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Abstract

Triangular fully packed loop configurations (TFPLs) emerged as auxiliary ob-
jects in the study of fully packed loop configurations on a square (FPLs) corre-
sponding to link patterns with a large number of nested arches. Wieland gyration,
on the other hand, was invented to show the rotational invariance of the numbers
Aπ of FPLs corresponding to a given link pattern π. The focus of this article is the
definition and study of Wieland drift on TFPLs. We show that the repeated ap-
plication of this operation eventually leads to a configuration that is left invariant.
We also provide a characterization of such stable configurations. Finally we apply
Wieland drift to the study of TFPL configurations, in particular giving new and
simple proofs of several results.

Keywords: Triangular fully packed loop configurations, Wieland gyration

1 Introduction

Triangular fully packed loop configurations (TFPLs) first appeared in the study of or-
dinary fully packed loop configurations (FPLs). There they were used to show that the
number of FPLs corresponding to a given link pattern with m nested arches is a polyno-
mial in m, see [3]. It soon turned out that TFPLs possess a number of nice properties,
which made them worthy objects of study by themselves. For instance, they can be seen
as a generalized model for Littlewood–Richardson coefficients, thereby establishing an un-
expected link to algebra. This was first proved in [6] by a convoluted argument and later
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in [4] in a direct combinatorial manner and in a more general setting. Other combinatorial
aspects of TFPLs, many of them still conjectural, are studied in [5, 8].

In 2000 Wieland [9] invented the operation on FPLs which bears his name. The
Wieland gyration was used to prove the rotational invariance of the numbers Aπ of
FPLs corresponding to a given link pattern π. It was later heavily used by Cantini and
Sportiello [2] to prove the Razumov–Stroganov conjecture. It also came up in connection
with TFPLs already in [5] following work of [8].

The main contribution of this article is the explicit definition of Wieland drift for
TFPLs together with a detailed study of some of its properties.

While the usual Wieland gyration of FPLs is an involution, our left-Wieland drift
WL acting on TFPLs is not. By a finiteness argument, the sequence (WLm(f))m>0

is eventually periodic. In Theorem 15, it will be shown that the length of the period
is always one, which means one always reaches a TFPL which is invariant under left-
Wieland drift. In fact, if N is the size of f , then less than 2N iterations of WL will suffice
to obtain such stable configurations. A key step in the proof of Theorem 15 is to classify
these stable TFPLs. It turns out that this depends solely on the occurrence of a certain
type of edges called drifters : this is the content of Theorem 16. These results also hold
for right-Wieland drift.

Now to each TFPL are assigned three binary words u, v and w that encode its
boundary conditions. Such binary words σ are naturally associated with Young di-
agrams λ(σ), and by the results of [6, 4] TFPLs with boundary (u, v;w) such that
|λ(u)|+ |λ(v)| = |λ(w)| are enumerated by the Littlewood-Richardson-coefficient cwu,v. We
will show that such TFPLs are stable. In general, the boundary (u, v;w) of a TFPL has
to satisfy |λ(u)|+ |λ(v)| 6 |λ(w)|: this was proved first in [8] using Wieland gyration and
a certain degree argument, and later in a combinatorial fashion in [4]. Here we will use
left- and right-Wieland drifts to give a simple proof of this inequality.

The paper is divided as follows. In Section 2 we recall the definitions of FPLs and
TFPLs as well as elementary properties of binary words and Young diagrams. Section 3
contains the definition of our main construction – the left-Wieland drift acting on TFPLs
(based on Wieland’s original definition). It is introduced in Definition 7 and we give
its first properties, culminating in Theorem 13. We can then state the theorems about
stability of TFPLs, namely Theorems 15 and 16, which are proved in Section 4. Finally,
Section 5 contains applications of Wieland drift to enumerative questions concerning
TFPLs.

2 Definitions and elementary properties

In this section we recall the definitions of FPLs and TFPLs, and the binary words attached
to the boundary of a TFPL with the necessary conditions they must satisfy.
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2.1 Fully packed loop configurations

Fully packed loop configurations first came up in statistical physics; they are an alternative
representation of six-vertex model configurations which are in one-to-one correspondence
with square-ice configurations, see for example [1] and [9]. Furthermore, they are in
bijection with alternating sign matrices and other combinatorial configurations, cf. [7].

