N
N

N

HAL

open science

Context-memory Aware Mapping for Energy Efficient
Acceleration with CGRAs
Satyajit Das, Kevin Martin, Philippe Coussy

» To cite this version:

Satyajit Das, Kevin Martin, Philippe Coussy. Context-memory Aware Mapping for Energy Efficient
Acceleration with CGRAs. Design, Automation and Test in Europe Conference (DATE), Mar 2019,

Florence, Italy. hal-02086145

HAL Id: hal-02086145
https://hal.science/hal-02086145

Submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02086145
https://hal.archives-ouvertes.fr

Context-memory Aware Mapping for Energy
Efficient Acceleration with CGRASs

Satyajit Das, Kevin J. M. Martin, Philippe Coussy
Univ. Bretagne-Sud, CNRS UMR 6285, Lab-STICC
Lorient, France
satyajit.das@univ-ubs.fr, kevin.martin @univ-ubs.fr, philippe.coussy @univ-ubs.fr

Abstract—Coarse Grained Reconfigurable Arrays (CGRAs)
are emerging as low power computing alternative providing
a high grade of acceleration. However, the area and energy
efficiency of these devices are bottlenecked by the configura-
tion/context memory when they are made autonomous and loosely
coupled with CPUs. The size of these context memories is of
prime importance due to their high area and impact on the power
consumption. For instance, a 64-word context memory typically
represents 40% of a processing element area. In this context,
since traditional mapping approaches do not take the size of the
context memory into account, CGRAs often become oversized
which strongly degrade their performance and interest. In this
paper, we propose a context memory aware mapping for CGRAs
to achieve better area and energy efficiency. This paper motivates
the need of constraining the size of the context memory inside
the processing element (PE) for ultra low power acceleration.
It also describes the mapping approach which tries to find at
least one mapping solution for a given set of constraints defined
by the context memories of the PEs. Experiments show that
our proposed solution achieves an average of 2.3x energy gain
(with a maximum of 3.1x and a minimum of 1.4x) compared
to the mapping approach without the memory constraints, while
using 2x less context memory. When compared to the CPU, the
proposed mapping achieves an average of 14x (with a maximum
of 23x and minimum of 5x) energy gain.

Index Terms—CGRA, Context memory, Ultra low power,
accelerator

I. INTRODUCTION

The quest for a good trade-off between flexibility and
efficiency leads to continuously explore new architectures and
tools. The high flexibility offered by processors is alleviated
by its poor performance efficiency. On the other extreme, the
high performance efficiency of ASICs is achieved at high
cost and no flexibility. Between these two, a wide range of
architectures have emerged, mainly specialized for a given
application domain. Even if studied for 25+ years, Coarse
Grained Reconfigurable Arrays (CGRAs) are still in the race
as low power computing solution providing a high grade
of acceleration for a very wide range of application family.
CGRAs themselves gather a broad type of reconfigurable
architectures [6]. In this paper, we focus on CGRAs that can
compute full applications based on multi-operations functional
units (FU). The considered CGRA is loosely coupled with the
CPU through a common data interconnection network, and is
configured once for the full workload to be processed. The
CGRA thus needs to store the contexts (or configurations,
or instructions) in each FU (or tile). However, rather big
memory capacities are needed to execute big kernels. The
area and energy efficiency are then bottlenecked by the size

of the configuration/context memory in each tile. Hence, the
compiler must be aware of the resources of the target CGRA.
Taking into account the memory for data is already studied
in [3], [5], [7]. In these papers, the work focuses on data usage,
for a CGRA which is tightly coupled with a CPU and which
is reconfigured cycle-by-cycle, with the goal to minimize the
initial interval of the loop pipelining.

However, dedicated approaches are necessary to make the
compiler aware about the size of the context memory, such
that tiles do not get overflowed by the mapped operations (i.e.
instructions to execute). In this paper we propose a mapping
approach and associated tool that consider the context memory
constraints for the targeted CGRA and tries to find a solution
that fits the target. This gives the opportunity to minimize
the context memory size for a target application domain to
achieve better energy efficiency. In a nutshell following are
the contributions of the paper:

o a formalization to optimistically define the size needed
for the configurations;

o a study of traversal strategies when mapping the applica-
tions;

« a context-memory aware mapping approach that monitors
the number of instructions used for a valid mapping to
guide the mapping tool;

o experimental results on a wide range of kernels.

