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___________________________________________ 

A Comparative Study of Divisive and Agglomerative 
Hierarchical Clustering Algorithms 

Maurice Roux 

Aix-Marseille Université, France 

Abstract: A general scheme for divisive hierarchical clustering algorithms is 
proposed. It is made of three main steps: first a splitting procedure for the 
subdivision of clusters into two subclusters, second a local evaluation of the 
bipartitions resulting from the tentative splits and, third, a formula for determining 
the node levels of the resulting dendrogram. A set of 12 such algorithms is 
presented and compared to their agglomerative counterpart (when available). These 
algorithms are evaluated using the Goodman-Kruskal correlation coefficient. As a 
global criterion it is an internal goodness-of-fit measure based on the set order 
induced by the hierarchy compared to the order associated with the given 
dissimilarities. Applied to a hundred random data tables and to three real life 
examples, these comparisons are in favor of methods which are based on unusual 
ratio-type formulas to evaluate the intermediate bipartitions, namely the Silhouette 
formula, the Dunn's formula and the Mollineda et al. formula. These formulas take 
into account both the within cluster and the between cluster mean dissimilarities. 
Their use in divisive algorithms performs very well and slightly better than in their 
agglomerative counterpart. 

Keywords: Hierarchical clustering; Dissimilarity data; Splitting procedures; Eval-
uation of hierarchy; Dendrogram; Ultrametrics. 

1. Introduction

Most papers using hierarchical clusterings employ one of the four 
popular agglomerative methods, namely the single linkage method, the 
average linkage method, the complete linkage method and Ward’s method. 
The goal of these methods is to represent the proximities, or the dissimilar- 



Figure 1. Dendrogram resulting from a hierarchical clustering program. 

ities, between objects as a tree where the objects are situated at the end of 
the branches, generally at the bottom of the graph (Figure 1). The junctions 
of the branches are called the nodes of the tree; the node levels are 
supposed to represent the intensity of the ressemblance between the 
objects or clusters being joined. 

In an agglomerative procedure (coined SAHN for Sequential 
Agglomerative Hierarchical Non-overlapping by Sneath and Sokal, 
1973), the tree is constructed bottom-up: at the beginning each 
object x is considered as a cluster {x} called a singleton. Then each 
step of the procedure consists in creating a new cluster by merging 
the two closest clusters. This implies there is a way to compute the 
dissimilarity or distance between two clusters. For instance, in the 
usual average linkage method the distance between two clusters, Cp 
and Cq, is the mean value of the between-cluster distances: 

D(Cp , Cq ) = (1 / np nq)  { d(xi, xj) | xi  Cp , xj  Cq }, (1) 

where np and nq are the number of elements of Cp and Cq respectively, d(xi, 
xj) is the given dissimilarity, or distance, between objects xi and xj . 

The value of D(Cp, Cq) is then used as the node level for the junction 
of the branches issued from Cp and Cq . Indeed it can be shown that, this 
way, the usual procedures are monotonic. This means that if cluster C is 
included in a cluster C then their associated node levels LC and LC are in 
an increasing order: 



C  C  LC  LC.

  

(2)

This ensures that the hierarchical tree may be built without branch 
crossings. Thus, formula (1) is used first as a criterion for merging the 
clusters and, second, for determining the node levels of the hierarchy. 

Divisive hierachical algorithms are built top-down: starting with the 
whole sample in a unique cluster they split this cluster into two subclusters 
which are, in turn, divided into subclusters and so on. At each step the two 
new clusters make up a so-called bipartition of the former. It is well known 
(Edwards and Cavalli-Sforza, 1965) that there are 2n - 1 – 1 ways of 
splitting a set of n objects into two subsets. Therefore it is too time 
consuming to base a splitting protocol on the trial of all possible 
bipartitions. The present paper proposes to evaluate a restricted number of 
bipartitions to build up a working algorithm. Such an idea was developed a 
long time ago by Macnaughton-Smith et al. (1964) and reused by Kaufman 
and Rousseeuw (1990, Chap. 6, program DIANA).   

With a view to applications in biology (genetics, ecology, …) all the 
algorithms proposed in this paper start with a distance, or dissimilarity 
matrix. The main objective of this study is to propose a general scheme for 
the elaboration of divisive hierarchical algorithms, where three main 
choices should apply at each step of the procedure: 

i) a simplified way of splitting the clusters
ii) a formula to evaluate each of the considered bipartitions
iii) a formula to determine the node levels of the resulting hierarchy

In this framework only complete binary hierarchies are looked for,
so the choice of which cluster to split is not relevant: all clusters including 
two or more objects are split in turn, until there remains only singletons.  

The above three points will be studied in the following (Sections 2, 
3 and 4). Applying these principles gives rise to a family of algorithms 
described in Section 5. Then a practical benchtest is developed and used 
(Section 6) for comparing old and new algorithms. The main results are 
gathered (Section 6.4) and a concluding section terminates this paper 
(Section 7). 

2. Splitting Procedures

A number of splitting procedures were designed in the past, the 
oldest one being by Williams and Lambert (1959). This procedure is said 
to be monothetic in the sense that object sets are split according to the 
values of only one variable. This idea was updated using one principal 
component instead of a single variable. It was first used by Reinert (1983) 
for qualitative variables and then by Boley (1998, Principal Directions 
Divisive Partitioning or PDDP, see Section 5.3). Another approach is set 



up by using the k-means algorithm, with the parameter k = 2, to obtain a 
bipartition (Steinbach, Karypis, and Kumar, 2000). But, as this procedure 
uses vector data sets, and needs delicate initializations, it will not be 
studied in the present work.   

