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On numbers satisfying Robin’s inequality, properties of the next

counterexample and improved specific bounds

Robert VOJAK

Croatia & France

Abstract

Define s(n) := n−1σ(n) (σ(n) :=
∑

d|n d) and ω(n) is the number of prime divisors of n. One of the properties

of s plays a central role: s(pa) > s(qb) if p < q are prime numbers, with no special condition on a, b other than
a, b > 1. This result, combined with the Multiplicity Permutation theorem, will help us establish properties of
the next counterexample (say c) to Robin’s inequality s(n) < eγ log log n. The number c is superabundant, and
ω(c) must be greater than a number close to one billion. In addition, the ratio pω(c)/ log c has a lower and upper
bound. At most ω(c)/14 multiplicity parameters are greater than 1. Last but not least, we apply simple methods
to sharpen Robin’s inequality for various categories of numbers.

1. Introduction

The following notations will be used throughout the article:

• γ : Euler’s constant,
• ⌊x⌋ denotes the largest integer not exceeding x

• pi: i-th prime number,
• σ(n) =

∑

d|n d,

• ϕ(n) counts the positive integers up to a given integer n that are relatively prime to n

• ω(n) is the number of distinct primes dividing n,
• Ni =

∏

j6i pj (primorial),
• rad(n) =

∏

p|n

p prime

p, radical of n.
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Define s(n) =
σ(n)

n
, f(n) =

n

ϕ(n)
.

A number n satisfies Robin’s inequality[3] if and only if n > 5041, and

s(n) < eγ log logn

Definition 1.1 A number n is superabundant (SA) [1] if for all m < n, we have s(m) < s(n).

Definition 1.2 A number n is a Hardy-Ramanujan number (HR) [6] if n =
∏

i6ω(n)

pai

i with ai > ai+1 > 1

for all i 6 ω(n)− 1.

All the results presented hereafter concern Robin’s inequality, which is known to be equivalent to Rie-
mann’s Hypothesis[3]. We start by establishing an important result about the multiplicities in the prime
factorization of a number n, and how switching these multiplicities affects n and s(n).
Next, we give some categories of numbers satisfying Robin’s inequality, and for those who do not, we
exhibit some of their properties (theorem 1.6).
The last part is devoted to sharpening Robin’s inequality in specific cases.

In the sequel, the notation q1, q2, ... will be used to define a finite strictly increasing sequence of prime
numbers. The following theorems represent our main results (the proofs will be given later on):

Theorem 1.3 Let n =
ω(n)
∏

i=1

qai

i be a positive integer. If

– ω(n) > 18 and # {i 6 ω(n) ; ai 6= 1} >
ω(n)
2 , or

– ω(n) > 39 and # {i 6 ω(n) ; ai 6= 1} >
ω(n)
3 , or

– ω(n) > 969672728 and # {i 6 ω(n) ; ai 6= 1} >
ω(n)
14

then n satisfies Robin’s inequality.

Theorem 1.4 Let n =
∏

i6k

qai

i . For all positive integers k, q, define

M(k) = ee
−γf(Nk) − logNk (1)

Mk(q) = 1 +
M(k)

log q

If for some i 6 ω(n), we have ai > Mω(n)(qi), then the integer n satisfies Robin’s inequality, regardless
of the multiplicities of the other prime divisors.

For instance, if n =
∏

i65 p
ai

i , M5(2) = 11.3367 . . . All integers of the form 2a1
∏5

i=2 p
ai

i satisfy Robin’s
inequality if a1 > 12, and a2, a3, a4, a5 > 1.

Corollary 1.5 Let n be a positive integer. If f(Nω(n)) − eγ log logNω(n) 6 0, then n satisfies Robin’s
inequality.
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Proof: If f(Nω(n))− eγ log logNω(n) 6 0, we have M(k) 6 0, and for all i 6 ω(n) and all prime numbers
p,

ai > 1 > Mω(n)(p)

We conclude using theorem 1.4. �

Theorem 1.6 Let c =
ω(n)
∏

i=1

qcii (c > 5041) be the least number (if it exists) not satisfying Robin’s inequality.