We start with the graph Gn, which is defined as the square grid with n2 vertices
together with 4n external edges. The (n+ 1)2 unit squares of this grid, including external
cells that have two or three surrounding edges only, are said to be the cells of Gn. They are
partitioned into odd and even cells in a chessboard manner where by convention the cells
on the main Northwest-Southeast diagonal are odd. In Figure 1, the graph G8 together
with its odd and even cells is depicted.
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Figure 1: The graph G8 with its odd and even cells.

Definition 1. A fully packed loop configuration (FPL) of size n is a subgraph F of Gn

satisfying that

1. each vertex of Gn is incident to two edges of F , and

2. precisely every other external edge belongs to F .

Given an FPL F a cell of F is defined as a cell of Gn together with those of its
surrounding edges that belong to F . An example of an FPL is given in Figure 2. In a
natural way, every FPL defines a non-crossing matching of the occupied external edges –
its so-called link pattern – by matching those which are joined by a path.

In the course of the study of FPLs corresponding to fixed link patterns with a suffi-
ciently large number of nested arches, TFPLs first occurred: such FPLs admit a combina-
torial decomposition, in which TFPLs naturally arise. This combinatorial decomposition
first came up in the course of the proof in [3] of a conjecture in [10] stating that if we in-
troduce m nested arches in a fixed link pattern π then the number of FPLs corresponding
to this link pattern is a polynomial function in m as m varies.
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Figure 2: An FPL of size 8.

2.2 Triangular fully packed loop configurations

To give the definition of triangular fully packed loop configurations we need the following
graph:

Definition 2 (The graph GN ). Let N be a positive integer. The graph GN is defined
as the induced subgraph of the square grid made up of N consecutive centered rows of
3, 5, . . . , 2N + 1 vertices from top to bottom together with 2N + 1 vertical external edges
incident to the 2N + 1 bottom vertices.

In the following, let LN = {L1, L2, . . . , LN} (resp. RN = {R1, R2, . . . , RN}) be the
set made up of the leftmost (resp. rightmost) vertices of the N rows of GN , where the
vertices are numbered from left to right. Furthermore the N(N + 1) unit squares of GN ,
including external unit squares that have three surrounding edges only, are said to be the
cells of GN . They are partitioned into odd and even cells in a chessboard manner where
by convention the top left cell of GN is odd. In Figure 3 the graph G7 together with its
odd and even cells is pictured.
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Figure 3: The graph G7 with its odd and even cells.

Definition 3 ([4]). Let N be a positive integer. A triangular fully packed loop configura-
tion (TFPL) of size N is a subgraph f of GN such that:

(i) Every other external edge starting with the second one belongs to f .
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(ii) The 2N vertices in LN ∪RN have degree 0 or 1.

(iii) All other vertices of GN have degree 2.

(iv) A path in f neither connects two vertices of LN nor two vertices of RN .

An example of a TFPL is given in Figure 4. Similar to FPLs, a cell of f is a cell of
GN together with those of its surrounding edges that belong to f . A cell is called interior
if it is not an external cell.

L1
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R5
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R7

Figure 4: A TFPL of size 7.

By binary words we refer to words σ = σ1 · · · σN where σi ∈ {0, 1} for each 1 6 i 6 N .
In the following, the number of occurrences of 1 (resp. 0) in a binary word σ is denoted by
|σ|1 (resp. |σ|0). To each TFPL of size N a triple of binary words of length N is assigned
as follows:

Definition 4. Let f be a TFPL of size N . The boundary of f is a triple (u, v;w) of
binary words of length N defined as follows:

1. ui = 1 if and only if Li ∈ LN has degree 1,

2. vi = 1 if and only if Ri ∈ RN has degree 0 and

3. wi = 1 if and only if the i-th external edge in f – counted from left to right – is
connected by a path in f either with a vertex in LN or with an external edge to its
left.

The set of all TFPLs with boundary (u, v;w) is denoted by Twu,v and its cardinality
by twu,v. For example, the triple (0101111, 0011111; 1101101) is the boundary of the TFPL
depicted in Figure 4. A triple (u, v;w) that is the boundary of a TFPL has to fulfill
certain necessary conditions. To formulate them the following standard result is needed:

Proposition 5 ([6]). For given non-negative integers k and ` the following two sets are
in bijection:

(i) the set of binary words σ satisfying |σ|0 = k and |σ|1 = ` and

the electronic journal of combinatorics 22(1) (2015), #P1.26 5



(ii) the set of Young diagrams fitting in the rectangle with k rows and ` columns.