The rest of this paper is organized as follows. In Section II,
the background is discussed. Section III describes the prob-
lem formulation and the proposed mapping flow. Section IV
presents the experimental results. Finally the paper concludes
in section V.

II. BACKGROUND

CGRA considered in this paper is a grid of tiles (or Process-
ing Elements) interconnected trough a 2D-Mesh torus network.
Each tile contains an ALU, a register file, and computes
independently through its own context memory, decoder and
controller, as presented in figure 1. Each context memory is
loaded previously to computation by a global controller. Some
tiles contain a load/store unit for reading and writing back data
in the data memory through a logarithmic interconnect. The
target CGRA is similar to the one in [1].

A straightforward design of such a CGRA is to define the
same size of the context memory in each tile. However, when
mapping an application on the CGRA, the compiler might not
consider the size of the context memory, leading to oversizing
this memory and finally loosing interest and performance.

CGRA Controller

5
Global Context Memory m

(a) [osa-store ies

To and from memory interconnect

Gated "‘\ I

clock
driven

Control bits ~ Control ~ To the
from all the bits to all neighbouring
PEs the PEs PEs the PEs

(b)
Fig. 1: (a) CGRA ecosystem; (b) Components of PE

40

35 mmm Mapped instructions == Size of the context memory
30 ~}
25 / Hotspot Tiles
20
15
5 ekl
5 I
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tile

Fig. 2: Bad distribution of context words or instructions in
mapping causes overfull usage

Although the program may theoretically fit in the CGRA, a
bad distribution of the contexts may lead to hot-spot tiles or
invalid solutions for overfull usage of the context memory as
shown in Fig. 2, that presents mapping of matrix multiplication
using a context unaware mapping proposed in [1].

The content of the context memory is made of three kinds
of instructions: an operation (including control), a move,
or a nop (no operation). Consecutive nops are gathered in
one programmable nop (pnop) as presented in [1]. In this
context, a mapping tool is thus facing two opposing goals:
(1) introducing graph transformations in order to find a valid
solution, thus increasing the number of operations, moves and
nops, and (2) reducing the number of total instructions to make
the contexts fit in the memory of each tile. Even if an analytical
approach can be used to estimate the number of instructions
needed for a given CDFG, the architectural constraints of the
CGRA force to transform the data-flow graph [4].

The challenge of a CGRA compiler is to find a mapping
between the application and the architecture. Typically, the
application is modeled in an internal representation based on
a CDFG (Control Data Flow Graph), where the control flow
connects each other basic blocks (BBs), themselves composed
of the data-flow part of the application. Since each tile of our
CGRA contains some control logic, it is possible to map a
CDFG onto this CGRA, independently of a CPU. A valid

mapping is thus a set of coherent mappings of each basic
block. The mapping approach must travel each basic block,
and for each block, it must find a valid mapping of the data-
flow graph. The way the control flow and the data flow are
traversed has an influence on the quality of the resulting
mapping [1], [2]. When a valid mapping is found, the compiler
generates the assembly code for each tile, which will be placed
in the context memory.

III. CONTEXT MEMORY AWARE MAPPING

We first present the formalization of the general CGRA
mapping problem with a basic solution. Next, we discuss its
limitations according to context memory awareness with a
goal of achieving higher energy efficiency. We then discuss
the steps in detail to achieve the desired mapping of CDFG
onto CGRA.

A. Basic mapping problem

Let C = (V, E) be a CDFG representing the set of basic
blocks V(C) and control flow set E(C). Each b € V(C)
presents the data flow graph b = (V, V,, E), where Vy(b) is
the set of data nodes, V,(b) is the set of operation nodes and
E € (V, x V) presents the data flow set.

Let another graph T = (V, E) representing the time ex-
tended directed graph (TEDG) with cycle ¢ [4]. Each node
y € V(T) has attributes (r,t), where r € (FU U RF)
refers to the resource and ¢ is the cycle. Each FU = (P, I)
represents the functional unit with an instruction set P and
instruction register file set I in the context memory, and each
RF represents the register file set. Let e = (z,y) € E(T)
be an edge where z = (r1,t) and y = (re,t + 1). Then the
edge e represents a connection from resource r; in cycle ¢ to
resource 7o in cycle t + 1.

