested, thereby contributing to the validation and refinement of the map and expanding 

current knowledge. 
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Figure 2. Snapshot of the mast cell activation signaling pathway map created with CellDesigner. 
Interactions are color coded: black arrows denotes stimulatory reactions; red blunt end arrow denote 

inhibitions; black round head arrows denote catalysis. Proteins phosphorylation and ubiquitination are 

depicted by P and Ub labels, respectively. Dotted contours emphasize activated entities. Plasma membrane, 

cytoplasm, endoplasmic reticulum, Golgi apparatus, and nucleus compartments are distinguished. 

 

 

Figure 3. Visualization of proteomic data concerning SLP-76 interactome in activated BMMCs on the 

mast cell signaling map. A color scale was defined from light grey (minimum detection level) to bright red 

(for the most enriched) according to the data values. One can see the high enrichment of LAT2 (bright red 

color) (data from Bounab et al., 2013). 
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Figure 4. Modular view of the pruned graph of generated from our molecular map using BiNoM. 

Three modules are obtained corresponding to “incoming flux”, “cyclic part”, and “outgoing flux”, while 

different kinds of connections between these modules are specified: black arrows: molecular flows; red ball 

arrows: catalysis, blue blunt arrows: inhibitions.  
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Figure 5. Modular views of the mast cell signaling network (cf. Figure 2) generated with the 

Cytoscape plugin BiNoM. Modularization according to material components resulted in 45 modules. 

Clustering of these networks resulted in a reduction of this number. Manual refinement lead in an even 

more compact representation. Rectangles: modules with nested networks; Red arrows: catalysis; Blue 

arrows: inhibition; Black arrows: molecular flow. A: 45 modules consisting of material components 

networks. B: 24 modules deriving from clustering of the material components networks (threshold: 35% 

overlapping). C: 12 resulting modules, after manual curation and merging. 
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Figure 6. Regulatory graph of the mast cell signaling logical model. The regulatory graph encompasses 

47 components. Green/red arcs denote activating/ inhibitory regulations. Ellipsoid nodes represent Boolean 

variables, while rectangular nodes represent multivariate variables. Inputs and output nodes are emphasized 

in yellow and pink, respectively. Nodes hidden in the reduced version used for simulations are colored in 

grey. 

 

 

Figure 7.  From CellDesigner molecular map to GINsim logical model. A. Zoom in a section of the 

CellDesigner map. B. Translation of molecular interactions into regulatory interactions into GINsim and 

delineation of the logical rule for GRB-SOS, whose activity depends on the presence of RasGAP-Dok1, Bcr, 

LAT and ERK. 