In Figure 5 an example for the bijection between binary words and Young diagrams
is given. The Young diagram corresponding to a binary word σ is denoted by λ(σ).
Furthermore, λ(τ) ⊆ λ(σ) means that the Young diagram λ(τ) is included in the Young
diagram λ(σ) and |λ(σ)| denotes the number of cells of the Young diagram λ(σ). Note
that |λ(σ)| coincides with the number of inversions of the binary word σ.

00

1 1 1 1
0

1

1 1 1 1 1
0

1 1
0

0
1 1

1

u v w

Figure 5: The Young diagrams which correspond to the boundary
(0101111, 0011111; 1101101) of the TFPL in Figure 4.

Theorem 6. [[3, 8, 4]] In order for a TFPL configuration with boundary (u, v;w) to exist,
the following must be satisfied:

|u|0 =|v|0 = |w|0, (1)

λ(u) ⊆ λ(w) and λ(v) ⊆ λ(w), (2)

|λ(u)|+|λ(v)| 6 |λ(w)|. (3)

Conditions (1) and (2) are reasonably easy to prove. In Section 5, we will provide a
new proof of Condition (3) using Wieland drift on TFPLs.

To end this section we need certain skew shapes which play an important role in the
context of left- and right-Wieland drift. A skew shape is said to be a horizontal strip (resp.
a vertical strip) if each of its columns (resp. rows) contains at most one cell. Examples
are given in Figure 6.

Figure 6: The horizontal strip λ(1111001100)/λ(0111100110) and the vertical strip
λ(1100111100)/λ(1001111001).

Consider two binary words σ and τ satisfying |σ|1 = |τ |1 and |σ|0 = |τ |0. Then the
skew shape λ(τ)/λ(σ) is a horizontal strip (resp. a vertical strip) if and only if for each
j ∈ {1, . . . , |σ|1} (resp. j ∈ {1, . . . , |σ|0}) the following holds: If σi is the j-th one ( resp.
zero) in σ, then τi−1 or τi ( resp. τi or τi+1) is the j-th one ( resp. zero) in τ .

In the following, if the skew shaped Young diagram λ(τ)/λ(σ) is a horizontal strip

(resp. a vertical strip), we will write σ
h−→ τ (resp. σ

v−→ τ).
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3 Wieland drift for TFPLs

In this subsection the definitions of left- and right-Wieland drift for TFPLs are given and
some first properties are derived. The starting point is the definition of Wieland gyration
for FPLs. It is composed of local operations on all active cells of an FPL: the active cells
of an FPL can be chosen to be either all its odd cells or all its even cells.

Let F be an FPL and c be an active cell of F . Then we must distinguish two cases,
namely whether c contains precisely two edges of F on opposite sides or not. If this is the
case then Wieland gyration W leaves c invariant. Otherwise, the effect of W on c is that
edges and non-edges of F are exchanged. In Figure 7 the action of W on an active cell is
illustrated. The result of applying W to each active cell of F is said to be the image of F
under Wieland gyration and is denoted by W(F ).

Figure 7: Up to rotation, the action of W on the active cells of an FPL.

In Figure 8 the image of the FPL depicted in Figure 2 under Wieland gyration with
the odd cells being active is pictured.

W

Figure 8: The image of the FPL depicted in Figure 2 under Wieland gyration with the
odd cells being active.

Wieland drift as it will be defined for TFPLs is based on the operation W. Active
cells of a TFPL can be chosen as either all its odd cells or all its even cells. Choosing all
odd cells as active cells will lead to what will be defined as left-Wieland drift, whereas
choosing all even cells as active cells will lead to what will be defined as right-Wieland
drift.
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Definition 7 (Left-Wieland drift). Let f be a triangular fully packed loop configuration

with left boundary word u and let u− be a binary word such that u−
h−→ u. The image

of f under left-Wieland drift with respect to u− is determined as follows:

1. Insert a vertex L′i to the left of Li for 1 6 i 6 N . Then run through the occurrences
of ones in u−: Let {i1 < i2 < . . . < iN1} = {i|u−i = 1}.

(a) If uij is the j-th one in u, add a horizontal edge between L′ij and Lij .

(b) If uij−1 is the j-th one in u, add a vertical edge between L′ij and Lij−1.