We are looking for a mapping from the DFG b to the
target graph 7. All the data and control dependencies in the
CDFG can be mapped to direct edges in the TEDG. The basic
mapping problem is that for any edge e = (z,y) € E(b), there
is an edge e = (f(z), f(y)) € E(T), where f represents the
operation mapping function from the DFG to the TEDG.

B. Solution for the basic mapping problem

The article [1] describes an efficient solution for the basic
mapping problem. The basic approach takes the CGRA TEDG
and CDFG as the inputs. To select one basic block from the
CDFG, the basic mapping traverses the CDFG forward. The
flow uses a backward traversal list scheduling algorithm to
schedule the DFG of the current basic block. It relies on a
heuristic in which the schedulable operations are listed by
priority order, which is defined by their mobility and number
of fan-outs. As soon as the highest priority node has been
determined, the compiler tries to find a binding solution.
The binding uses an incremental version of sub graph match
finding. The algorithm adds the newly scheduled operation
node and its associated data node to the sub-graph composed
of already scheduled and placed nodes. Location constraints
are used to find every possibility to add this couple of nodes
without considering the non-yet scheduled nodes. The location
constraints are added by the data which carry dependency in
several basic blocks. These are defined as symbol variables

(i.e. variable 7 in the CDFG presented in 3(b)). The symbol
variables are always placed into the register file rather than
spilling into the memory for energy efficiency reasons. How-
ever, the forced use of locations may lead to additional routing
(or move operations) which is taken care of in the graph
transformation step. Since the binding is an exact approach,
if no solution is found, there is absolutely no possibility to
bind this couple in all the previous partial solutions. In that
case, graph transformation is required. The basic approach
uses re-computing and re-routing as graph transformation.
The exactness of the binding approach leads to very large
number of partial mappings. It grows exponentially if not
pruned. Hence, a stochastic based pruning approach is applied
after each operation binding, which discards partial mappings
depending on a threshold function. Once all the nodes of the
basic block have been scheduled and bound, the compiler
selects one mapping among the several mappings generated,
and selects the next basic block to be mapped. A forward
CDFG traversal is used for this selection. After mapping of
all the basic blocks a complete mapping is generated and the
assembler generates the binary for each tile.

C. Context memory aware mapping problem

With the basic mapping approach, more than 50% of the
Context Memory (CM) is unused for most of the tiles, as
shown in Fig. 2, except the tiles with load-store units. For
the load-store unit tiles, it drops down to 15%. This kind of
uneven distribution of the instructions is due to the mapping
of compute intensive kernels, where most computations are
performed on the data loaded from memory and the results are
stored into the memory. The load-store nodes are essentially
the hot-spots. However, the waste of context memory in the
rest of the tiles leads to larger area and energy consumption.

Hence, in the context of energy efficient mapping, it is
necessary to take the context memory size into account.
In this paper, we extend the basic mapping problem such
that 32y cp (Vo) + 2 or,ep™To) + X pnoper (PROp) <
> rern(I) and n(M,) + n(pnop) < n(l).

Where n(V,) is the number of operations in each DFG,
n(T,) is the number of transformed operations while map-
ping DFG, n(pnop) is the number of programmable nops
introduced while mapping, n(I) is the number of instruction
registers in the CM in each functional unit and n(M,) is the
number of mapped operation in the functional unit. Hence, the
number of operations mapped onto each tile and the pnops
introduced must not exceed the size of the context memory.

To illustrate the above notations, we present a basic mapping
in Fig. 3(d). In this figure, the CDFG (3(b)) of a sample
program presented in Fig. 3(a) is mapped onto a 3x1 CGRA
shown in the Fig. 3(c).

D. Proposed memory aware mapping

To satisfy the equilibrium between the number of mapped
operations for a tile and the size of context memory, the key is
to sort the partial mappings and explore the design space better.
As opposed to the basic mapping approach, where the partial
mapping solution space is reduced without any constraints to
achieve better compilation time, the partial mapping solutions

Cyde | Tiler | Tilez | Tile3

------ 1i=0 }M }ﬂl
= 2[jump bb2 [jump bb2. [jump bb2.
g 1]if(i<512) nop nop
2[cjump bb3, bb4 |cjump bb3, bb4 |cjump bb3, bb4

