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On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds

Define s(n) := n -1 σ(n) (σ(n) := d|n d) and ω(n) is the number of prime divisors of n. One of the properties of s plays a central role: s(p a ) > s(q b ) if p < q are prime numbers, with no special condition on a, b other than a, b 1. This result, combined with the Multiplicity Permutation theorem, will help us establish properties of the next counterexample (say c) to Robin's inequality s(n) < e γ log log n. The number c is superabundant, and ω(c) must be greater than a number close to one billion. In addition, the ratio p ω(c) / log c has a lower and upper bound. At most ω(c)/14 multiplicity parameters are greater than 1. Last but not least, we apply simple methods to sharpen Robin's inequality for various categories of numbers.

Introduction

The following notations will be used throughout the article:

• γ : Euler's constant, • ⌊x⌋ denotes the largest integer not exceeding x • p i : i-th prime number, • σ(n) = d|n d, • ϕ(n) counts the positive integers up to a given integer n that are relatively prime to n • ω(n) is the number of distinct primes dividing n, • N i = j i p j (primorial),

• rad(n) = p|n p prime p, radical of n.

Email address: vojakrob@gmail.com (Robert VOJAK).

Define s(n)

= σ(n) n , f (n) = n ϕ(n) .
A number n satisfies Robin's inequality [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothse de Riemann[END_REF] if and only if n 5041, and s(n) < e γ log log n Definition 1.1 A number n is superabundant (SA) [START_REF] Alaoglu | On highly composite and similar numbers[END_REF] if for all m < n, we have s(m) < s(n).

Definition 1.2 A number n is a Hardy-Ramanujan number (HR) [START_REF] Choie | On Robins criterion for the Riemann hypothesis[END_REF] if n = i ω(n) p ai i with a i a i+1 1 for all i ω(n) -1.

All the results presented hereafter concern Robin's inequality, which is known to be equivalent to Riemann's Hypothesis [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothse de Riemann[END_REF]. We start by establishing an important result about the multiplicities in the prime factorization of a number n, and how switching these multiplicities affects n and s(n).

Next, we give some categories of numbers satisfying Robin's inequality, and for those who do not, we exhibit some of their properties (theorem 1.6).

The last part is devoted to sharpening Robin's inequality in specific cases.

In the sequel, the notation q 1 , q 2 , ... will be used to define a finite strictly increasing sequence of prime numbers. The following theorems represent our main results (the proofs will be given later on):

Theorem 1.3 Let n = ω(n) i=1
q ai i be a positive integer. If -ω(n) 18 and # {i ω(n) ; a i = 1} ω(n) 2 , or -ω(n) 39 and # {i ω(n) ; a i = 1} ω(n)

3 , or -ω(n) 969672728 and # {i ω(n) ; a i = 1} ω(n) 14 then n satisfies Robin's inequality.

Theorem 1.4 Let n = i k q ai
i . For all positive integers k, q, define

M (k) = e e -γ f (N k ) -log N k (1) 
M k (q) = 1 + M (k) log q If for some i ω(n), we have a i M ω(n) (q i ), then the integer n satisfies Robin's inequality, regardless of the multiplicities of the other prime divisors.

For instance, if n = i 5 p ai i , M 5 (2) = 11.3367 . . . All integers of the form 2 a1 5 i=2 p ai i satisfy Robin's inequality if a 1 12, and a 2 , a 3 , a 4 , a 5 1.

Corollary 1.5 Let n be a positive integer. If f (N ω(n) ) -e γ log log N ω(n)
0, then n satisfies Robin's inequality.

Proof: If f (N ω(n) )e γ log log N ω(n) 0, we have M (k) 0, and for all i ω(n) and all prime numbers p,

a i 1 M ω(n) (p)
We conclude using theorem 1.4.

Theorem 1.6 Let c = ω(n) i=1
q ci i (c 5041) be the least number (if it exists) not satisfying Robin's inequality. The following properties hold:

1. c is superabundant, 2. ω(c) 969 672 728, 3. # {i ω(c) ; c i = 1} < ω(c) 14 , 4. e - 1 log p ω(c) < p ω(c) log c < 1,
5. for all 1 < i ω(c),

p ci i < min 2 c1+2 , p i e M(k)

Preliminary results

We will need some properties about the functions s and f to prove the above-mentioned theorems.