The following properties hold:
1. c is superabundant,
2. ω(c) > 969 672 728,

3. # {i 6 ω(c) ; ci 6= 1} <
ω(c)

14
,

4. e
− 1

log pω(c) <
pω(c)

log c
< 1,

5. for all 1 < i 6 ω(c),

pcii < min
(

2c1+2, pi e
M(k)

)

2. Preliminary results

We will need some properties about the functions s and f to prove the above-mentioned theorems.

Lemma 2.1 Let n =
∏

i6k

pai

i , p, q be two prime numbers, and k, a and b positive integers.

1. the functions s and f are multiplicative

2. s(n) =
∏

i6k

pi − p−ai

i

pi − 1
, f(n) =

∏

i6k

pi

pi − 1
and f(n) = f(rad(n)).

3. 1 +
1

p
6 s(pk) <

p

p− 1
and lim

k 7→∞
s(pk) =

p

p− 1
= f(p)

4. If p < q, s(pa) > s(qb) for all positive integers a, b

5. s(pk) increases as k > 0 increases, decreases as p increases,

6.
s(pk+1)

s(pk)
decreases as k increases,

7. If a > b > 0,
s(pa)

s(pb)
decreases as p incresases,

8. Let p be a prime number, and q any prime number, q < p(p+ 1). Then, for all a, b > 1

s(pa+1)

s(pa)
< s(qb)

For instance: s(pa+1
n ) < s(pan) s(p

b
n+1) for all a, b > 1.

9. If m,n > 2, s(mn) 6 s(m)s(n).

IMPORTANT: note that s(pa) > s(qb) requires only to have p < q, and no condition on positive integers
a, b.
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Proof:
1. The multiplicativity of s and f is a consequence of the multiplicativity of σ and ϕ,
2. The proof is straightforward: recall that rad(pk) = p, ϕ(pk) = pk − pk−1, and hence f(pk) = p

p−1 =

f(rad(pk)), and use the multiplicativity of f and rad to conclude.

3. It is deduced from the properties σ(pk) = pk+1−1
p−1 and ϕ(pk) = pk − pk−1. To prove the asymptotic

result, use s(pk) =
p− 1

pk

p−1 ,
4. We have

1 +
1

p
>

q

q − 1

when q > p, and we deduce

s(pa) > 1 +
1

p
>

q

q − 1
> s(qb)

5. Use s(pk) =
p− 1

pk

p−1 , and we can conclude that s(pk) increases as k increases. Use (2.1) with a = b = k

to prove that if p < q, s(pk) > s(qk).
6. We have

s(pk+1)

s(pk)
=

pk+2 − 1

pk+2 − p

which decreases as pk increases.

Let us show that it also decreases as p increases. The sign of the first derivative of p 7→ s(pk+1)
s(pk) is the

same as the sign of pk+1(k+2)−pk+2(k+1)−1 = pk+1(k+2−p(k+1))−1 6 pk+1(k+2−2(k+1))−1 =
−pk+1(k − 1) < 0.

7. The equality

s(pa)

s(pb)
=

a−1
∏

k=b

s(pk+1)

s(pk)

along with the monotonicity of each fraction of the product yields the desired result.

8. The function a 7→
s(pa+1)

s(pa)
is decreasing, and we have

s(pa+1)

s(pa)
− s(q) <

s(p2)

s(p)
− 1−

1

q
=

1

p(p+ 1)
−

1

q

Hence
s(pa+1)

s(pa)
< s(q) 6 s(qb)

9. Let n =
∏

p|n

pap and m =
∏

p|m

pbp . We have

mn =
∏

p|n

p∤m

pap

∏

p∤n

p|m

pbp
∏

p|n

p|m

pap+bp

yielding

s(mn) =
∏

p|n

p∤m

s(pap)
∏

p∤n

p|m

s(pbp)
∏

p|n

p|m

s(pap+bp)
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If p is a prime number, and a, b two positive integers, then

s(pa+b)− s(pa)s(pb) = −
(pa − 1)(pb − 1)

pa+b−1(p− 1)2
< 0

Now we have

s(mn) 6
∏

p|n

p∤m

s(pap)
∏

p∤n

p|m

s(pbp)
∏

p|n

p|m

(s(pap)s(pbp)) = s(m)s(n)