1[move i nop nop.
2|load a[i] load b[i] move i

3[x=alij+b(il _|y=ali*blil __|nop
4li++ nop 2lil=xty

5[nop nop store 2(i]
) bb3 6ljump bb4 [jump bba [jump bba
[bba 1[eof eof eof

Total number

of operations
mapped (sn(Vo)) 9 6 6

Total number
of programmable
nops (£n(pnops)) 1 4 4

Void sample(int
all, int b, int z[])

inti, x, y;
for(i=0; i<x512;
i+4)

{

x=al]+blil; ™
y =ali] *cli];
2[i] = ai]+b[i];
}

(a)

Total number
(b) of transformed
nodes (2n(To)) 1 0 1

=-m-

@ (d)
Fig. 3: (a) Sample program; (b) CDFG representation of the
program in (a); (c) a 3x1 CGRA; (d) Illustration of total
number of operations mapped with n(Vo), n(To) and n(pnop)
using the mapping of the CDFG in (b) onto the CGRA in (c)

CDFG with weighted
traversal

r> Scheduling
no
J

Constraint
Aware Binding

Solution found?

yes—v
Approximate Context
Memory Aware

Exact Context Memory
Aware Pruning
(ECMAP)
yes

i Stochastic
AR

Fig. 4: Context memory aware mapping flow based on basic
approach

Transformation

Pruning (ACMAP)

in the context memory aware approach must be pruned smartly
to satisfy the memory size. We introduce several steps in the
basic mapping approach (in Fig. 4) to achieve the memory
constraint aware mapping for a given CGRA architecture with
a very small compromise in the compilation time.

1) CDFG with weighted traversal: As discussed earlier,
the location constraints for the symbol variables introduces
additional routing increasing the number of move operations
where the symbol variable is stored and consequently number
of pnops in the other tiles. Hence, for a context memory
aware mapping, managing the symbol variables is important.
Mapping first the basic blocks which contain the highest
number of symbol variables gives the possibility to introduce
less number of moves. Hence, we first compute the weight
of each basic block as the function Wy, = n(s) + Z:L:(B) s»
where n(s) denotes number of symbol variables present in
the basic block and f; denotes the number of fan-outs of each
symbol variable. The CDFG is traversed (see Fig. 4) according
to the descending order of the basic blocks’ weight.

Fig. 5 represents the comparison in the number of pnops
and moves between the proposed weighted traversal and the
forward CDFG traversal in the basic mapping flow. Fig. 5
presents the results for an FFT kernel, but the trend is similar
for all other kernels. In this case the weighted traversal resulted
around 42% reduction in moves and 24% reduction in pnops
compared to the forward traversal. This new traversal helps in
reducing the number of move and pnop instructions, but does

Lower is better B moves pnops

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tile

[y

o
o0

o
(9]

o
Y

o
N

Number of moves and pnops normalized to the
ones in forward traversal

Fig. 5: Number of pnops and mowves in weighted traversal
normalized to forward traversal

not guarantee a limited number of instructions.

The next steps introduce memory size constraints in the
mapping.

2) Approximate Context memory Aware Pruning (ACMAP):
The exact approach in the binding stage (see section III-B)
generates all the possible placement solutions for the current
node. Over time this causes bottleneck due to exponential
growth in the number of partial mapping solutions. The
stochastic based pruning approach helps to reduce the number
of partial solutions and better scale the compilation time.
Since this pruning process is random in nature, it is possible
to discard the valid solutions which are compliant with the
memory constraints of the tiles and keep the solutions which
violate the constraints.

Hence, it is necessary to add an additional pruning step
just before the stochastic pruning (see Fig. 4), which filters
the partial solutions according to the memory constraints.
For every partial mapping, the approximate context memory
aware pruning computes the number of operations mapped and
the approximate number of pnops for each functional unit.
Since the actual number of the pnops can only be obtained
after each cycle of mapping, this step computes the upper
limit of pnop possible for each functional unit (a pessimistic
estimation). On the one hand, approximate number of pnops
computed in the method aids to keeping solutions which may
not actually fit in the context memory of the tiles. On the other
hand, not computing the possible higher number of pnops
in this stage allows discarding solutions which may fit the
memory constraints. Hence, we introduce an exact memory
aware pruning.