Another approach to get around the complexity of splitting is to 
extract one, or several objects, from the set to be split. Macnaughton-Smith 
et al. (1964) proposed to select the most distant object from the cluster as a 
seed for a separate new cluster. Then they aggregate to this seed the 
objects which are closer to the new subset than to the rest of the current 
cluster. The distance used to evaluate the proximity between an object and 
a cluster is the mean value of the dissimilarities between this object and 
the objects in the cluster. A similar idea was developed by Hubert (1973): 
he suggested to use a pair of objects as seeds for the new bipartition. His 
choice was to select the two objects that are most dissimilar, and then to 
build up the two subclusters according to distances (or a function of 
distances, as the average value) to these seeds. Exploiting this idea Roux 
(1991, 1995) considered the bipartitions generated by all the pairs of 
objects, retaining the bipartition with the best evaluation of some a priori 
criterion. This procedure will be applied in the following. 

The general scheme of the new algorithms is described in Table 1. 
The main operation is to manage the vector clus() which keeps the 
cluster numbers of the objects. These numbers decrease as the algorithm 
proceeds along the hierarchy. At the beginning, all objects belong to the 
same cluster numbered (2n – 1), where n is the number of  objects under 
study. The first split gives raise to clusters numbered (2n – 2) and (2n – 3), 
except if one of them is a singleton; in such a case this singleton is 
considered as a node, the number of which is the current number of the 
object (between 1 and n) in the given dataset. These operations are pursued 
until all objects become singletons 

3. Selection of Bipartitions

At each step of a usual agglomerative method the two candidate 
clusters Cp and Cq for a merging step may be considered as the bipartition 
{Cp , Cq} of the set Cp  Cq . For instance, in the case of the classical 
average link method, such a bipartition is evaluated by the mean value of 
the between-cluster distances. 

In divisive methods, once the cluster Cp to be split is selected, the 
next step is to study a number of bipartitions {Cp , Cp } of Cp . Again the 
between-cluster average distances can be used for evaluating this split 
(Roux, 1991). However a number of criteria designed for the evaluation of 
any partition can be used. Thus both types of algorithms, divisive or 
agglomerative,  rely  upon  a  measure  of  similarity/dissimilarity  between 



Table 1. Outline of a divisive construction of a hierarchy. The splitting criterion 
splitcrit is supposed to be similar to a dissimilarity, thus the best partition is the one 
which maximize the criterion. P(C) designates the set of all pairs of elements of cluster C. 
Function B(p) assigns objects either to subset C’ or to subset C” of C according to their 
dissimilarity to i and j, the elements of pair p. 

BASIC DIVISIVE CLUSTERING ALGORITHM 
begin 
input the n by n dissimilarity matrix dis 
INITIALIZATIONS 
for i := 1 to n do 

clus(i) := 2*n – 1 
w(2*n – 1) := n 

end for 
MAIN LOOP (h = node number) 
for h := (2*n – 1) to (n + 1) step –1 do 

let C be a cluster with w(C) > 1     
w(C) := cardinality(C)

bestcrit := 0 
SECONDARY LOOP (enumerates and evaluates bipartitions) 
for each object pair p in P(C) 

tempart := B(p) 
currentcrit := splitcrit(tempart) 
if currentcrit > bestcrit then 

bestcrit := currentcrit 
bestpart := tempart 

end if 
end for 
CREATES OFFSPRINGS OF NODE h 
C’ := first subset(bestpart) 

 C” := second subset(bestpart) 
diameter ≔ {dis(i, j)| i, j elements of C}  

      assign new numbers h’ and h” to clusters C’ and C” 
  update weights w(C’) and w(C”) 
  update vector clus for the elements of C 
  output  h, h’, h”, w(C), diameter 

end for 

sets. Such measures are described in this section which are then used as 
criteria in our algorithms. The list of these  criteria is in Table 2 (Section 
5). Whatever the adopted criterion, it should be noted that a series of very 
good bipartitions does not result automatically in a good hierarchy.  

3.1 Five Distance-Like Formulas for Set Dissimilarities 

In the following, Cp and Cp are tentative subsets of the current 
cluster Cp to be split. 



Hierarchical Clustering Algorithms 

The single linkage criterion is the lowest dissimilarity between 
objects of Cp and objects of Cp: 

DSL(Cp , Cp) = Min { d(xi, xj) | xi  Cp, xj  Cp } . (3) 

The average linkage criterion is quite similar to formula (1): 

 DAV(Cp , Cp ) =  (1 / |Cp|| Cp|) { d(xi, xj) | xi  Cp , xj  Cp } , (4) 

where |C| means the number of elements (cardinality) of C. 
The complete linkage criterion is the largest dissimilarity between 

objects of Cp and objects of Cp ; in a divisive scheme this is not relevant 
since, for most bipartitions of Cp , the criterion has the same value, namely 
the diameter of Cp. Therefore, in a divisive framework, the formula is 
slighty modified as follows : 

DCL (Cp , Cp ) = Max {  (Cp ),  (Cp )} , (5) 

where  (Cp ) and  (Cp ) are the diameters of Cp  and Cp

(respectively). It is clear that such formula defines a compactness measure. 
Therefore a good partition is reached for a low value of DCL . 