�

Lemma 2.2 For all positive integers n > 2, we have s(n) < f(Nω(n))

Proof: Let n =
k
∏

i=1

qai

i where q1, q2, q3, ... is a finite increasing sequence of prime numbers. Therefore, for

all i, pi 6 qi. Set m =
k
∏

i=1

pai

i . Clearly, m 6 n and

s(pai

i )

s(qai

i )
> 1

yielding

s(n) 6 s(m) < f(m) = f(Nω(n))

�

Theorem 2.3 (Multiplicity Permutation) Let n be a positive integer, p and q be two prime divisors of n
(p < q), and a and b their multiplicity respectively.

Consider the integer n⋆ obtained by switching a and b. If a < b

n⋆ < n and s(n⋆) > s(n)

and if a > b

n⋆ > n and s(n⋆) < s(n)

Proof: Switching a and b means that n⋆ = n
(

p
q

)b−a

. Hence, if a < b, we have n⋆ < n and

s(n)

s(n⋆)
=

s(pa)s(qb)

s(pb)s(qa)
<

s(pa)s(pb)

s(pb)s(pa)
= 1

Indeed, since a < b, we know from lemma 2.1 that
s(qb)

s(qa)
decreases as q increases, and since q > p, we

have
s(qb)

s(qa)
<

s(pb)

s(pa)

The proof for the case a > b follows the same logic. �
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Let n =
k
∏

i=1

qai

i , and b1, b2, . . . , bk be a reordering of a1, a2, . . . , ak such that bi > bi+1. Define the functions

A and H as follows:

A





∏

i6k

qai

i



 =
∏

i6k

qbii (2)

H





∏

i6k

qai

i



 =
∏

i6k

pbii (3)

We claim that A(n) 6 n and s(n) 6 s(A(n)): let n1 be the integer obtained by switching a1 and b1. Using
theorem 2.3, we have n1 6 n and s(n1) > s(n). Continue by switching b2 and the multiplicity of p2 in the
prime factorization of n1. The result is an integer n2 such that n2 6 n1 6 n and s(n2) > s(n1) > s(n).
Repeat the process a total of k − 1 times, and you obtain a positive integer nk−1 such that

nk−1 =
∏

i6k

qbii = A(n) with bi > bi+1

nk−1 6 n and s(nk−1) > s(n)

This proves that A(n) 6 n and s(A(n)) > s(n). The same inequalities hold for the function H . The
function H replaces all the prime divisors by the first prime divisors, and reorganize the multiplici-
ties in a decreasing order. It is easy to check that H(n) 6 n and s(H(n)) > s(n). Indeed, note that
H(n) 6 A(n) 6 n and s(H(n)) > s(A(n)) > s(n).
Let n > 3. If H(n) satisfies Robin’s inequality, so does n. Indeed,

s(n) 6 s(H(n)) < eγ log logH(n) < eγ log logn

thus proving:

Theorem 2.4 If Robin’s inequality is valid for all Hardy-Ramanujan numbers greater than 5040, then it
is valid for all positive integers greater than 5040.

Note: compare this result to proposition 5.1 in [6]: ”if Robins inequality holds for all Hardy-Ramanujan
integers 5041 6 n 6 x, then it holds for all integers 5041 6 n 6 x”.

3. Numbers satisfying Robin’s inequality

Some categories of numbers satisfy Robin’s inequality. Most of them have already been identified in
previous works[6], and we report these results below. Note that the proofs are not the original ones. In-
stead, we used simple methods to provide shorter and simpler proofs. To do so, we will need the following
inequalities ([3], th. 2).

Theorem 3.1 For all n > 3,

s(n) 6 eγ log logn+
0.6483

log logn

and [2](th. 15)
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Theorem 3.2 For all n > 3,

f(n) 6 eγ log logn+
2.51

log logn

We will start with primorials. We will then investigate odd positive integers, and integers n such that
ω(n) 6 4 (all known integers not satisfying Robin’s inequality are such that ω(n) 64), and we will
conclude with square-free and square-full integers.