2. Apply Wieland gyration to each odd cell of f .

3. Delete all vertices in RN and their incident edges.

After shifting the whole construction one unit to the right, one obtains the desired image
WLu−(f).

In the case u− = u, we will simply write WL(f) and speak of the image of f under
left-Wieland drift.

In the following, to distinguish between vertices in f and in WLu−(f) the following
notation is chosen: when regarding the image under left-Wieland drift with respect to u−,
we will write x′ for each vertex x of GN .

In Figure 9 the TFPL depicted in Figure 4 with its odd cells marked by gray discs and
its image under left-Wieland drift with respect to 0011111 are pictured. It is a TFPL with
boundary (0011111, 0101111; 1101101). Note that the left boundary of the TFPL pictured

in Figure 4 is 0101111 and 0011111
h−→ 0101111. Also, the new right boundary 0101111

and the right boundary 0011111 of the preimage satisfy that 0011111
v−→ 0101111. This

turns out to hold in general:
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L7 R1
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6
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7

R′
1

Figure 9: The TFPL depicted in Figure 4 and its image under left-Wieland drift with
respect to 0011111.

Proposition 8. Let f be a TFPL with boundary (u, v;w) and let u− be a binary word

satisfying u−
h−→ u. Then WLu−(f) is a TFPL with boundary (u−, v+;w) where v+ is a

binary word satisfying v
v−→ v+.
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Proof. First we have to check that WLu−(f) indeed is a TFPL, that is the four conditions
in Definition 3 must be satisfied. By definition the vertices L′1, L

′
2, . . . , L

′
N have degree 0

or 1. For the degree of R′i to be 2 in WLu−(f) the vertex to the left of Ri would need
to be adjacent both to Ri−1 and Ri in f , which is excluded since no path in f joins two
vertices in RN by Definition 3(iv). Thus the vertices R′1, R

′
2, . . . , R

′
N have degree 0 or 1

in WLu−(f). All other vertices have degree 2 in WLu−(f) since they simply come from
the application of W to cells of f . Finally let f ′ denote the configuration that is obtained
before the vertices of RN are deleted. Since Wieland gyration preserves the connectivity
of path endpoints in each active cell this is also true in f ′. Thus a path in WLu−(f)
neither joins two vertices in LN ′ nor two vertices in RN ′ and by that Definition 3(iv) is
satisfied.

It remains to check the assertion on the boundary. The left boundary of WLu−(f) is
u− by construction. The right boundary v+ of WLu−(f) satisfies v

v−→ v+ by Proposition
10 below and the characterization of pairs σ, σ+ of binary words satisfying σ

v−→ σ+ at
the end of Section 2. Finally, the bottom boundary of WLu−(f) is w because Wieland
gyration preserves the connectivity of path endpoints in each active cell.

The lemma below treats the effects of left-Wieland drift along the right boundary of
a TFPL.

Lemma 9. Let f, u−, v+ be as in Proposition 8. Then v+ 6= v if and only if there exists
a vertex in RN which is incident to a vertical edge of f .

Proof. We denote by xs the vertex to the left of Rs for all 1 6 s 6 N .
Let f be a TFPL with a vertex Rj incident to a vertical edge and pick j minimal.

Then xj is necessarily adjacent both to the vertex to its left and to the vertex below so
by Wieland drift R′j is of degree 0 in WLu−(f). Since Rj is of degree 1 this shows v 6= v+.

Conversely, suppose that v+ 6= v. By Proposition 8 there exists necessarily a j ∈
{1, 2, . . . , N − 1} such that vj = 0 and v+j = 1. R′j is of degree 0 in WLu−(f), so xj is
adjacent in f both to the vertex to its left and to the vertex below it. Since Rj is of
degree 1 it is necessarily incident to a vertical edge.

As a byproduct of the previous proof one can in fact precisely describe the right
boundary v+ as follows:

Proposition 10. Conserve the hypotheses of Lemma 9. For each i such that Ri is adjacent
to a horizontal edge ( resp. a vertical edge) then v+i = 0 ( resp. v+i+1 = 0). All other values
v+j ’s are equal to 1.