Ward’s criterion may also be considered as a set dissimilarity 
criterion. Indeed, after the paper of Székely and Rizzo (2005), there exists 
an infinite family of algorithms similar to Ward’s. In the present study, the 
focus is only on two of them. One is the original algorithm as described by 
J.H. Ward (1963). The second is defined by the parameter  = 1 in the 
Székely-Rizzo family. Here the between-cluster dissimilarity involved by 
these algorithms are designated as DW1 (Ward’s original) and DW2 
respectively, after Murtagh and Legendre (2014). 

DW1(Cp , Cq ) = [ (2 / np nq)  { d2(xi, xj) | xi  Cp , xj  Cq } 
– (1 / n2

p )  { d2(xi, xj) | xi  Cp , xj  Cp }
– (1 / n2

q )  { d2(xi, xj) | xi  Cq , xj  Cq } ] (np nq / (np + nq)).  (6)

If the objects x are embedded in a vector space of real numbers, then this 
formula may be rewritten as: 

        DW1(Cp , Cq) =  (np nq / (np + nq)) ∥g(xp) – g(xq)∥
2   (7) 

where g(xp) and g(xq) are the centroids of clusters Cp and Cq, respectively. 
This formula shows that, in this case, DW1 is proportional to the between 
centroids squared distance. 

DW2(Cp , Cq) = [ (2 / np nq)  { d(xi, xj) | xi  Cp , xj  Cq }  
– (1 / n2

p )  { d(xi, xj) | xi  Cp , xj  Cp }
– (1 / n2

q )  { d(xi, xj) | xi  Cq , xj  Cq } ] (np nq / (np + nq))   (8)



This second formula is very similar to the first one except for the 
exponent on the initial distances d(xi, xj). Székely and Rizzo (2005) put 
forward theoretical arguments to support formula (8), which should result 
in better partitions because, even with vector data, formula (8) cannot be 
rewritten in terms of between centroids distance as in formula (7). Thus it 
takes into account both the inter- and intra-cluster distances. The next 
section describes other ways to define set dissimilarities using intra- and 
inter-clusters relations.  

3.2  Four Ratio-Type Criteria 

The main idea for using such criteria is to take into account, not only 
the betwen cluster dissimilarities, but also the dissimilarities to the 
neighboring objects of the two clusters being studied. A popular, though 
dated, criterion is that of Dunn (1974), designed to evaluate a partition P 
with any number of elements: 

Dunn (P) = Min{ Min { ( Cp , Cq ) | q  P, q  p }, p  P } / 
       Max { p | p  P },  (9) 

where (Cp , Cq ) is the mean value of between-cluster dissimilarities (as 
formula (1)) and p is the diameter of subset Cp (i.e. the largest 
dissimilarity between objects included in Cp). 

When evaluating the splitting of a cluster C into C and C the above 
formula reduces to: 

DDu(C, C) =  (C, C) / Max{C , C}, (10)

where C and  Care the diameters of clusters C and C respect-
ively. 

But it is known that the diameter is rather sensitive to possible 
outliers; this is why the following variant is taken into account in the 
present study: 

DDu(C, C) =  (C, C) / Max{( C C (C C)}, (11) 

where ( C C (resp. (C C) is the average value of within-cluster C 
(resp. C) dissimilarities. Indeed either formula (10) or formula (11) are of 
the type : 

Between-cluster dispersion of dissimilarities / 
Within-cluster dispersion of dissimilarities 

When one excessive dissimilarity value occurrs inside one cluster this may 
affect its diameter much more than the average value of within-cluster 



dissimilarities. In addition, formula (11) looks more coherent with average 
values in both the numerator and the denominator of the ratio.   

The Silhouette width (Rousseeuw, 1987; Kaufman and Rousseeuw, 
1990) is considered in this study. For any object xi, included in a cluster 
C(xi), two functions, a and b, are defined and combined to get the 
Silhouette s(xi) of this object (|. | indicates the cardinality): 

a(xi) = ( 1 / (|C(xi)| – 1)  { d(xi, xj) | xj  C(xi) } = ({xi}, C(xi) – {xi}), (12) 

b(xi) = Min{  ({xi}, Cp) | Cp  P – C(xi) }, (13) 

s(xi) = ( b(xi) – a(xi)) / Max { a(xi), b(xi) }. (14) 

The Silhouette width S(P) of a partition P is just the mean value of 
all the s(xi) for the xi covered by P  

S(P) = (1 / n)  { s(xi) | xi   {Cp | p  P}}, (15) 

with n being the number of objects concerned by the current partition P. 
When C includes a bipartition {C , C} the formulas (12) and (13) 
become: 

for xi in C     a(xi) = ({xi}, C – {xi})      b(xi) = ({xi}, C), (16)

for xi in C    a(xi) = ({xi}, C – {xi})      b(xi) = ({xi}, C), (16 bis) 

while the formal definitions of s(xi) and S(P) remain unchanged. A good 
partition for this criterion shows high values for parameters b’s, and low 
values for parameters a’s. Therefore a good partition is characterized by a 
high value of measure S.  