3.1. Primorial numbers

Theorem 3.3 All primorials Nk (k > 4) satisfy Robin’s inequality:

s(Nk) =

k
∏

i=1

(

1 +
1

pi

)

< eγ log logNk

The following inequality is a bit sharper (for k > 2):

k
∏

i=1

(

1 +
1

pi

)

6
3

4

(

eγ log logNk +
2.51

log logNk

)

Proof: Let k > 2 be an integer. We have

s(Nk) = s(2)s

(

Nk

2

)

6 s(2) f

(

Nk

2

)

=
s(2)

f(2)
f(Nk) =

3

4
f(Nk)

Using theorem 3.2, we have

s(Nk)− eγ log logNk 6
3

4

(

eγ log logNk +
2.51

log logNk

)

− eγ log logNk

6−0.25eγ log logNk +
1.8825

log logNk

< 0

if k > 6. For k 6 5, only the numbers N1 = 2, N2 = 6 and N3 = 30 do not satisfy Robin’s inequality. �

3.2. Odd integers

The following theorem can be found in [6], but the proof is not the original one. A very simple proof
is given instead.

Theorem 3.4 Any odd positive integer n distinct from 3, 5 and 9 satisfies Robin’s inequality.

Proof: Let n > 3 be a positive odd integer. Using theorem 3.1, we have

s(n) =
s(2n)

s(2)
<

2

3

(

eγ log log(2n) +
0.6483

log log(2n)

)

< eγ log logn

for all n > 17. Indeed, set

g(x) =
2

3

(

eγ log log(2x) +
0.6483

log log(2x)

)

− eγ log log x
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We have, for x > 2,

g′(x) < −
1.23(log log(2x))2 + (0.43 + 0.6(log log(2x))2) log x

x(log x)(log(2x))(log log(2x))2
< 0

When x > 17, g(x) 6 g(17) < 0. Therefore, all odd integers greater than 15 satisfy Robin’s inequality.
For odd integers up to 15, only 3, 5 and 9 do not satisfy Robin’s inequality. �

3.3. Integers n such that ω(n) ≤ 4

Theorem 3.5 Let n such that ω(n) ≤ 4. The exceptions to Robin’s inequality such that ω(n) = k form
the sets Ck where

C1 = {3, 4, 5, 8, 9, 16}

C2 = {6, 10, 12, 18, 20, 24, 36, 48, 72}

C3 = {30, 60, 84, 120, 180, 240, 360, 720}

C4 = {840, 2520, 5040}

Proof: Numbers n under 5041 that do not satisfy Robin’s inequality are well known, and the number of
prime divisors ω(n) of these counterexamples does not exceed 4. We will now show that if ω(n) 6 4, the
only counterexamples are the elements of C.

Let n be an integer such that ω(n) 6 4. We have (lemma 2.2) using the monotonicity of k 7→ f(Nk)

s(n) < f(Nω(n)) 6 f(N4) = 4.375

Therefore, if n > 116144, log logn > e−γ4.375,

eγ log logn > 4.375 > s(n)

and Robin’s inequality is satisfied if n > 116144 and ω(n) 6 4. Numerical computations confirm that
there are no counterexamples to Robin’s inequality in the range 5041 < n 6 116144. �

3.4. Square-free integers

A positive integer n is called square-free if for every prime number p, p2 is not a factor of n. Hence n

has the form

n =
∏

i6k

qi

The following two theorems can be found in [6], but not the proofs (we provide simpler proofs).

Theorem 3.6 Any square-free positive integer distinct from 2, 3, 5, 6, 10, 30 satisfy Robin’s inequality.

Proof: If n is square-free and even, the prime number 2 has multiplicity a1 = 1. This implies

s(n)

s(2n)
=

s(2)

s(4)
=

6

7

8



and using theorem 3.1

s(n) <
6

7

(

eγ log log(2n) +
0.6483

log log(2n)

)

< eγ log logn

if n > 418. If n 6 418, numerical computations show that only the square-free numbers 2, 6, 10, 30 do not
satisfy Robin’s inequality.
If n is odd, see theorem 3.4. �

3.5. Square-full integers

Let n be an integer. If for every prime divisor p of n, we have p2|n, the integer n is said to be square-full.
This result can also be found in [6]. The proof we give here is shorter and simpler.