Lemma 2.1 Let n = i k
p ai i , p, q be two prime numbers, and k, a and b positive integers. 1. the functions s and f are multiplicative

2. s(n) = i k p i -p -ai i p i -1 , f (n) = i k p i p i -1 and f (n) = f (rad(n)). 3. 1 + 1 p s(p k ) < p p -1 and lim k →∞ s(p k ) = p p -1 = f (p)
4. If p < q, s(p a ) > s(q b ) for all positive integers a, b 5. s(p k ) increases as k > 0 increases, decreases as p increases,

6.

s(p k+1 ) s(p k ) decreases as k increases,

7. If a > b > 0, s(p a ) s(p b )
decreases as p incresases, 8. Let p be a prime number, and q any prime number, q < p(p + 1). Then, for all a, b 1

s(p a+1 ) s(p a ) < s(q b ) For instance: s(p a+1 n ) < s(p a n ) s(p b n+1 ) for all a, b 1. 9. If m, n 2, s(mn) s(m)s(n).
IMPORTANT: note that s(p a ) > s(q b ) requires only to have p < q, and no condition on positive integers a, b.

Proof:

1. The multiplicativity of s and f is a consequence of the multiplicativity of σ and ϕ, 2. The proof is straightforward: recall that rad(p k ) = p, ϕ(p k ) = p kp k-1 , and hence f (p k ) = p p-1 = f (rad(p k )), and use the multiplicativity of f and rad to conclude. p-1 , 4. We have 1 + 1 p q q -1 when q > p, and we deduce

s(p a ) 1 + 1 p q q -1 > s(q b ) 5. Use s(p k ) = p-1 p k
p-1 , and we can conclude that s(p k ) increases as k increases. Use (2.1) with a = b = k to prove that if p < q, s(p k ) > s(q k ). 6. We have

s(p k+1 ) s(p k ) = p k+2 -1 p k+2 -p
which decreases as p k increases.

Let us show that it also decreases as p increases. The sign of the first derivative of p → s(p k+1 ) s(p k ) is the same as the sign of p k+1 (k+2)-p k+2 (k+1

)-1 = p k+1 (k+2-p(k+1))-1 p k+1 (k+2-2(k+1))-1 = -p k+1 (k -1) < 0. 7. The equality s(p a ) s(p b ) = a-1 k=b s(p k+1 ) s(p k )
along with the monotonicity of each fraction of the product yields the desired result.

8. The function a → s(p a+1 ) s(p a ) is decreasing, and we have 

s(p a+1 ) s(p a ) -s(q) < s(p 2 ) s(p) -1 - 1 q = 1 p(p + 1) - 1 q Hence s(p a+1 ) s(p a ) < s(q) s(q b ) 9. Let n =
s(p a+b ) -s(p a )s(p b ) = - (p a -1)(p b -1) p a+b-1 (p -1) 2 < 0 Now we have s(m n) p|n p∤m s(p ap ) p∤n p|m s(p bp ) p|n p|m (s(p ap )s(p bp )) = s(m)s(n) Lemma 2.2 For all positive integers n 2, we have s(n) < f (N ω(n) ) Proof: Let n = k i=1
q ai i where q 1 , q 2 , q 3 , ... is a finite increasing sequence of prime numbers. Therefore, for all i, p i q i . Set m = k i=1 p ai i . Clearly, m n and

s(p ai i ) s(q ai i ) 1 yielding s(n) s(m) < f (m) = f (N ω(n) )
Theorem 2.3 (Multiplicity Permutation) Let n be a positive integer, p and q be two prime divisors of n (p < q), and a and b their multiplicity respectively. . Hence, if a < b, we have n ⋆ < n and

s(n) s(n ⋆ ) = s(p a )s(q b ) s(p b )s(q a ) < s(p a )s(p b ) s(p b )s(p a ) = 1
Indeed, since a < b, we know from lemma 2.1 that s(q b ) s(q a ) decreases as q increases, and since q > p, we have

s(q b ) s(q a ) < s(p b ) s(p a )
The proof for the case a > b follows the same logic.