3) Exact Context memory Aware Pruning (ECMAP): The
exact context memory aware pruning is introduced before
moving to the next cycle (see Fig. 4). For each partial mapping,
the exact memory aware pruning computes the number of
operations mapped and the exact number of pnops for each
functional unit. This filter helps to keep only the valid partial
mappings according to the memory constraints. However, the
binding approach does not take into account which tiles are
already full and will be discarded anyway in the memory aware
pruning step. For better exploration of the design space, we
have added the constraint awareness in the exact binding step,
which is discussed in the following.

TABLE I: Different configurations for context memory

Load- | Tiles Tiles Tiles
Config Store with with with Total
tiles CM 64 | CM 32 CM 16
HOM64 1-8 1-16 1024
HOM32 | 1-8 1-16 512
HET1 1-8 1-4 5-8, 13-16 | 9-12 576
HET2 1-8 1-4 5-8 9-16 512

4) Constraint Aware Binding (CAB): For each partial map-
ping in the exact pruning stage we characterize each tile
depending on the number of operations mapped and pnops.
The tiles which cannot take any further instruction are tagged
as the blacklisted tiles for the partial mapping. While the
compiler binds the next operation for this partial mapping, the
blacklisted tiles are discarded from the binding possibilities.
This helps to create new partial mappings only for the valid
tiles, giving the opportunity for better exploring the solution
space.

We have introduced four dedicated steps in the basic map-
ping approach to achieve context aware mapping. In the next
section we evaluate the performance of the proposed approach.

IV. EXPERIMENTAL RESULTS

This section analyses the performance of context memory
aware mapping compared to the basic mapping approach. It
also discusses implementation results for the target CGRA
providing area, and energy consumption while running several
compute intensive signal processing kernels.

A. Experimental setup

To analyze the mapping quality of the context aware map-
ping, we present latency results for different CM sizes. Four
different configurations as shown in the table I are considered
for these experiments.

In HOM64 and HOM32, all the tiles have CM of size 64
and 32 respectively. In the HET1 configuration, only the 4 (tile
1, 2, 3, 4) out of 8 load-store tiles have CM of size 64. The
tiles in the two rows which are in the nearest neighbor of the
tiles 1, 2, 3 and 4 (tile 5, 6, 7, 8 and 13, 14, 15, 16) have CM
of size 32. The rest of the 4 tiles (tile 9, 10, 11, 12) have CM
of size 16. In the configuration HET?2, tiles in the two rows of
load-stores (tile 1, 2, 3, 4 and tile 5, 6, 7, 8) have CM-64 and
CM-32 respectively. All the other tiles in this configuration
have CM of size 16.

B. Comparing different approaches

Since, the context memory aware mapping upgrades the
basic approach by adding several smart pruning steps, we
profile mapping performance of each additional step. Map-
pings generated by the basic mapping approach is run on the
HOMG64 configured CGRA (since the basic mapping generates
maximum of 64 word context in the tiles while mapping
this specific set of signal processing kernels), whereas the
mappings generated by the additional steps are run on the
HOM32, HET1 and HET2.

Fig. 6 shows the mapping results after adding the approx-
imate context memory aware pruning (ACMAP) step in the
basic approach. The latency results are normalized with the
performance of the basic approach for HOM64 configuration.
The zero values in the chart refer to no mapping solution. For

lower the better

2 14
£ . == HOM32 HET1 HET2 ——HOMé64
Q
2 12
Qo
@ 1
E=]
=] = 0.8
hall <
(=%
% § 0.6
gF o4
2 02
>
g 0
P~ X X X
5 N P R
6‘0 (_)Q,Q éjq,Q Y
<& O

Fig. 6: Latency comparison in different configuration with
basic + ACMAP
Lower the better

= HOM32 HET1 HET2 e==——HOM64

1.2

0.8
0.6
0.4
0.2

Latency normalized to the baseline
mapping

Compilation time normalized to the
baseline mapping
o =
o vl [4,
]
/) §

NI
L &
Q

(/0
Fig. 7: Latency comparison in different configuration with
basic + ACMAP + ECMAP

example in the matrix multiplication, non seperable filter and
FFT, the approximate pruning could not find any solution for
the HOM32, HET1, HET2 configuration. For the convolution
and seperable filter, it was able to find the solution for the
HOM32 and HET1 but could not find the solution for HET2
configuration. The abundance of invalid mappings in this step
is the evidence of finding less solutions.

