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Semi-algebraic approximation using
Christoffel-Darboux kernel

Swann Marx!, Edouard Pauwels?, Tillmann Weisser?, Didier Henrion*?®

and Jean Bernard Lasserre*®

April 7, 2021

Abstract

We provide a new method to approximate a (possibly discontinuous) function using Christoffel-
Darboux kernels. Our knowledge about the unknown multivariate function is in terms of finitely
many moments of the Young measure supported on the graph of the function. Such an input is
available when approximating weak (or measure-valued) solution of optimal control problems,
entropy solutions to non-linear hyperbolic PDEs, or using numerical integration from finitely
many evaluations of the function. While most of the existing methods construct a piecewise
polynomial approximation, we construct a semi-algebraic approximation whose estimation and
evaluation can be performed efficiently. An appealing feature of this method is that it deals with
non-smoothness implicitly so that a single scheme can be used to treat smooth or non-smooth
functions without any prior knowledge. On the theoretical side, we prove pointwise convergence
almost everywhere as well as convergence in the Lebesgue one norm under broad assumptions.
Using more restrictive assumptions, we obtain explicit convergence rates. We illustrate our
approach on various examples from control and approximation. In particular we observe em-
pirically that our method does not suffer from the the Gibbs phenomenon when approximating
discontinuous functions.

Keywords: approximation theory, convex optimization, moments, positive polynomials, or-
thogonal polynomials.
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1 Introduction

In this paper we address the following generic inverse problem. Let

f X - Y
x:= (21, X2,...,Tp_1) — Y

be a bounded measurable function from a given compact set X C RP~! to a given compact set
Y C R, with p > 2. We assume that X is equal to the closure of its interior.
Given d € N, consider a vector of polynomials of total degree at most d

b(X, y) : (Xv y) € R? (bl(xv y) b2(xv y) e bnd(x, y)) S Rnda
where ng := (p —5 d) which is understood as the binomial coefficient. For example, b may be

a vector whose entries are the polynomials of the canonical monomial basis or any orthonormal
polynomial basis, e.g. Chebyshev or Legendre. Associated to b and f, let

/X b(x, /(x))b(x, (x)) Tdx

be the moment matrix of degree 2d, where the integral is understood entry-wise.

Problem 1 (Graph inference from moment matrix). Given the moment matriz of degree 2d,
compute an approximation fq of the function f, with convergence guarantees when degree d tends
to infinity.

1.1 Motivation

Inverse Problem [I| is encountered in several interesting situations. In the weak (or measure-
valued) formulation of Optimal Control problems (OCP) [39, 17, 23], Markov Decision Processes
[18], option pricing in finance [24], stochastic control and optimal stopping [37], and some non-
linear partial differential equations (PDEs) [§], non-linear non-convex problems are formulated
as linear programming (LP) problems on occupation measures. Instead of the classical solution,
the object of interest is a measure supported on the graph of the solution. Numerically, we
optimize over finitely many moments of this measure.
Following the notation introduced above for stating Problem [1} and letting

z:= (x, y) €ERP,

the moment matrix of degree 2d reads

M, = / b(2)b(z)T du(z)
corresponding to the measure

dp(z) = Tx (x) dx 0 () (dy) 1)

supported on the graph
{(x,f(x)):xe X} CXxY

of function f, where Ix denotes the indicator function of X which takes value 1 on X and 0
otherwise, and d¢(x) denotes the Dirac measure at f(x).

For instance, in OCPs an optimal occupation measure p is supported on the graphs of
optimal state-control trajectories. In order to recover a particular state resp. control trajectory
it suffices to consider the moments of the marginal of the occupation measure p with respect
to time-state resp. time-control. Then with our notation, x is time and y is a state resp.
control coordinate. Similarly, for the measure-valued formulation of non-linear first-order scalar



hyperbolic PDEs, an occupation measure is supported on the graph of the unique optimal
entropy solution. Then with our notation, x is time and space and y is the solution. From the
knowledge of the moments of the occupation measure, we want to approximate the solution.
The measure p can be disintegrated into its marginal on X and its conditional on Y given x in
X. The latter is also called a parametrized measure or a Young measure, see e.g. [12].