Let n = k i=1 q ai i , and b 1 , b 2 , . . . , b k be a reordering of a 1 , a 2 , . . . , a k such that b i b i+1 . Define the functions A and H as follows:

A   i k q ai i   = i k q bi i (2) H   i k q ai i   = i k p bi i (3)
We claim that A(n) n and s(n) s(A(n)): let n 1 be the integer obtained by switching a 1 and b 1 . Using theorem 2.3, we have n 1 n and s(n 1 ) s(n). Continue by switching b 2 and the multiplicity of p 2 in the prime factorization of n 1 . The result is an integer n 2 such that n 2 n 1 n and s(n 2 ) s(n 1 ) s(n). Repeat the process a total of k -1 times, and you obtain a positive integer n k-1 such that

n k-1 = i k q bi i = A(n) with b i b i+1 n k-1 n and s(n k-1 ) s(n)
This proves that A(n) n and s(A(n)) s(n). The same inequalities hold for the function H. The function H replaces all the prime divisors by the first prime divisors, and reorganize the multiplicities in a decreasing order. It is easy to check that H(n) n and s(H(n)) s(n). Indeed, note that Note: compare this result to proposition 5.1 in [START_REF] Choie | On Robins criterion for the Riemann hypothesis[END_REF]: "if Robins inequality holds for all Hardy-Ramanujan integers 5041 n x, then it holds for all integers 5041 n x".

H(n) A(n) n and s(H(n)) s(A(n)) s(n). Let n 3. If H(n) satisfies Robin's inequality, so does n. Indeed, s(n) s(H(n)) < e γ log log H(n) < e γ log

Numbers satisfying Robin's inequality

Some categories of numbers satisfy Robin's inequality. Most of them have already been identified in previous works [START_REF] Choie | On Robins criterion for the Riemann hypothesis[END_REF], and we report these results below. Note that the proofs are not the original ones. Instead, we used simple methods to provide shorter and simpler proofs. To do so, we will need the following inequalities ([3], th. 2). We will start with primorials. We will then investigate odd positive integers, and integers n such that ω(n) 4 (all known integers not satisfying Robin's inequality are such that ω(n) 4), and we will conclude with square-free and square-full integers. 

s(N k ) = k i=1 1 + 1 p i < e γ log log N k
The following inequality is a bit sharper (for k 2):

k i=1 1 + 1 p i 3 4 e γ log log N k + 2.

log log N k

Proof: Let k 2 be an integer. We have

s(N k ) = s(2)s N k 2 s(2) f N k 2 = s(2) f (2) f (N k ) = 3 4 f (N k )
Using theorem 3.2, we have

s(N k ) -e γ log log N k 3 4 e γ log log N k + 2.51 log log N k -e γ log log N k -0.25e γ log log N k + 1.8825 log log N k < 0 if k 6.
For k 5, only the numbers N 1 = 2, N 2 = 6 and N 3 = 30 do not satisfy Robin's inequality.

Odd integers

The following theorem can be found in [START_REF] Choie | On Robins criterion for the Riemann hypothesis[END_REF], but the proof is not the original one. A very simple proof is given instead. Theorem 3.4 Any odd positive integer n distinct from 3, 5 and 9 satisfies Robin's inequality.

Proof: Let n 3 be a positive odd integer. Using theorem 3.1, we have Proof: Numbers n under 5041 that do not satisfy Robin's inequality are well known, and the number of prime divisors ω(n) of these counterexamples does not exceed 4. We will now show that if ω(n) 4, the only counterexamples are the elements of C.

s(n) = s(2n) s(2) < 2 
Let n be an integer such that ω(n) 4. We have (lemma 2.2) using the monotonicity of k

→ f (N k ) s(n) < f (N ω(n) ) f (N 4 ) = 4.375
Therefore, if n > 116144, log log n e -γ 4.375, e γ log log n 4.375 > s(n) and Robin's inequality is satisfied if n > 116144 and ω(n)

4. Numerical computations confirm that there are no counterexamples to Robin's inequality in the range 5041 < n 116144.

Square-free integers

A positive integer n is called square-free if for every prime number p, p 2 is not a factor of n. Hence n has the form

n = i k q i
The following two theorems can be found in [START_REF] Choie | On Robins criterion for the Riemann hypothesis[END_REF], but not the proofs (we provide simpler proofs).