Another ratio-type criteria was formulated by Mollineda et al. 
(2000) and used in an aggregative hierarchical algorithm. At each step of 
their algorithm, they define an isolation function  of two clusters taking 
into account the dissimilarities to other clusters under construction. In this 
formula i, j and k are clusters, and d is one of the usual between-cluster 
distances (average link, single link, etc …) : 

 (i , j) =  { d(i, k) | k  K, k  j } / [ |K| - 2 ]. (17) 

In this formula, K is the set of all clusters available at the current step of 
the algorithm. It is worth noting that this formula is not symmetrical with 
respect to i and j, since (i , j) is not equal to (j , i). But they insert this 
function  in a relative dissimilarity D used to select the pair of clusters to 
be aggregated : 

DRH(i, j) = d(i, j) / Min { (i , j) ; (j , i)}. (18) 



For this reason, they call their algorithm “relative hierarchical clustering” 
and we denote DRH this relative dissimilarity. Contrary to function , the 
relative dissimilarity DRH is symmetric with respect to i and j, and it could 
be used in either an agglomerative or a divisive scheme. 

4. Determining the Node Levels

When used in an agglomerative scheme the usual five criteria 
examined in Section 3.1 are used without any problem for the represen-
tation of the results: the criterion value becomes the level of the 
corresponding node, and the drawing of the hierarchical tree does not show 
any cross-over (or reversal) of the branches. 

Unfortunately divisive procedures, in general, do not enjoy this 
property, because of the non-optimality of the successive splittings. A rule 
is then needed to obtain consistent node levels and a true tree 
representation. Kaufman and Rousseeuw (1990), in their program DIANA, 
use the diameter of the successive clusters as node levels. It is evident that 
the diameter of a subset C included in a set C is less than, or equal to, the 
diameter of C, fulfilling the monotonic condition (2). Thus the two subsets 
created by the splitting of C are always associated with lower (or equal) 
node levels.  

Another way to settle consistent node levels would be to associate 
the ranks of the nodes according to the order in which they are created, 
starting with rank n – 1 for the top level, down to 1 for the last created 
node. But this method may not be satisfying; in effect, it may happen that a 
small homogeneous susbet would be separated at an early stage from the 
bulk of the objects. The corresponding node would then be associated with 
a high rank, in spite of its homogeneity. Another way to use ranks would 
be to renumber the nodes from the bottom up to the top, after completion 
of all the splittings, but this is not free of difficulties either. 

Indeed the present discussion is of little use for the general purpose 
of comparing clustering algorithms, since the global evaluation of the 
results will be based on rank correlation methods (see Section 6.2). 
However, the users could be interested in getting coherent node levels, 
hence a working representation. In the present experiment, the node levels 
are determined, as in the program DIANA, by the diameters. For all 
divisive algorithms the node level is the diameter of the cluster being split. 
For agglomerative methods, the node level is the diameter of the new 
cluster formed at the aggregation step, except for those methods based on 
usual criteria, namely  Single link, Average link, Complete link, Ward’s 
and Ward’s variant. In effect, these criteria fullfill the condition (2) when 
used in a aggregative framework allowing for a true hierarchical tree 
(without branch crossing). 



5. New Algorithms Facing Old Ones

The nine formulas for set dissimilarities, described in section 3, may 
be used either for divisive or for agglomerative hierarchical algorithms. 
Following the suggestion of an anonymous reviewer both types of 
algorithms are studied with the same formulas. In divisive algorithms, 
according to the principles of Section 2, the between set dissimilarities are 
used to select one bipartition among those which are associated to a pair of 
elements; the bipartition resulting in the highest value of the criterion is 
retained for splitting the current cluster. In case of ties, the first split 
appearing is selected. 

Due to the small modification adopted in the “Complete Link 
Divisive” method: the splitting criterion DCL (formula (4)), a compactness 
measure which should be minimized, is transformed into –DCL to enter the 
general framework of divisive algorithms which requires the maximization 
of the criterion. 

In agglomerative algorithms, the same formulas are used to select 
the merging pairs of clusters. The pair which minimizes the criterion is 
merged in the current step. In case of ties, the first pair satisfying the 
criterion is adopted.  

Thus, this part of the study leads to 18 computer programs, which 
are named after the formula they use in the list of Table 2. For the sake of 
comparisons, 3 other algorithms which do not follow the principles of 
Section 2, are included in the comparisons (Table 3). The first one is due 
to Macnaughton-Smith et al. (1964), whereas the last two are the Principal 
Direction Divisive Partitioning method (PDDP, Boley, 1998) and a variant 
of it. They are briefly described hereafter. 

5.1 The Macnaughton-Smith et al. Algorithm 

The method proposed by Macnaughton-Smith et al. could be con-
sidered as a one-seed procedure. To split the cluster C, they choose as a 
seed the object x0 whose average distance to the other elements of C is 
maximum. The building of the bipartition begins with  

C = C – {x0} and C = {x0}. (19)

Next, for each object x in C, compute ({x}, C – {x}) and ({x}, C), and 
retain x1 as the one which maximizes  

f(x) =  ({x}, C) – ({x}, C - {x}). (20)

(has the same definition as above in formula (9)).Then the bipartition 
becomes 



Table 2. List of the 9 criteria used in both divisive and agglomerative procedures. Note that 
the complete link criterion is modified when used in a divisive procedure (formula (5)). 

Set dissimilarity criteria Formula no Types of criteria 
Single link 3 Dist.

Average link divisive 4 Dist.
Complete link 5 Dist.

Ward’s original 6 Dist.
Ward’s Szekely-Rizzo 8 Dist.