This weak formulation has been used in a number of different contexts to prove existence and
sometimes uniqueness of solutions. It turns out that it can also be used for effective computation
as it fits perfectly the LP-based methodology described in [16] and the Moment-SOS (polynomial
sums of squares) methodology described in e.g. [23] 21, 22]. In the latter methodology one
may thus approximate the optimal solution p of the measure-valued formulation by solving a
hierarchy of semidefinite relaxations of the problem, whose size increases with d; see e.g. [23]
for OCPs and [26] for non-linear PDEs. An optimal solution of each semidefinite relaxation is
a finite matrix of pseudo moments (of degree at most 2d) which approximate those of . This
approach allows to approximate values for the corresponding variational problems but it does
not provide any information about the underlying minimizing solutions beyond moments of
measures supported on these solutions. Therefore an important and challenging practical issue
consists of recovering from these moments an approximation of the trajectories of the OCP or
PDEs. This is precisely an instance of Problem

Another potential target application of our method is the optimal transportation problem,
see e.g. [34, Chapter 1] and references therein. In its original formulation by Monge, it is a
highly nonlinear nonconvex optimization problem. Its relaxation by Kantorovich is a linear
optimization problem on measures, and hence on moments if the data are semialgebraic. Under
convexity assumptions, this linear problem has a unique measure solution called optimal trans-
portation plan, supported on the graph of a function called the optimal transportation map.
Our method can be used to approximate separately each coordinate of the transportation map
by only considering the submatrix of moments associated with a suitable marginal, extracted
from an optimal solution of the semidefinite relaxation (which considers all pseudo-moments
up to a given degree). In view of the form of u, one still obtains the required convergence
guarantees (e.g. pointwise), under appropriate assumptions described in the paper.

More generally, moment information about the unknown function f in the format of Problem
is available when applying the Moment-SOS hierarchy [22] to solve Generalized Moment
Problems where the involved Borel measures are Young measures. The necessary moment
information is also given when considering empirical measures [31], 25, [32] if input data points
lie on the graph of an unknown function f (e.g., as is the case in interpolation). On the
other hand, in some other applications like image processing or shape reconstruction, moment
information is available only for the measure f(x) dx, i.e. y — b(x,y) is linear. Finally, our
method and results would apply to measures v supported on the graph of f, different from pu
in . Provided that v and p are mutually absolutely continuous with bounded densities, we
would recover similar convergence results modulo constants.

1.2 Contribution

We address Problem [1| by providing an algorithm to approximate a (possibly discontinuous)
unknown function f from the moment matrix of the measure supported on its graph. The
approximation converges to f (in a suitable sense described later on) when the number of
moments tends to infinity.

Proposed approximation scheme As is well-known in approximation theory, the se-
quence of Christoffel-Darboux polynomials associated with a measure is an appropriate tool to
approximate accurately the support of the measure, hence the graph of f in our case. Christoffel-
Darboux kernels and functions are closely related to orthogonal polynomials [38], [I0] and ap-
proximation theory [28], [6]. Their asymptotic behavior (i.e., when the degree goes to infinity)
provides useful and even crucial information on the support and the density of the underlying
measure. A quantitative analysis is provided in [27], [I5] for single dimensional problem and



Figure 1: SOS polynomial ¢(x,y) whose argmin in y is the sign of x on [—1,1].

in [20] in a multivariate setting. Even more recently, in [31], [25] and [32], Christoffel-Darboux
polynomials have been used to approximate the support of Borel measures in a multivariate
setting in the context of Machine Learning and Data Science.

We propose a simple scheme to approximate the graph of f based on the knowledge of
the moment matrix of degree 2d of u. To that end we first compute the Christoffel-Darboux
polynomial using a spectral decomposition of the moment matrix. The Christoffel-Darboux
polynomial is an SOS polynomial g4(x,y) of degree 2d in p variables. For every fixed x we
define

falx) = argmin ¢y q(x, y)

which is a semi-algebraic function]l] assuming for the moment for the ease of exposition that
the above argmin is uniquely defined. This class of functions is quite large. For example, all
polynomials of degree at most d can be expressed using this technique: let r» be a polynomial
in x of degree d, then ¢ : (x,y) — (r(x) — y)? is a degree 2d SOS polynomial whose partial
minimization in y yields y = r(x) for all x. However, this class contains many more functions,
including non-smooth semi-algebraic functions such as signs or absolute values. In particular
this class of functions can be used to describe efficiently discontinuous functions, a typical case
encountered in e.g. OCP problems with bang-bang controls and solutions with shocks for non-
linear PDEs.