Theorem 3.7 The only square-full integers not satisfying Robin’s inequality are 4, 8, 9, 16 and 36.

Proof:
Case 1: ω(n) 6 4. From theorem 3.5, the only square-full counterexamples are 4, 8, 9, 16, 36.

Case 2: ω(n) > 5. Let n =
k
∏

i=1

qai

i . Since n is square-full, we have n > N2
k and s(n) < f(Nk) (lemma 2.2).

We can now write, using theorem 3.2,

s(n)− eγ log logn < f(Nk)− eγ log logN2
k <

2.51

log logNk

− 1.2345 < −0.0083

�

4. Proof of theorem 1.3

Lemma 4.1 Let M(k) = ee
−γf(Nk) − logNk

1. For all k > 39, we have M(k) 6 logN⌊ k
3 ⌋

2. For all k > 18, we have M(k) 6 logN⌊ k
2 ⌋

3. For all k > 969672728, we have M(k) 6 logN⌊ k
14⌋

Proof: Let us prove property 1.
We claim that for all k > 38, we have M(3k+ j) 6 logN(k) for all 0 6 j < 3. Using theorem 3.2, we have

M(k) 6
(

e
1.41

log log Nk − 1
)

logNk

Define

ǫk = e
1.41

log(3k log(3k)) − 1−
k log k

(3k + 2)(log(3k + 2) + log log(3k + 2))

Using the inequalities [4]

k log k < logNk < k (log k + log log k) for k > 13

9



we see that

ǫk > e
1.41

log log N3k − 1−
logNk

logN3k+2

We claim that ǫk is decreasing, and that ǫk < 0 for k > 109. Indeed, rewrite the term

k log k

(3k + 2)(log(3k + 2) + log log(3k + 2))
=

k

3k + 2
×

log k

log(3k + 2)
×

log(3k + 2)

log(3k + 2) + log log(3k + 2)

as a product of three increasing functions: to prove they are increasing, you can use the monotonicity of
x 7→ log x

x
(x > e), and the monotonicity of x 7→ log x

log(x+a) , where a is a positive real number .

We have ǫ109 < −0.0003 implying for all 0 6 i < 3

e
1.41

log log N3k+i − 1 < e
1.41

log log N3k − 1 6
logNk

logN3k+2
6

logNk

logN3k+i

yielding

M(3k + i) 6
(

e
1.41

log log N3k+i − 1
)

logN3k+i 6 logNk

or simply
M(k) 6 logN⌊ k

3 ⌋

for k > 109, and was confirmed for 39 6 k < 109 with the help of numerical computations.

• Proof of property 2: This result is deduced the same way: consider the function

ǫk = e
1.41

log(2k log(2k)) − 1−
k log k

(2k + 1)(log(2k + 1) + log log(2k + 1))

We have

ǫk > e
1.41

log log N2k − 1−
logNk

logN2k+1

and ǫk is a decreasing function with ǫ28 < −0.003 yielding

M(k) 6 logN⌊ k
2 ⌋

for k > 27, and was confirmed for 18 6 k < 28 with the help of numerical computations.

• Proof of property 3: we proceed the same way. Consider the function

ǫk = e
1.41

log(14k log(14k)) − 1−
k log k

(14k + 13)(log(14k + 13) + log log(14k + 13))

We have

ǫk > e
1.41

log log N14k − 1−
logNk

logN14k+13

and ǫk is a decreasing function with ǫ969672728 < −0.001 yielding

M(k) 6 logN⌊ k
14 ⌋

for k > 969672728. �
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Proof of theorem 1.3

We will need the function H defined in (3).

H(n) 6 n and s(H(n)) > s(n)

The integer H(n) is a Hardy-Ramanujan number. In addition, if H(n) satisfies Robin’s inequality, so does
n. Indeed,

s(n) 6 s(H(n)) < eγ log logH(n) 6 eγ log logn

Note that the value of # {i 6 ω(n) ; ai 6= 1} is the same if we replace n with H(n), and that ω(H(n)) =
ω(n). So without loss of generality, we will prove the theorem for Hardy-Ramanujan numbers only.