Right-Wieland drift. In the definition of left-Wieland drift the active cells are all odd
cells of a TFPL. When selecting all even cells of a TFPL as active cells right-Wieland
drift is obtained. It depends on a binary word v− satisfying v−

v−→ v that encodes what
happens along the right boundary of a TFPL with right boundary v and is denoted by
WRv− respectively WR if v− = v. It is defined in an obvious way as the symmetric version
of left-Wieland drift. We shall simply illustrate it with an example in Figure 10.

There are immediate symmetrical versions of Propositions 8 and 10 for WR which we
record:
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Figure 10: A TFPL and its image under right-Wieland drift with respect to 0011111.

Proposition 11. The image of a TFPL with boundary (u, v;w) under right-Wieland
drift with respect to v− is a TFPL with boundary (u+, v−;w) where u+ is a binary word

satisfying u
h−→ u+.

Proposition 12. Keep the notations of the previous proposition. For each index i such
that Li is adjacent to a horizontal edge ( resp. a vertical edge), there holds u+i = 1 ( resp.
u+i−1 = 1). All other values u+j ’s are equal to 0.

Given a TFPL with right boundary v, the effect of left-Wieland drift along the right
boundary of the TFPL is inverted by right-Wieland drift with respect to v. On the other
hand, given a TFPL with left boundary u the effect of right-Wieland drift along the left
boundary is inverted by left-Wieland drift with respect to u. Since Wieland gyration is
an involution on each cell, it follows:

Theorem 13. 1. Let f be a TFPL with boundary (u+, v;w) and u be a binary word

such that u
h−→ u+. Then

WRv(WLu(f)) = f.

2. Let f be a TFPL with boundary (u, v+;w) and v be a binary word such that v
v−→ v+.

Then
WLu(WRv(f)) = f.

Remark 14. It is perhaps useful to point out that WR(WL(f)) 6= f in general. Indeed
by Lemma 9 equality will hold precisely when all vertices Ri of degree one are adjacent
to horizontal edges.

In Section 4 we will study the behaviour of TFPLs under iterated applications of WL.
In Figure 11 an example of a TFPL to which left-Wieland drift is repeatedly applied is
depicted: one checks that the last TFPL in the sequence is invariant under left-Wieland
drift. In the following, a TFPL that is invariant under left-Wieland drift is said to be
stable.

Given a TFPL f , the sequence (WLm(f))m>0 is eventually periodic since there are
only finitely many TFPLs of a fixed size. The length of this period is in fact always 1.
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WL

WL WL

Figure 11: A TFPL to which left-Wieland drift is repeatedly applied.

Theorem 15. Let f be a TFPL of size N . Then WL2N−1(f) is stable, so that the
following holds for all m > 2N − 1 :

WLm(f) = WL2N−1(f).

The same holds for right-Wieland drift.

For that purpose it is necessary to characterize TFPLs that are invariant under left-
Wieland drift. Note that a TFPL is invariant under left-Wieland drift if and only if it is
invariant under right-Wieland drift by Theorem 13.

4 Stable TFPLs

From now on the vertices of GN are partitioned into odd and even vertices in a chessboard
manner such that by convention the vertices in LN are odd. In our pictures the odd
vertices are depicted by circles and the even vertices by squares. An example of a TFPL
where the partition of its vertices into odd and even vertices is indicated is depicted in
Figure 12.

It will be proved that stable TFPLs can be characterized as follows:

Theorem 16. A TFPL is stable if and only if it contains no edge of the form .

The TFPL depicted in Figure 12 is stable by Theorem 16.

Definition 17. An edge of the form is called a drifter.

the electronic journal of combinatorics 22(1) (2015), #P1.26 11



Figure 12: The bottom right TFPL configuration of size 7 in Figure 11 with its odd (resp.
even) vertices illustrated by circles (resp. squares).

In the following, the possible interior cells of a TFPL play an important role in the
proofs. For convenience, notations for the 16 odd and 16 even cells of a TFPL are fixed.
In Figure 13, the chosen notation can be seen.

o1

o16o15o14o13o12o11o10o9

o2 o3 o4 o5 o6 o7 o8

e1 e2 e3 e4 e5 e6 e7 e8

e9 e10 e11 e12 e13 e14 e15 e16

Figure 13: The notations for the 16 odd and 16 even cells of a TFPL, with emphasis on
the subsets O = {o1, o2, o3, o4, o5} and E = {e1, e2, e3, e4, e5}.

4.1 Characterization of stable TFPLs

To prove Theorem 16 we will begin by showing that a TFPL containing a drifter is not
stable.