Example 1 (Sign function as SOS partial minimum). Consider the polynomial

p1: R? — R
(x,y) — 4 — 3xy — 49 + xy® + 2y*. (2)
One can easily check that
1 if x<0
argmin, ¢y p1(x,y) = sign(x) := ¢ {-1,1} if x=0
1 if x>0

! A semi-algebraic function is a function whose graph is semi-algebraic, i.e. defined with finitely many polynomial
inequalities.



for any x € X := [-1,1] and Y C R. Note that since p1(x,-) is positive for x € [—1,1], it
can be squared without changing the argmin in y and hence we obtain a similar representation
of the sign function in the form of partial minimization in y of the degree 8 SOS polynomial
q(x,y) = p3(x,y), represented in Figure .

Example 2 (Absolute value as SOS partial minimum). The reader may check that the argmin
iny of the (square of the positive) polynomial 11 — 12x*y — 6x%y? + 4x%y> + 3y* is equal to |x|
for all x € [-1,1].

To the best of our knowledge, this work is the first contribution where this class of semi-
algebraic functions is used for graph approximations. The present work shows how these func-
tions may be used to approximate discontinuous functions accurately.

Comparison to existing approximation approaches: A classical alternative to our
approach would be to use .#?-norm Legendre or Chebyshev approximations of the function
f which are also based on moment information. However these approaches only use moment
information on the measure f(x) dx, i.e. y — b(x,y) is linear. Moreover, the support of this
measure is not the graph of f.

We claim that the full moment information provides useful additional data on the graph
of f which we can access using Christoffel-Darboux kernels associated with the measure p in
. Note that in interpolation applications, we have the possibility to estimate the higher order
moments of f from finitely many evaluations of f through Riemann integral approximations
or Monte-Carlo approximations for example. However, in situations where we have neither
access to higher moments nor pointwise evaluation of f, our method cannot be applied; signal
processing applications are a typical case of the latter situations.

In general, approximating a discontinuous function f is a challenge. Indeed, most well-known
techniques suffer from the Gibbs phenomenon, i.e. the approximation produces oscillations at
each point of discontinuity of f, see e.g. [14] for a good survey on this topic. The main tools
usually rely on properties of orthogonal polynomials [38] and the resulting approximations are
based on a finite number of Fourier coefficients of the latter functions, i.e., typically first degree
moment information on f. Projecting a discontinuous function on a class of infinitely smooth
functions is the typical mechanism producing Gibbs phenomenon. In order to get rid of such a
curse, additional techniques and prior information is needed. A possible approach is reported
in [I1] in the univariate case (p = 2 in our notations), where a good approximation of locations
of discontinuity points and jump magnitude is obtained by solving an appropriate (univariate)
polynomial equation. Recent developments have effectively shown that such approaches may
tame the Gibbs phenomenon [3| @4]. Iterative numerical methods can also be used to identify the
points of discontinuities of f (and of its derivatives) so as to construct accurate approximations
locally in each identified interval, see e.g. [30] in the case of Chebyshev polynomials. However
such ad-hoc techniques are very specific to the univariate setting.

On the contrary, our approach is not based on projection on a subspace of smooth functions,
or identification of points of discontinuities of the function to be approximated. It is based on
geometric approximation of the support of a singular measure using semi-algebraic techniques.
An important feature of this approach is that the resulting approximant functions are not
necessarily smooth, and furthermore, discontinuities (if any) can be treated implicitly only
based on the whole moment information. As a result, we obtain a single approximation scheme,
which (i) may adapt to the smoothness features of the target function f without requiring prior
knowledge of it, and (ii) can be used for multivariate f, both points being important challenges
regarding numerical approximation.

Description of our contribution

1. We first provide a numerical scheme which allows to approximate the compact support of
a measure which is singular with respect to the Lebesgue measure. We need to adapt the
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Figure 2: On the left, Chebyshev interpolant of degrees 4 (gray) and 20 (black) of the step func-
tion (red), featuring the typical Gibbs phenomenon. On the right, the proposed semi-algebraic
approximation of degree 4 (black) of the same step function (red). The approximation cannot be
distinguished from the step function.

strategy of [25] which covered the absolutely continuous case. This result may be consid-
ered of independent interest and will be instrumental to providing convergence guarantees
for our approach.