Let n be a Hardy-Ramanujan number. Define j(n) := min{1 6 j 6 ω(n);M(ω(n)) 6 logNj} and
i(n) := #{i 6 ω(n); ai 6= 1}. A sufficient condition for n to satisfy Robin’s inequality is i(n) > j(n).
Since n is a Hardy-Ramanujan number, we have ai > 2 for i 6 i(n), and ai = 1 otherwise, implying that
n > Ni(n)Nω(n) and yielding

s(n)− eγ log logn < f(Nω(n))− eγ log log(Ni(n)Nω(n)) < 0

if i(n) > j(n). Hence, n satisfies Robin’s inequality.

If ω(n) > 18, and if #{i 6 ω(n); ai 6= 1} >
ω(n)
2 , n satisfies Robin’s inequality. Indeed, if ω(n) > 18,

lemma 4.1 tells us that j(n) 6 ω(n)
2 . Using the assumption #{i 6 ω(n); ai 6= 1} >

ω(n)
2 yields i(n) > j(n).

Proceed the same way with the two cases: ω(n) > 39 and ω(n) > 969672728 �

5. Proof of theorem 1.4

According to lemma 2.2, we have s(n) < f(Nω(n)) and

n =

ω(n)
∏

j=1

q
aj

j > qai−1
i



qi
∏

j 6=i

q
aj

j



 > qai−1
i



pi
∏

pj
j 6=i



 = qai−1
i Nω(n)

implying

s(n)− eγ log logn < f(Nω(n))− eγ log log(qai−1
i Nω(n))

If ai > Mω(n)(qi) with

Mk(q) := 1 +
ee

−γf(Nk) − logNk

log q

then
f(Nω(n))− eγ log log(qai−1

i Nω(n)) 6 0

and therefore
s(n) < eγ log logn

11



6. Proof of theorem 1.6

Proof of 1. The superabundance of the number c is proved in [7].

Proof of 2. In [5], numerical computations have confirmed that c > 1010
10

.
Using lemma 2.2, we have

eγ log log c 6 s(c) < f(Nω(c)) < eγ
(

log pω(c) +
1

log pω(c)

)

yielding

log pω(c) >
1

2

(

log log c+
√

log log c− 4
)

Since log log c > 10 log 10 + log log 10 > 23.85988, we obtain

log pω(c) > 23.81789

yielding
ω(c) > 969 672 728

Proof of 3. ⋆ Part 1: pω(c) < log c

By definition, the counterexample c does not satisfy Robin’s inequality:

s(c) > eγ log log c

and since c > 5040 is the least one, the integer c′ =
c

pω(c)
satisfy Robin’s inequality, because

ω(c′) = ω(c)− 1 > 4. Therefore, we have

s

(

c

pω(c)

)

< eγ log log
c

pω(c)

yielding
s(c)

s

(

c

pω(c)

) >
log log c

log log c
pω(c)

(4)

Now use
s(c)

s
(

c
pω(c)

) = s(pω(c)) = 1+
1

pω(c)
, and using inequality log(1− x) < x (x 6= 0), we establish

that

log log
c

pω(c)
= log log c+ log

(

1−
log pω(c)

log c

)

< log log c−
log pω(c)

log c
(5)

Inequality (4) becomes

1

pω(c)
>

log log c

log log c
pω(c)

− 1 >
log log c

log log c−
log pω(c)

log c

− 1 =
log p

ω(c)

log c log log c− log pω(c)

and
pω(c) log pω(c) < log c log log c− log pω(c) < log c log log c

12



implying pω(c) < log c.

⋆ Part 2: log c < pω(c)e
1

log pω(c)

The counterexample inequality s(c) > eγ log log c yields

eγ log log c 6 s(c) < f(Nω(c)) < eγ
(

log pω(c) +
1

log pω(c)

)

implying log c < pω(c)e
1

log pω(c) .

Proof of 4. See theorem 1.3.

Proof of 5. The proof of the inequality pai

i < 2a1+2 can be found in [1] (lemma 1). The other inequality

pcii < pie
M(ω(c))

is deduced from theorem 1.4.