Dunn’s original 10 Ratio
Dunn’s variant 11 Ratio

Silhouette 15 & 16 Ratio
Mollineda et al. 17 & 18 Ratio 

Table 3. Supplementary divisive algorithms 

Divisive methods Basic splitting principles 
Macnaughton-Smith et al. Furthest object as initial seed + Transfer function 

Principal Direction Divisive 
Partitionning (PDDP) 

Coordinates on the first principal axis 

PDDP variant As PDDP + Transfer function 

C1 = C – {x1} and C1 = C  {x1},  (21) 

and this process is continued until f(x) becomes negative. We call this 
process a one-way transfer function, since the only possible displacement 
is from the current cluster toward the new cluster being created. 

5.2  The Principal Direction Divisive Partitioning Algorithm (PDDP) 

The PDDP method was first designed for the analysis of 
observations  variables data tables, but may be readily adapted by using 
the Principal Coordinates Analysis (PCoA, Gower, 1966). This technique 
is akin to the Principal components analysis (PCA) but applies to distance 
data. If the data are dissimilarities, they may not be euclidean, but the first 
principal direction is, in general, associated to a positive eigenvalue. In the 
PDDP algorithm, the first principal coordinate axis is used to create a 
dichotomy: those objects whose coordinates are negative are put into the 
first subset of the dichotomy, while the objects with positive, or null, 
coordinates make up the second subset. This PCoA is recomputed for each 
cluster with more than two objects, achieving a hierarchical divisive 
procedure. 



Besides, in our study, a variant of this algorithm is used by the 
addition of a transfer function. After the main dichotomy using the first 
principal direction, a further step is taken which may move some objects 
(one at a time) from their actual assignment to the other one as long as 
they improve the inter-cluster mean dissimilarity. If C and Care the 
resulting subsets of the main dichotomy, then DAV(C,C) is calculated as 
the inter-cluster mean dissimilarity (formula (4)). Then for each object x, 
element of CrespCthis parameter is recomputed as DAV(C– {x}, 
Cx) (resp. DAV(C {x}, Cx)). Let x0 be the element which 
maximizes the value of this last computation among the elements of C  
C if  

DAV(C {x0}, Cx0) > DAV(C, C)   when x0 belongs to C(22) 
DAV(C {x0}, Cx0) > DAV(C, C)   when x0 belongs to C(22 bis) 

then x0 is moved from Cto C (resp. from Cto C). This procedure is 
continued until there is no more x satisfying inequality (22) or (22 bis). It 
may be called a two-way transfer function as the objects may be moved 
from any one of the two cluster under construction to the other. 

With these 3 supplementary divisive algorithms it is a total of 21 
algorithms which enter the following comparisons. 

6. Practical Tests

The comparison of the above 12 divisive algorithms and 9 
agglomerative ones is mainly dedicated to the quality of the results as 
measured by the goodness-of-fit of the results to the data.  First the 
benchmark made of random datasets is described, followed by the 
treatement of some real life datasets. Next some thoughts about the 
goodness-of-fit criteria are developed. Then a tentative estimation of the 
algorithmic complexity is studied and, finally, a summary of the 
comparisons is set up.  

6.1  Random Data Sets 

A sample of 100 random datasets is set up. Each dataset is a matrix 
of 40 observations by 10 variables. All variables are generated from a 
uniform  distribution  over  [0, 1].  All  10  variables  are  generated 
independently according to the same distribution. For each matrix the 
usual Euclidean distance is applied and treated by each of the algorithms. 
Although these data are far from real life data, they constitute a harsh 
benchmark and allow for a real competition among the programs. 

The number of 40 observations per dataset is chosen as a common 
size when the objective is to build up a complete hierarchy (e.g. the 



Pottery or the Leukemia examples, respectively 45 and 38 observations, in 
the next section). The computer programs may easily deal with 100 or 150 
observations (e.g. Iris example with 150 observations), but the use and 
interpretation of the resulting hierarchies beyond this number of objects is 
rather difficult.       

6.2  Real Life Datasets 

6.2.1 Leukemia Dataset 

Initially the data collected by Golub et al. (1999) were the 
expressions of more than 7000 genes in presence of 38 bone marrow 
samples from acute leukemia patients. By several preliminary treatments, 
the variables reduced to a homogeneous set of 100 genes.  In addition 
these expressions were log-transformed before the computation of 
euclidean distances on the samples as suggested by Handl, Knowles, and 
Kell (2005) who used these data. 

6.2.2 Pottery Dataset 

The chemical composition of Romano-British pottery, obtained by 
Tubb, Parker, and Nickless (1980), gave rise to a data table of 45 samples 
and 9 quantitative variables (3 samples suspected to be erroneous were 
eliminated from the 48 initial observations). The data were first 
standardized prior to the computation of the usual euclidean distances 
between the samples. 

6.2.3 Fisher’s Iris 

The well known Fisher’s iris dataset is made of 150 samples 
including three species of irises, 50 samples per species (Fisher, 1936). 
There are four morphological variables, namely Sepal Length, Sepal 
Width, Petal Length, Petal Width. After global standardization the usual 
euclidean distances between samples are computed, and introduced as 
input in the clustering programs.  

6.3   A Goodness-of-Fit Criterion 

The most popular criterion to evaluate the results of hierarchical 
clusterings is certainly the Co-phenetic Correlation Coefficient (CPCC, 
Sokal and Rohlf, 1962). It needs the construction of the ultrametric 
distances associated with the dendrogram; then the CPCC is just the usual 
correlation coefficient between the input distances and the ultrametric 
distances, the values of which are laid out in two long vectors. Another 



type of correlation coefficient, namely the Kendall’s tau, was used for 
evaluation of hierarchical algorithms by Cunningham and Ogilvie (1972). 