2. Next, given a degree d € N, we provide an approximation f; of the function f and prove
that the sequence (f4)aen converges pointwise to f almost everywhere as well as in .#!-
norm as d goes to infinity (under broad assumptions on f). Furthermore, if we assume
more regularity on f, then we also provide estimates for the rate of convergence. More pre-
cisely, we obtain O(d~'/?) for multivariate Lipschitz functions and O(d~'/*) for univariate
functions of bounded variation.

3. Finally, we provide some numerical examples to illustrate the efficiency of the method.
We first use our algorithm to approximate discontinuous or non-smooth solutions of OCP
or PDE problems based on the Moment-SOS hierarchy. These experiments empirically
demonstrate the absence of Gibbs phenomena. We also provide an example where only
samples of the measure under consideration are given and show that our algorithm also
works well, even for moderate size samples, showing that moment input data could in
principle be approximated using numerical integration methods.

Example 3 (Sign function). To give a flavor of what can be obtained numerically, consider
the measure supported on the graph {(x, f(x)) : x € X} C X x Y of the function x —
f(x) = sign(x), with X :=Y := [-1,1]. In Figure[q (right) the resulting approzimation fa
with a moment matriz of size 6 and degree 4 (i.e. 15 moments) cannot be distinguished from f.
On the other hand, on the left, their Chebsyhev interpolants of degrees 4 and 20 (obtained with
chebfun [J]) illustrate the typical Gibbs phenomenon, namely oscillations near the discontinuity
points that cannot be attenuated by increasing the degree. This phenomenon can be reduced
or suppressed by identifying the discontinuity points and splitting X into intervals (as in e.g.
[30] and also implemented in chebfun), but this strategy works only in the univariate case.
In contrast, our algorithm does not attempt to approzimate directly a univariate function with
one or several univariate polynomials of increasing degree, but with the argmin of a bivariate
polynomial of increasing degree. Moreover, our algorithm works also for multivariate functions,
as shown by numerical examples later on.



1.3 Organization of the paper

Section [2] introduces the Christoffel-Darboux polynomial, its regularized version and our semi-
algebraic approximant. In Section [3] the main results of the paper are collected, while their
proofs are provided in Section [l More precisely, we first give some quantitative estimates on
the support of the measure x4 and then prove the .#! convergence of our approximant. Section
discusses computational issues and with the help of a simple Matlab prototype it illustrates the
efficiency of our method on some examples. Finally, Section [f] collects some concluding remarks
together with further research lines to be followed.

Notation The Euclidean space of real-valued symmetric matrices of size n is denoted by
S™. Given a set X in Euclidean space, its diameter is denoted by diam(X) and its volume, or
Lebesgue measure, is denoted by vol(X). For k > 1, the Lebesgue space .Z*(X) consists of
functions on X whose k-norms are bounded. Given a positive Borel measure u, we denote by
supp(u) its support, defined as the smallest closed subset whose complement has measure zero.

Throughout the paper, p denotes the dimension of the ambient space. Consistently with the
notations introduced in Section [I] for stating Problem [I} we let z = (x y) € RP. We denote by
R[z] the algebra of multivariate polynomials of z € RP with real coefficients. For a given degree
d € N, the dimension of the vector space of polynomials of degree less than or equal to d is

denoted by ng4 := (p ; d).

2 Christoffel-Darboux approximation

This section describes our main approximant based on the Christoffel-Darboux kernel. We
first introduce notations and definitions, describe our regularization scheme for the Christoffel-
Darboux kernel and then describe our functional approximant based on moments.

2.1 Polynomials and moments

Following the notations introduced for stating Problem [1} any polynomial ¢ € R[z] of degree
d can be expressed in the polynomial basis b(z) as ¢: z — q' b(z) with q € R™ denoting its
vector of coefficients. Recall that the moment matrix of degree 2d of the measure p reads

Mo = [ bla)b(s) du(a) € 5™
Since M,, q is positive semi-definite, it has a spectral decomposition
M, ,=PEP’, (3)

where P € R™*™ ig an orthonormal matrix whose columns are denoted p;, i = 1,2,...,ng4,
and satisfy p; p; = 1 and p;rpj =0if i # j, and E € S™? is a diagonal matrix whose diagonal
entries are eigenvalues e;11 > e; > 0 of the moment matrix. Each column p; € R™¢ is the vector
of coefficients of a polynomial p;, € R[z], i = 1,...n4, so that

p;rM,u,d pP: = ¢ = fp?(z)d,u(z), (4)
P Muap; = 0 = [pi(2z)pj(z)du(z), i#j.
2.2 Approximating the support from moments