In Fig. 7, we present latency results after introducing the
exact context memory aware pruning (ECMAP) step in the
basic + ACMAP version. It is obvious that the mapping
performance is improved, since the addition of the exact
pruning helps to find mapping solutions for most of the times
except for the kernels matrix multiplication, FFT and non
seperable filter. One interesting observation is that, when the
tiles are over constrained the penalty in latency performance
is very small. We have investigated that the configuration
where the exact pruning could not find the mapping solution
is HOM32, where all the load store tiles are over constrained.

Fig. 8 presents the latency results after adding CAB. The
figure shows that the latency performance for the configuration
HET?2 improves compared to the previous version.

Since adding the pruning steps require additional compi-
lation time, we compared the penalty after each additional
step. Fig. 9 shows the average compilation time for the
context aware mapping with each addition normalized with
the basic approach. The results show that context memory
aware mapping performs with an average of 1.8x increased

lower the better

()
£ = HOM32 HET1 HET2 ——HOM64
g 12
o
2 1
2g os
=
%g 0.6
E
S 04
=
z 02
8
& 0
-
N X o3 3
NI
© R R Y
& &

Fig. 8: Latency comparison in different configuration with
basic + ACMAP + ECMAP + CAB

lower the better

B basic + ACMAP basic + ACMAP + ECMAP

B basic + ACMAP + ECMAP + CAB = basic mapping

Fig. 9: Compilation time comparison after adding each step
of memory aware mapping

compilation time. However, since the average compilation time
for the basic mapping approach and context memory aware
mapping averages around 17 and 30 seconds respectively, the
penalty is acceptable.

Finally, we compared the performance of the basic map-
ping and the context memory aware mapping with the cpu
performance. For comparison we consider orlk cpu. Fig. 10
presents the total execution time (clock cycles) of seven
compute-intensive kernels. The execution time is normalized
with respect to that of orlk processor, where the kernels are
compiled with -O3 optimization flag. The performance of the
context aware mapping is evaluated in the HET1 and HET2
configurations, which shows that it performed almost similarly
as the basic mapping with decreased context memory size. As
a result, the context aware mapping achieves an average of
10x speed up with a maximum of 22x for the HET1 and 19x
for HET2, and a minimum of 5x for both configurations.

C. Area and Energy Results

This section describes the implementation results for the
CGRA with different configurations to present the area effi-
ciency achieved by the context aware mapping, providing a
comparison with the orlk CPU. The designs were synthesized
with Synopsys design compiler 2014.09-SP4 using STMicro-
electronics 28nm UTBB FD-SOI technology libraries. Syn-
opsys PrimePower 2013.12-SP3 was used for timing and
power analysis at the supply of 0.6V, 25°C temperature, in

lower the better

0.25 B Basic mapping for HOM64
=) Context aware mapping for HET1
5 o2 Context aware mapping for HET2
£
2 80.15
T C
o G
1o
£ g 0.
s g
2 0.05
c
: [
g 0
& S S & e
@’b \5& Q((\ é(\ (j(\
& & i 9
& eo(\

Fig. 10: Execution time comparison between context aware
mapping and not context aware mapping normalized to CPU
execution

mALU ™M RRF
CRF M Controler M Global context memory
B Data memory B interconnect HCPU
250000
o~
€ 200000
o
S 150000 —
E I
£ 100000
©
<
@ 50000
, [.
HOM64 HET1 HET2 CPU

Fig. 11: Area comparison with the CPU

typical process conditions. The cycle information was achieved
simulating the RTL with Mentor Questa Sim-64 10.5c. In the
following, the experiments consider a CGRA of 4x4 array
with 16 PEs, each one including 20x64-bit CM for HOM64.
For HET1 and HET?2, the CM used are of 20x64, 20x32
and 20x16. The regular register files used are of 32x8-bit
and the constant register files are of 32x16-bit. For area
comparison, the CPU includes 32 kB of data memory, 4 kB
of context memory, and 1 kB of instruction cache, which is
equivalent to the design parameters of the CGRAs used in
the experiments. Fig. 11 shows the area breakdown for the
CGRAs with different configuration. The reduced area usage
by the context memory in HET1 and HET2 helps in gaining
energy efficiency which is shown in later set of experiments.
Thanks to the context memory aware mapping, the compilation
finds solutions for the HET1 and HET?2. As a result, the total
area overhead becomes 1.5x compared to 2x in the HOM64.