In the present work the focus is rather oriented toward rank 
correlation methods. Indeed, when the user examines the hierarchy issued 
from the data, the user focuses mainly on the groups, and subgroups, 
disclosed by the algorithm; in other words the interest is mostly on the 
structure, or topology, of the tree rather than on the exact values of the 
within / between group distances. In addition, the results of some 
hierarchical algorithms are not given in terms of distances; this is the case 
in particular with the original Ward’s method, where the node levels 
represent variations of variance.  

Kendall’s tau (Kendall, 1938) and Goodman-Kruskal‘s coefficient 
(Goodman and Kruskal, 1954) are both based on the ranks of the values 
being compared. Let d(xi, xj) be the input distance between objects xi and 
xj, and u(xi, xj) the ultrametric distance between the same objects, resulting 
from a clustering algorithm (u(xi, xj) is the level to which objects xi and xj 
are linked in the dendrogram). The S+ index is the number of concordant 
pairs of distances, and S– is the number of discordant pairs ; two pairs of 
objects (xi, xj) and (xk, xl) constitute a “quadruple”, they are said to be 
concordant if: 

d(xi, xj) < d(xk, xl )  and  u(xi, xj) < u(xk, xl ), (23)

they are said to be discordant if:  

d(xi, xj) < d(xk, xl )  and  u(xi, xj) > u(xk, xl ). (24)

Then the Goodman coefficient  is: 

GK = (S+ – S–) / (S+ + S–), (25)

while the Kendall coefficient is: 

  = (S+ – S–) / (N (N – 1)/2), (26) 

where N is the number of distance pairs, that is (n (n – 1)/2) with n equal 
to the number of objects. These two coefficients differ by their 
denominator. Goodman-Kruskal denominator is the number of quadruples 
really taken into account (ties are not considered), while Kendall’s 
denominator is equal to the number of all quadruples, including the 
possible ties. It seems not reasonable to take into account the tied pairs 
which may be numerous due to the common level objects pairs 
dissimilarity, associated to the hierarchy. 

In addition, the number of pairs really comparable may be much 
lower than in the case of a true correlation coefficient.  For instance,  in the 



 Table 4. Examples of numbers of inequalities in the computation of the Goodman-Kruskal 
coefficient in the Leukemia dataset. Agglo.Av.Link = Agglomerative Average Link 
method; Divisive M-S = Divisive Macnaughton-Smith et al. method. Total = total number 
of quadruples with 38 objects; S+ = number of concordant quadruples (23); S- = number of 
discordant quadruples (24); NC = number of quadruples with non comparable pairs; Ties = 
number of quadruples with equal hierarchical level pairs. The mean values (last two 
columns) are computed over the 21 numbers relative to the 21 algorithms studied. 

Agglo.Av.Link Divisive M-S Mean values 

# quadr. % total # quadr. % total # quadr. % total 

Total 246753 246753 246753

S+ 143986 58.35 119390 48.38 130451.2 52.87 

S- 35375 14.34 19645 7.96 41432.52 16.79 

NC 19652 7.96 14626 5.93 18811.00 7.62 

Ties 47740 19.35 93092 37.73 56058.24 22.72 

G-K 0.6055 0.7174 0.514598

dendrogram of Figure 1, pairs (x1, x2) and (x1, x4) may be compared : (x1, 
x4) < (x2, x4) because the cluster including x1 and x4 is itself included in the 
cluster including both x2 and x4. On the other hand (x1, x2) cannot be 
compared to (x2, x4) because both pairs are included in the same set {x1, x2, 
x4}. Again, no relation could be established between pairs (x1, x2) and (x3, 
x5) for the same reason. These remarks make the computation of 
Goodman-Kruskal coefficient more complicated than applying a 
correlation coefficient between two dissimilarity matrices. In short a 
number of quadruples cannot be taken into account either because of 
equality of the associated node levels or because the two pairs of the 
quadruple, being in two separated branches, are not comparable. 

To illustrate how much of these quadruples are discarded here are 
the numbers corresponding to the Leukemia dataset and for two clustering 
algorithms (Table 4). These two algorithms were taken as examples, they 
happen to be among the best ones as shown by their G-K index compared 
to the mean value reported in the last cell of this table. 

6.4   Computing Considerations 

The initial dissimilarity matrix must be preserved in the computer 
memory to allow for the repeated computations of non-standard between 
cluster dissimilarities. Each step of the divisive process needs the 
examination of objects pairs as potential seeds for the dichotomy. Since 
there is no updating formula like in agglomerative algorithms, selecting 



one dichotomy implies to recompute the splitting criterion for each 
tentative bipartition. Then this evaluation is of order n2. The number of 
bipartitions is also O(n2), therefore the complexity of one divisive step is 
O(n4). As the construction of the full binary hierarchy needs n – 1 steps, 
the overall complexity of the proposed divisive algorithms is O(n5). This 
involves a heavy computer task but is still possible for the moderate size of 
the target data.  

All computations are programmed within the R-software. 
Computing times are given as indicative values since no effort has been 
done to optimize the program code. The scalability limitation comes from 
the dissimilarity matrix the size of which grows as n2 . But the main 
difficulty with big datasets is for the user to apprehend the resulting 
dendrogram.  