Theorem 3.6 Any square-free positive integer distinct from 2, 3, 5, 6, 10, 30 satisfy Robin's inequality.

Proof: If n is square-free and even, the prime number 2 has multiplicity a 1 = 1. This implies 

s(n) s(2n) = s ( 

Square-full integers

Let n be an integer. If for every prime divisor p of n, we have p 2 |n, the integer n is said to be square-full. This result can also be found in [START_REF] Choie | On Robins criterion for the Riemann hypothesis[END_REF]. The proof we give here is shorter and simpler.

Theorem 3.7 The only square-full integers not satisfying Robin's inequality are 4, 8, 9, 16 and 36.

Proof: Case 1: ω(n) 4. From theorem 3.5, the only square-full counterexamples are 4, 8, 9, 16, 36.

Case 2: ω(n) 5. Let n = k i=1 q ai i . Since n is square-full, we have n N 2 k and s(n) < f (N k ) (lemma 2.
2). We can now write, using theorem 3.2, We claim that for all k > 38, we have M (3k + j) log N (k) for all 0 j < 3. Using theorem 3.2, we have

s(n) -e γ log log n < f (N k ) -e γ log log N 2 k < 2.51 log log N k -1.2345 < -0.
M (k) e 1.41 log log N k -1 log N k Define ǫ k = e 1.41 log(3k log(3k)) -1 - k log k (3k + 2)(log(3k + 2) + log log(3k + 2))
Using the inequalities [START_REF] Massias | Bornes effectives pour certaines fonctions concernant les nombres premiers[END_REF] 

k log k < log N k < k (log k + log log k)
for k 13 we see that

ǫ k e 1.41 log log N 3k -1 - log N k log N 3k+2
We claim that ǫ k is decreasing, and that ǫ k < 0 for k > 109. Indeed, rewrite the term

k log k (3k + 2)(log(3k + 2) + log log(3k + 2)) = k 3k + 2 × log k log(3k + 2) × log(3k + 2) log(3k + 2) + log log(3k + 2)
as a product of three increasing functions: to prove they are increasing, you can use the monotonicity of x → log x

x (x e), and the monotonicity of x → log x log(x+a) , where a is a positive real number .

We have ǫ 109 < -0.0003 implying for all 0 i < 3

e 1.41 log log N 3k+i -1 < e 1.41 log log N 3k -1 log N k log N 3k+2 log N k log N 3k+i yielding M (3k + i) e 1.41 log log N 3k+i -1 log N 3k+i log N k or simply M (k) log N ⌊ k 3 ⌋
for k 109, and was confirmed for 39 k < 109 with the help of numerical computations.

• Proof of property 2: This result is deduced the same way: consider the function

ǫ k = e 1.41 log(2k log(2k)) -1 - k log k (2k + 1)(log(2k + 1) + log log(2k + 1))
We have

ǫ k e 1.41 log log N 2k -1 - log N k log N 2k+1
and ǫ k is a decreasing function with ǫ 28 < -0.003 yielding

M (k) log N ⌊ k 2 ⌋
for k > 27, and was confirmed for 18 k < 28 with the help of numerical computations.

• Proof of property 3: we proceed the same way. Consider the function

ǫ k = e 1.41 log(14k log(14k)) -1 - k log k (14k + 13)(log(14k + 13) + log log(14k + 13))
We have

ǫ k e 1.41 log log N 14k -1 - log N k log N 14k+13 and ǫ k is a decreasing function with ǫ 969672728 < -0.001 yielding M (k) log N ⌊ k 14 ⌋ for k 969672728.
Proof of theorem 1.3 We will need the function H defined in [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothse de Riemann[END_REF].

H(n) n and s(H(n)) s(n)

The integer H(n) is a Hardy-Ramanujan number. In addition, if H(n) satisfies Robin's inequality, so does n. Indeed, s(n) s(H(n)) < e γ log log H(n) e γ log log n

Note that the value of # {i ω(n) ; a i = 1} is the same if we replace n with H(n), and that ω(H(n)) = ω(n). So without loss of generality, we will prove the theorem for Hardy-Ramanujan numbers only.