Table II compares the energy consumption in pJoule while
running different kernels in the CGRA and CPU. The map-
pings generated by the basic approach were run in the HOM64
version of the CGRA, while the HET1 and HET?2 run the
mappings generated by the context aware approach. Results
show that the context aware mapping achieves an average of
2.3x energy gain (with a maximum of 3.1x in HETI and
2.75x in HET2, and a minimum of 1.4 x in both configuration)
compared to the basic mapping. Comparing with the CPU, the

TABLE II: Energy consumption in pJoule for not context
aware and context aware mapping compared with CPU

Basi Context Context
asic
Kernels CPU mapping ?:;“;:;ng ?n“:;z)l;ing
HOM®64 HET1 HET2
FIR 0.132 | 0.022 6x | 0.007 18x | 0.008 17x
MatM 2.037 | 1.041 2x | 0.456 4x | 0.49 4x
Convolution 2.159 | 0221 10x | 0.157 14x | 0.157 14x
SepFilter 20.94 4.246 5x | 2314 9x | 2.482 8x
NonSepFilter [31.794 | 6.298 5x | 2.22 14x | 2.333 14x
FFT 0.576 | 0.033 17x | 0.025 23x | 0.028 2Ix
DC Filter 0.175 | 0.019 9x | 0.01 18x | 0.01 18x

context aware mapping achieves an average of 14x (with a
maximum of 23x and minimum of 5x) energy gain. In [1],
it is reported that the basic mapping approach combined with
the target CGRA with HOM64 configuration achieves leading-
edge energy efficiency, surpassing by more than one order of
magnitude other state of the art architectures.

V. CONCLUSION

This paper presents a novel context memory aware mapping
to achieve better area and energy efficiency. The approach
adds smart pruning steps into a basic mapping flow to satisfy
memory constraints. As a result, the proposed approach is
able to find mappings for CGRAs with less context memory.
Experiments show that the proposed mapping uses almost half
of the context memory compared to a homogeneous memory
solution used in the basic mapping approach. Consequently,
the proposed approach achieves an average of 2.3x energy
gain (with a maximum of 3.1x in HET1 and 2.75x in HET2,
and a minimum of 1.4x in both configuration) compared to
the basic mapping. Compared to the CPU, the context aware
mapping achieves an average of 14x (with a maximum of
23x and minimum of 5x) energy gain.

REFERENCES

[1] S. Das, K. J. Martin, D. Rossi, P. Coussy, and L. Benini. An energy-
efficient integrated programmable array accelerator and compilation flow
for near-sensor ultra-low power processing. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

S. Das, T. Peyret, K. Martin, G. Corre, M. Thevenin, and P. Coussy. A

scalable design approach to efficiently map applications on cgras. In VLS

(ISVLSI), 2016 IEEE Computer Society Annual Symposium on, pages

655-660. IEEE, 2016.

S. Dave, M. Balasubramanian, and A. Shrivastava. RAMP: Resource-

aware Mapping for CGRAs. In Proceedings of the 55th Annual Design

Automation Conference, DAC 18, pages 127:1-127:6, New York, NY,

USA, 2018. ACM.

[4] M. Hamzeh, A. Shrivastava, and S. Vrudhula. EPIMap: using epimor-
phism to map applications on CGRAs. In DAC, pages 1284-1291. ACM,
2012.

[5] Y. Kim, J. Lee, A. Shrivastava, J. Yoon, and Y. Pack. Memory-Aware

Application Mapping on Coarse-Grained Reconfigurable Arrays. In Y. N.

Patt, P. Foglia, E. Duesterwald, P. Faraboschi, and X. Martorell, editors,

High Performance Embedded Architectures and Compilers, number 5952

in Lecture Notes in Computer Science, pages 171-185. Springer Berlin

Heidelberg, Jan. 2010.

M. Wijtvliet, L. Waeijen, and H. Corporaal. Coarse grained reconfigurable

architectures in the past 25 years: Overview and classification. In 2016

International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation (SAMOS), pages 235-244, July 2016.

S. Yin, X. Yao, D. Liu, L. Liu, and S. Wei. Memory-Aware Loop Mapping

on Coarse-Grained Reconfigurable Architectures. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 24(5):1895-1908, May

2016.

[2

—

3

=

[6

[t

[7

—