6.5 Results and Discussion 

6.5.1 Random Datasets 

The experiment, conducted according to the above conditions, 
results in a table of 100 rows (random datasets) by 21 columns (algorithms 
: 9 agglomerative and 12 divisive methods). Each dataset, made of 40 
observations, generates a 40  40 distance matrix. Any cell of the resulting 
table includes the Goodman-Kruskal coefficient relative to one data set 
and one algorithm. The higher the coefficient the better is the 
corresponding algorithm, since this coefficient is akin to a correlation 
coefficient.  

Table 5 gathers the average values of these coefficients over the 100 
datasets, together with the corresponding average computing times. In 
Table 6, the algorithms are sorted by the average values of the Goodman-
Kruskal coefficient in decreasing order. The best first two algorithms 
appear to be the Divisive Silhouette and the Divisive Dunn variant 
methods. Next come the Agglomerative method based on the Mollineda et 
al. formula,  the Principal direction divisive method (with variant) and the 
Divisive average link method. Among these best first five algorithms only 
one follows an agglomerative scheme (based on Mollineda et al. formula) 
and their basic formulas are of the ratio type, except for the PDDP variant 
algorithm. 

 In the lower part of this ranking appear three algorithms, namely 
those which are the Agglomerative single link, Agglomerative complete 
link and the Divisive complete link. On average these three algorithms 
perform less well than the usual Agglomerative average link method. 



Table 5. Average values of the Goodman-Kruskal coefficient (G-K) over 100 random data 
sets. a.c.t = average computing time, in seconds. 

Algorithms G-K a.c.t.

AGGLOMERATIVE ALGORITHMS 

Single link 0.2723 0.61 

Average link 0.3908 0.74 

Complete link 0.2923 0.60 

Ward’s original 0.3172 1.90 

Ward’s Szekely-Rizzo 0.3227 1.80 

Dunn’s original 0.3474 0.86 

Dunn’s variant 0.3529 1.50 

Silhouette 0.3850 1.62

Mollineda et al. 0.4317 1.27 

DIVISIVE ALGORITHMS 

Single link 0.3708 0.71 

Average link 0.4211 0.67 

Complete link 0.2718 0.70 

Ward’s original 0.3837 1.11 

Ward’s Szekely-Rizzo 0.3872 1.05 

Dunn’s original 0.3672 1.02 

Dunn’s variant 0.4342 1.69 

Silhouette 0.4422 2.52

Mollineda et al. 0.4034 0.85 

Macnaughton-Smith et al. 0.3911 0.09 

PDDP 0.3655 0.02

PDDP variant 0.4140 0,12 

6.5.2 Real life Datasets 

Table 7 contains the evaluations of the 21 algorithms for the three 
real life examples described  in section 6.2. 

Focusing on the best five algorithms leads to mainly select divisive 
algorithms except for the Pottery example where it is found the 
Agglomerative version of Mollineda et al. formula (first rank) and the 
usual Agglomerative average link algorithm (4-th rank) performs the best. 
A good set of  evaluations is obtained for the Macnaughton-Smith et al. 
divisive method. 



Table 6. Average values of the Goodman-Kruskal coefficient (G-K) over 100 random data 
sets, sorted in decreasing order. a.c.t. = average computing time. 

Algorithms G-K a.c.t.

Divisive Silhouette 0.4422 2.52 

Divisive Dunn’s variant 0.4342 1.69 

Agglomerative Mollineda et al. 0.4317 1.27 

Divisive Average link 0.4211 0.67 

Divisive PDDP variant 0.4140 0.12 

Divisive Mollineda et al. 0.4034 0.85 

Divisive Macnaughton-Smith et al. 0.3911 0.09 

Agglomerative Average link 0.3908 0.74 

Divisive Ward’s Szekely-Rizzo 0.3872 1.05

Agglomerative Silhouette 0.3850 1.62 

Divisive Ward’s original 0.3837 1.11 

Divisive Single link 0.3708 0.71 

Divisive Dunn’s original 0.3672 1.02 

Divisive PDDP 0.3655 0.02 

Agglomerative Dunn’s variant 0.3529 1.50 

Agglomerative Dunn’s original 0.3474 0.86 

Agglomerative Ward’s Székély-Rizzo 0.3227 1.90 

Agglomerative Ward’s original 0.3172 1.80 

Agglomerative Complete link 0.2923 0.60 

Agglomerative Single link 0.2723 0.61 

Divisive Complete link 0.2718 0.70 

6.5.3 Discussion 

Either with artificial datasets or with real life datasets, the Divisive 
algorithm based on the Silhouette formula performs very well. In addition, 
according to the Goodman-Kruskal coefficient, there is a clear trend for 
the divisive algorithms to be superior to their agglomerative counterpart. 
But none of them can be definitely declared as the best algorithm. Indeed 
almost all algorithms may, in turn, show the best value of this quality 
coefficient, depending on the data at hand.  

Another interesting result of this study is that the ratio type formulas 
(Silhouette, Dunn’s, Mollineda’s and their variants), which take into 
account the local environment of the clusters, provide with better results 
than the classical distance like formulas. 



Table 7. Values of the Goodman-Kruskal coefficient (G-K) for three real life datasets. c.t. =  
computing time in seconds. The best values are in bold italic characters. 

Algorithms Pottery (45 obs.) Leukemia (38 obs.) Iris (150 obs.) 