Let n be a Hardy-Ramanujan number. Define j(n) := min{1 j ω(n); M (ω(n)) log N j } and i(n) := #{i ω(n); a i = 1}. A sufficient condition for n to satisfy Robin's inequality is i(n) j(n). Since n is a Hardy-Ramanujan number, we have a i 2 for i i(n), and a i = 1 otherwise, implying that n N i(n) N ω(n) and yielding 

s(n) -e γ log log n < f (N ω(n) ) -e γ log log(N i(n) N ω(n) ) < 0 if i(n) j(n).
(n) ω(n) 2 . Using the assumption #{i ω(n); a i = 1} ω(n) 2 yields i(n) j(n).
Proceed the same way with the two cases: ω(n) 39 and ω(n) 969672728

Proof of theorem 1.4

According to lemma 2.2, we have s(n) < f (N ω(n) ) and

n = ω(n) j=1 q aj j q ai-1 i   q i j =i q aj j   q ai-1 i   p i p j j =i   = q ai-1 i N ω(n) implying s(n) -e γ log log n < f (N ω(n) ) -e γ log log(q ai-1 i N ω(n) ) If a i M ω(n) (q i ) with M k (q) := 1 + e e -γ f (N k ) -log N k log q then f (N ω(n)
)e γ log log(q ai-1 i N ω(n) ) 0 and therefore s(n) < e γ log log n 6. Proof of theorem 1.6

Proof of 1. The superabundance of the number c is proved in [START_REF] Akbary | Superabundant numbers and the Riemann hypothesis[END_REF]. Proof of 2. In [START_REF] Briggs | Abundant numbers and the Riemann hypothesis[END_REF], numerical computations have confirmed that c > 10 10 10 . Using lemma 2. Proof of 5. The proof of the inequality p ai i < 2 a1+2 can be found in [START_REF] Alaoglu | On highly composite and similar numbers[END_REF] (lemma 1). The other inequality p ci i < p i e M(ω(c)) is deduced from theorem 1.4.

Sharper bounds

We can use some of the ideas of this article to improve upper bounds for the arithmetic functions s and f . Proof: Let i 2, n i. We have

s(N n ) = s(N i )s N n N i < s(N i )f N n N i = s(N i ) f (N i ) f (N n ) = α i f (N n )
Use theorem 3.2 to conclude. 

3 .

 3 It is deduced from the properties σ(p k ) = p k+1 -1 p-1 and ϕ(p k ) = p kp k-1 . To prove the asymptotic result, use s(p k ) = p-1 p k

  ap+bp ) If p is a prime number, and a, b two positive integers, then

  Consider the integer n ⋆ obtained by switching a and b. If a < b n ⋆ < n and s(n ⋆ ) > s(n) and if a > b n ⋆ > n and s(n ⋆ ) < s(n) Proof: Switching a and b means that n ⋆ = n p q b-a

Theorem 3 . 1

 31 For all n 3, s(n) e γ log log n + 0.6483 log log n and [2](th. 15) Theorem 3.2 For all n 3, f (n) e γ log log n + 2.51 log log n
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 34352 Integers n such that ω(n) ≤ Let n such that ω(n) ≤ 4. The exceptions to Robin's inequality such that ω(n) = k form the sets C k where C 1 = {3, 4, 5, 8, 9, 16} {6, 10, 12, 18, 20, 24, 36, 48, 72} C 3 = {30, 60, 84, 120, 180, 240, 360, 720} C 4 = {840, 2520, 5040}
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 4341123 Proof of theorem 1.Let M (k) = e e -γ f (N k ) -log N k For all k 39, we have M (k) log N ⌊ k 3 ⌋ For all k 18, we have M (k) log N ⌊ k 2 ⌋ For all k 969672728, we have M (k) log N ⌊ k 14 ⌋ Proof: Let us prove property 1.