Proposition 18. Let f be a TFPL that contains a drifter. Then WL(f) 6= f .

Proof. If f contains a drifter incident to a vertex in RN , then by Lemma 9 we know that
the right boundaries of f and WL(f) are different, so necessarily WL(f) 6= f .

We can now assume that no vertex in RN is incident to a drifter. Let ι be a drifter
in f with maximal x-coordinate and consider the odd cell o in f that contains ι. Let x
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be the top right vertex of o and y be the bottom right vertex of o. By the choice of ι the
vertices x and y are not incident to a drifter.

oι

x

y

Therefore, o ∈ {o8, o9, o10, o11, o12}. If o is of the form o8 or o10 the vertex to the right of
x′ is incident to a drifter in WL(f). In that case, WL(f) 6= f because the vertex to the
right of x in f is not incident to a drifter by assumption. If o is of the form o9, o11 or o12,
the vertices x′ and y′ are not adjacent in WL(f). Thus, WL(f) 6= f because x and y are
adjacent in f .

To prove that a TFPL without a drifter is indeed stable we need to determine the
types of cells which may occur. Define O = {o1, o2, o3, o4, o5} and E = {e1, e2, e3, e4, e5}.

Lemma 19. If f is a TFPL without drifters then all interior odd cells belong to O, while
all of its interior even cells belong to E.

Proof. Let f be a TFPL without a drifter, and o be one of its interior odd cells. Since o
has no drifter it can only belong to O or have one of the types o6, o7 or o13. But in types
o6, o7, o13, at least one of the right vertices of o would be incident to a drifter, which is
excluded.

The case of even cells is entirely analogous.

Furthermore, in a TFPL with no drifter each odd cell has a uniquely determined even
cell to its right.

Lemma 20. Let f be a TFPL without drifters, o an odd cell of f and e the even cell of
f to the right of o. If o and e are interior, then they can only occur as part of one of the
following pairs:

o1 o2 o3 o5o4 e1e2e3e5 e4

On the other hand, if o or e contains an external edge, then o and e can only occur as
part of one of the following pairs:

Proof. Here, only the case when o is an interior odd cell and o = o1 is considered, the
other cases being similar. Obviously, the cell e cannot equal e4. But it cannot equal e1,
e2 or e3 either, since otherwise one of the right vertices of o would be incident to a drifter.
The only remaining possibility is that e is of type e5 by Lemma 19.

We can now complete the proof of Theorem 16 by showing that a TFPL without
drifters is invariant under left-Wieland drift.

Proposition 21. If f is a TFPL without drifters then WL(f) = f .
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Proof. Let o be an odd cell of f and e be the even cell to its right. By Lemma 20, e is
uniquely determined by o. The crucial observation is that e coincides with the image of
o under Wieland gyration. Thus each even cell of f and its corresponding even cell of
WL(f) coincide. By definition all edges and non-edges of f incident to a vertex in LN
are preserved by left-Wieland drift. In summary, WL(f) = f .

4.2 TFPLs are eventually stable under Wieland drift

In this subsection we will prove Theorem 15. The idea of the proof is the following: when
applying left-Wieland drift to a TFPL, the drifters of the TFPL are globally moved to the
right. Thus after a finite number of applications of left-Wieland drift all drifters eventually
disappear through the right boundary. As a consequence of Theorem 16 a stable TFPL
is then obtained.

In a TFPL of size N , there are 2N + 1 columns of vertices which we label from left to
right by 1 to 2N + 1.

Proposition 22. Let f be a TFPL of size N that contains a drifter in the n-th column
but no drifter in the columns 1, . . . , n− 1 to its left. Then WL(f) contains no drifter in
any of the columns 1, . . . , n.

Proof. First of all, notice that by the definition of left-Wieland drift there is no vertex
of LN ′ incident to a drifter in WL(f). By definition of WL the occurrence of a drifter in
an even cell e′ of WL(f) depends solely on the odd cell to the left of the corresponding
even cell e in f . By assumption, no odd cell of f occurring to the left of the (n − 1)-st
column has a vertex incident to a drifter. It follows from the proof of Lemma 19 that all
these odd cells belong to O. This entails that all even cells of WL(f) to the left of the
n-th column belong to E and thus do not contain a drifter. Since these even cells cover
all vertical edges in the columns 1, . . . , n which have an odd vertex as their top vertex
and an even vertex as their bottom vertex, the proof is complete.