G-K c.t. G-K c.t. G-K c.t.

AGGLOMERATIVE 
ALGORITHMS 

Single link 0.8009 0.91 0.4447 0.48 0.7725 132.58 

Average link 0.8056 1.13 0.6055 0.66 0.8448 140.34 

Complete link 0.8042 0.91 0.2928 0.5 0.7025 133.35 

Ward’s original 0.7906 2.69 0.4473 1.55 0.8225 200.26 

Ward’s Szekely-Rizzo 0.6819 2.57 0.4372 1.46 0.8262 195.14 

Dunn’s original 0.6836 1.27 0.3891 0.72 0.7653 148.93 

Dunn’s variant 0.7916 2.01 0.4297 0.94 0.8384 184.3 

Silhouette 0.8048 2.43 0.6444 1.39 0.8324 199.2 

Mollineda et al. 0.8066 1.85 0.6225 1.08 0.8460 180.14 

DIVISIVE 
ALGORITHMS 

Single link 0.8063 0.71 0.6048 0.61 0.8186 66.08 

Average link 0.8039 0.76 0.5269 0.84 0.7900 63.84 

Complete link 0.6419 1.22 0.3018 0.75 0.4084 141.64 

Ward’s original 0.7934 1.72 0.4425 1.01 0.8503 70.23 

Ward’s Szekely-Rizzo 0.6851 1.54 0.4425 0.96 0.8483 66.13 

Dunn’s original 0.8048 1.25 0.5753 0.78 0.8469 112.26 

Dunn’s variant 0.7825 1.79 0.6909 1.81 0.8434 109.26 

Silhouette 0.8056 2.62 0.6007 2.25 0.8545 255.27 

Mollineda et al. 0.6896 1.04 0.5532 1.14 0.7159 99.81 

Macnaughton-Smith et al. 0.8054 0.13 0.7174 0.09 0.8512 1.51 

PDDP 0.5013 0.1 0.3477 0.15 0.8238 0.16 

PDDP variant 0.6853 0.13 0.5195 0.16 0.8511 1.24 

However, the usual Agglomerative Average Link method reaches a 
rather medium average value for the Goodman-Kruskal coefficient (G-K = 
0.3908 at the 8-th rank out of 21) with random datasets, but it resulted in a 
very good value with Pottery example (4-th rank with G-K = 0.8056, the 
best value being 0.8066 for the Agglomerative Mollineda‘s algorithm). A 
similar observation can be made for the Macnaughton-Smith et al. divisive 
method: at the 7-th rank in the random datasets (G-K = 0.3911) and ranks 
5, 1 and 2 in the Pottery, Leukemia and Iris datasets respectively. 

As expected the highest computing times are reached for divisive 
algorithms and for those algorithms based on ratio formulas, especially the 
Silhouette formula which is rather complicated. 



7. Conclusion

The present work aims at the treatment of moderate size datasets 
(forty objects in the random examples), but with a search for the quality of 
the results. It focuses on distance or dissimilarity data and it studies the 
methods to obtain complete binary hierarchies. The formulas to evaluate 
the quality of a bipartition may be used either in an agglomerative 
algorithm or in a divisive one. The popular formulas used in pairwise 
aggregative procedures, namely the single linkagr, the complete linkage 
and the average linkage methods and two versions of Ward’s algorithm are 
retained. While other four formulas are based on criteria involving a ratio 
of between-group dissimilarities and within-group dissimilarities. 

Thus, this study compared a set of 9 agglomerative and 9 divisive 
clustering algorithms which are built with the above formulas. Another set 
of 3 divisive hierarchical clustering algorithms are added leading to a total 
of 21 algorithms. The divisive algorithms are intended as competitors of 
the classical agglomerative algorithms. 

An important argument of the present work is that it is possible to 
separate the computation of the hierarchical node levels from the criterion 
used for splitting a cluster. The question of a readable dendrogram 
(without crossing branches over) is then solved by using the diameters of 
the clusters. 

This does not hamper the internal evaluation of the results, that is to 
say the comparison of the hierarchy with the initial data, thanks to the 
Goodman-Kruskal correlation coefficient. Comparing the order relation 
induced by the successive inclusions of the clusters with the order relation 
associated with the input dissimilarities, this correlation coefficient 
provides  with an evaluation independent of the node levels, and 
concentrates on the shape, or topology, of the resulting dendrogram which 
is certainly the main interest of the user. 

Applied to a sample of a hundred random datasets these principles 
allow for a ranking of the algorithms. The best ones are based on ratio-type 
splitting criteria: the Silhouette formula and a variant of Dunn’s formula 
for partitions. At the lower end of this ranking appear three  procedures : 
Divisive complete link, together with the Agglomerative complete link and 
single link based procedures, which dissuades to use them.  

In three real life examples the divisive algorithms based on 
Silhouette and Dunn’s formula are present in the “top five” best algor-
ithms. In these examples the other divisive algorithms based on ratio type 
formulas, appear in the best five results. 

Further works, for divisive algorithms, could be considered in two 
directions; the first direction would be the treatment of bigger data sets, the 
second one would be the combination of two (or more) of the studied 



algorithms. Dealing with big datasets needs to establish some stopping 
rules to avoid the complexity of a complete binary hierarchy, and a 
supplementary step to select the clusters to be split. It may also require the 
evaluation of a restricted number of bipartitions in order to limit the 
computing load.   
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