  2, we have e γ log log c s(c) < f (N ω(c) ) < e γ log p ω(c) + 1 log p ω(c) yielding log p ω(c) > 1 2 log log c + log log c -4 Since log log c > 10 log 10 + log log 10 > 23.85988, we obtain log p ω(c) > 23.81789 yielding ω(c) 969 672 728 Proof of 3. ⋆ Part 1: p ω (c) < log c By definition, the counterexample c does not satisfy Robin's inequality: s(c) e γ log log c and since c > 5040 is the least one, the integer c ′ = c p ω(c) satisfy Robin's inequality, because ω(c ′ ) = ω(c) -1 > 4. Therefore, we have = s(p ω(c) ) = 1 + 1 p ω(c) , and using inequality log(1x) < x (x = 0), we establish that log log c p ω(c) = log log c + log 1 -log p ω(c) log c < log log c -log p ω(c) log p ω(c) log c log log c -log p ω(c) and p ω(c) log p ω(c) < log c log log c -log p ω(c) < log c log log c implying p ω(c) < log c. ⋆ Part 2: log c < p ω(c) e 1 log p ω(c) The counterexample inequality s(c) e γ log log c yields e γ log log c s(c) < f (N ω(c) ) < e γ log p ω(c) + 1 log p ω(c) implying log c < p ω(c) e 1 log p ω(c) . Proof of 4. See theorem 1.3.

  log n If Robin's inequality is valid for all Hardy-Ramanujan numbers greater than 5040, then it is valid for all positive integers greater than 5040.

	thus proving:
	Theorem 2.4

  Hence, n satisfies Robin's inequality.

	If ω(n)	18, and if #{i	ω(n); a i = 1}	ω(n) 2 , n satisfies Robin's inequality. Indeed, if ω(n)	18,
	lemma 4.1 tells us that j			

  7.1. PrimorialsFor instance, when dealing with primorials N k , we can write

			s(N k ) = s(2N n s(2) s(4) k=1 1 + 1 p k < α i e γ log log N n +	2.51 log log N n
	with			α i =	i j=1	1 -	1 p 2 j
	Ex: for all n 4,					
	n k=1	1 +	1 p k	< 0.627 e γ log log N n +	2.51 log log N n	< e γ log log N n

k ) and then use an upper bound for s(2N k ) (see theorem 3.1) to sharpen Robin's bound for s(N k ). Or we can use another method : Theorem 7.1 For all i 2, for all n i,

  7.2. Odd numbers Lemma 7.2 If n 17 is odd, σ(2n) < 2e γ n log log(2n) ′ (x) < -0.38 + 1.41(log log(4x)) 2 + (0.55 + 0.25(log log(4x)) 2 ) log x x log(2x) log(4x)(log log(4x)) 2 < 0 and g(210) < 0 < g(209). The inequality s(2n) < e γ log log(2n) is valid for n > 209, and numerical computations show that this is also true when 17 n 209.

	Proof: Write						
	s(2n) =	s(2) s(4)	s(4n)	6 7	e γ log log(4n) +	0.6483 log log(4n)	< e γ log log(2n)
	To prove the last inequality, define			
	g(x) =	6 7	e γ log log(4x) +	0.6483 log log(4x)	-e γ log log(2x)
	We have						
	g Corollary 7.3 If n 17 is odd,		σ(n) <	2 3	e γ n log log(2n)
	The following result is an improvement of theorem 1.2 in [6].
	Proof: Use the previous result to get		
					s(n) =	s(2n) s(2)	<	2 3	e γ log log(2n)
	The following result is an improvement of theorem 2.1 in [6].
	Theorem 7.4 If n 3 is odd,				
		n ϕ(n)		1 2	e γ log log(2n) +	2.51 log log(2n)	< e γ log log n
	Proof: Write							f (n) =	f (2n) f (2)
	ans use theorem 3.2:			f (n)	1 2		e γ log log(2n) +	2.51 log log(2n)

The general case

In previous sections, we have mentioned superabundant numbers and pointed out some of their properties, thus confirming that all superabundant numbers are Hardy-Ramanujan numbers.

Robin's inequality can be enhanced for non superabundant numbers. Indeed, if n is not a superabundant number, there exists m < n such that s(m) s(n). Let I(n) = {m < n; s(n) s(m)}. The set I(n) is not empty, and we can define B(n) = min I(n). We have The property H(n) n improves Robin's inequality, and unlike the function B, there is an explicit method to determine its value for all positive integers.