7. Sharper bounds

We can use some of the ideas of this article to improve upper bounds for the arithmetic functions s

and f .

7.1. Primorials

For instance, when dealing with primorials Nk, we can write

s(Nk) =
s(2)

s(4)
s(2Nk)

and then use an upper bound for s(2Nk) (see theorem 3.1) to sharpen Robin’s bound for s(Nk). Or we
can use another method :

Theorem 7.1 For all i > 2, for all n > i,
n
∏

k=1

(

1 +
1

pk

)

< αi

(

eγ log logNn +
2.51

log logNn

)

with

αi =
i
∏

j=1

(

1−
1

p2j

)

Ex: for all n > 4,
n
∏

k=1

(

1 +
1

pk

)

< 0.627

(

eγ log logNn +
2.51

log logNn

)

< eγ log logNn
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Proof: Let i > 2, n > i. We have

s(Nn) = s(Ni)s

(

Nn

Ni

)

< s(Ni)f

(

Nn

Ni

)

=
s(Ni)

f(Ni)
f(Nn) = αif(Nn)

Use theorem 3.2 to conclude. �

7.2. Odd numbers

Lemma 7.2 If n > 17 is odd,
σ(2n) < 2eγn log log(2n)

Proof: Write

s(2n) =
s(2)

s(4)
s(4n) 6

6

7

(

eγ log log(4n) +
0.6483

log log(4n)

)

< eγ log log(2n)

To prove the last inequality, define

g(x) =
6

7

(

eγ log log(4x) +
0.6483

log log(4x)

)

− eγ log log(2x)

We have

g′(x) < −
0.38 + 1.41(log log(4x))2 + (0.55 + 0.25(log log(4x))2) log x

x log(2x) log(4x)(log log(4x))2
< 0

and g(210) < 0 < g(209). The inequality s(2n) < eγ log log(2n) is valid for n > 209, and numerical
computations show that this is also true when 17 6 n 6 209. �

Corollary 7.3 If n > 17 is odd,

σ(n) <
2

3
eγn log log(2n)

The following result is an improvement of theorem 1.2 in [6].

Proof: Use the previous result to get

s(n) =
s(2n)

s(2)
<

2

3
eγ log log(2n)

�

The following result is an improvement of theorem 2.1 in [6].

Theorem 7.4 If n > 3 is odd,

n

ϕ(n)
6

1

2

(

eγ log log(2n) +
2.51

log log(2n)

)

< eγ log logn

Proof: Write

f(n) =
f(2n)

f(2)

ans use theorem 3.2:

f(n) 6
1

2

(

eγ log log(2n) +
2.51

log log(2n)

)

�
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7.3. The general case

In previous sections, we have mentioned superabundant numbers and pointed out some of their prop-
erties, thus confirming that all superabundant numbers are Hardy-Ramanujan numbers.

Robin’s inequality can be enhanced for non superabundant numbers. Indeed, if n is not a superabundant
number, there exists m < n such that s(m) > s(n). Let I(n) = {m < n; s(n) 6 s(m)}. The set I(n) is
not empty, and we can define B(n) = min I(n). We have

B(n) < n and s(n) 6 s(B(n)

yielding
s(n) 6 s(B(n)) < eγ log logB(n)

if B(n) satisfies Robin’s inequality. Hence, the upper bound is better because B(n) < n.

But this method to sharpen Robin’s bound does not say much about B(n). In order to find an up-
per bound with exploitable informations, we can use the function H (see (3)). This method concerns non
Hardy-Ramanujan numbers, whereas the previous method concerns the larger set of non superabundant
numbers.
In (3), we defined the function H which transforms any number into a Hardy-Ramanujan number, leaves
the multiplicities unchanged (but not teh way they are ordered) and is such that H(n) 6 n and s(n) 6
s(H(n)). If H(n) satisfies Robin’s inequality, then

s(n) 6 s(H(n)) < eγ log logH(n)

The property H(n) 6 n improves Robin’s inequality, and unlike the function B, there is an explicit
method to determine its value for all positive integers.
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