Proof of Theorem 15. By immediate induction on the result of Proposition 22 we know
that the configuration WL2N+1−n(f) contains no drifter. Thus by Theorem 16 it is stable
under WL, so

WLm(f) = WL2N+1−n(f) (4)

for all m > 2N + 1− n. Since the first column of vertices of a TFPL consists only of the
vertex L1, we have n > 2, which proves the theorem.

5 Applications of Wieland drift on TFPLs

5.1 Some linear relations

The following was conjectured for Dyck words in [8] and proved in [5] using Wieland
gyration on FPLs.
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Proposition 23. Let u, v and w be binary words. Then∑
u+:u

h−→u+

twu+,v =
∑

v+:v
v−→v+

twu,v+ .

Proof. Indeed the function WLu(·) acts on all TFPLs with boundary (u+, v;w) while
WRv(·) acts on TFPLs with boundary (u, v−;w). By Theorem 13 these functions are
inverses of one another, so the result is obtained by taking cardinalities.

5.2 The inequality in Theorem 6

This states that |λ(u)| + |λ(v)| 6 |λ(w)| always holds for the boundaries (u, v;w) of
TFPLs. It was given in [8, Lemma 3.7] in the Dyck word case. Later, another proof
in connection with TFPLs together with an orientation of the edges was given in [4].
More precisely, it was shown there that in an oriented TFPL with boundary (u, v;w),
the quantity |λ(w)| − |λ(u)| − |λ(v)| counts occurrences of certain local patterns in the
TFPL.

We now give an independent proof based on the properties of Wieland drift; the idea
for this proof comes from the original one by Thapper, which can be seen as relying on
Wieland gyration on FPLs in an indirect way.

Proof of Theorem 6(3). Let f be a TFPL with boundary (u, v;w). The proof is done by
induction on |λ(u)|. In the case when |λ(u)| = 0 we have λ(v) ⊆ λ(w) by Theorem 6(2),
which implies |λ(v)| 6 |λ(w)|.

Assume now |λ(u)| > 1. By removing a corner of λ(u), there exists a Young diagram
λ(u−) ⊆ λ(u) with one cell less than λ(u). In particular λ(u)/λ(u−) is a horizontal strip.

We first want to prove that there exists an i > 0 such that WLiu−(f) has right boundary
v+ 6= v. Assume the contrary, that is the right boundary of WLiu−(f) is v for all i > 0.
Since there are only a finite number of TFPLs with boundary (u−, v;w) there exist integers
i0, p > 0 such that

WLi0+pu− (f) = WLi0u−(f).

We can then apply WRi0
v to both sides of the identity and by Theorem 13 we obtain

WLpu−(f) = f . But these configurations have left boundaries u, u− respectively and we
assumed u− 6= u, which is a contradiction.

Hence, let i be a positive integer such that WLiu−(f) has boundary (u−, v+;w) where
v+ 6= v. By Proposition 8 we have λ(v) ( λ(v+) and therefore |λ(v)|+ 1 6 |λ(v+)|.
Applying the induction hypothesis to WLiu−(f) completes the proof:

|λ(u)|+ |λ(v)| = |λ(u−)|+ 1 + |λ(v)| 6 |λ(u−)|+ |λ(v+)| 6 |λ(w)|.
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5.3 Excesses 0, 1 and beyond

For a TFPL with boundary (u, v;w), the nonnegative integer |λ(w)| − |λ(u)| − |λ(v)| is
called the excess of f .

Proposition 24. If a TFPL has excess 0, then it is stable.

Proof. It is a consequence of [4, Proposition 5.2] that TFPLs of excess 0 do not contain
drifters, so we can conclude with Theorem 16.

These TFPLs are known to be counted by Littlewood–Richardson coefficients [6, 4] as
recalled in the introduction.

In [4], configurations of excess 1 were also studied in some detail and enumerated.
The authors defined a number of moves on such (oriented) configurations in order to
transform them and ultimately reach a configuration of excess 0. It turns out that these
complicated moves are essentially equivalent to a simple application of WL, at least when
the configuration is not stable.

Therefore stable configurations should first be studied and enumerated and then other
configurations may be related to them through Wieland drift in order to find, for instance,
linear relations between their cardinalities. The feasibility of such an approach is in
particular supported by Theorem 15.
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