Let us assume for now that the support of the measure p has nonempty interior, then M, 4
is positive definite for any d € N, i.e., e; > 0,9 = 1,...,n4. In this case, one can define the
Christoffel-Darboux polynomial

ng 9 z
dualz) = > P2 ()M (), )
i=1



It is known that sublevel sets of g, 4 can be used to recover the support of u for large d, see for
example [25] for an overview.

The goal of this work is to approximate the function f. From a set theoretic perspective, this
amounts to approximating the graph of f whose closure is actually the support of the measure
win . Hence the sublevel sets of g, 4 are interesting candidates for this goal. However, in
the case of the graph of a function, the construction given in is not valid anymore since
this graph is a singular set so that M, 4 may not be positive definite and invertible. In this
singular setting, one should ideally consider the following extended value Christoffel-Darboux
polynomial:

if 3i, e; = X
4 a(z) = e p2(z) Taxt 3t el. 0, pi(z) #0 (©)
’ Zei ~0 = =b(z) M#’db(z) otherwise,

€4

where T denotes the Moore-Penrose pseudo inverse. This is a natural extension of the Christoffel-
Darboux polynomial to the singular case [32] and amounts to working in the Zariski closure of
the graph of f.

2.3 Regularization scheme

Spectral filtering: Computing an object such as in (6) can be numerically sensitive since
it essentially relies on pseudo-inverse which requires an eigenvalue thresholding scheme. This
means that small perturbations of the moment matrix may lead to large changes of the output.
Furthermore the candidate function takes finite values only on an algebraic set, and this situ-
ation is difficult to handle in finite precision arithmetic. One may rewrite the extended value
polynomial @ in the following form

45, 4(2) = Z g(e)p; (2)

where g: [0,400) > [0,400] with g(s) = 1 for any s > 0 and g(0) = 4+00. One approach to
restore stability is to use regularization techniques which replace the pseudo-inversion expressed
through the function g, by spectral filtering expressed through a different spectral function (see
for example [7] for an illustration in the context of support estimation). Since the function g is
not regular, instead of studying the above defined extended value polynomial, one rather looks
at the following polynomial

>_9s(eilpi(2) (7)

where gg is a parametrized family of spectral filtering regular functions satisfying, for any 5 > 0,
gg: [0,+00) — [0, +00]. Common examples include

Tikhonov regularization: gg: s — s
Spectral cut-off +—>1]1 ()JrlH (s)
ral cut-off: PSS = s)+ - S
p gp B [0,8] s (B,400) ’
1
Ideal low-pass: gg: S BH[O”(;](S).

We choose to work with the Tikhonov regularization as it has an intuitive measure space in-
tepretation. We believe that our results can be generalized to different spectral filters.

Tikhonov regularization and measures: Applying the Tikhonov spectral filter to
yields the following polynomial

ndg 2 z
Z Z % = b(Z)T(Mu,d + 5Ind)71b(z) ®

=1



where I,,, denotes the identity matrix of size nq. In order to use analytic tools, we need to provide
an interpretation of the addition of diagonal elements in terms of measures. One therefore has
to choose a polynomial basis for which the diagonal matrix is the moment matrix of a reference
Borel measure on R? that we will denote pg. We make the following assumption which will be
standing throughout the paper.

Assumption 1 (Reference measure and polynomial basis).

o The reference measure pg is absolutely continuous with respect to the Lebesgue measure
and it has compact support.

e The polynomial basis b is orthonormal with respect to the bilinear form induced by pg, that
is [ b;(2)b;(z)dpo(z) =1 if i = j and 0 otherwise.

The first part of Assumption [I] ensures that the moment matrix of pg is always positive
definite. The second part of Assumption [1| provides the following relation:

M,.qa + B, = M.+ 8p0,d- 9)

An easy example of such a measure should be the following: considering a function f whose
domain of definition is contained in the unit cube of dimension p — 1 and which takes values in
[—1,1], one might pick the uniform measure on the unit cube of dimension p, for which moments
are easy to compute.

Most importantly, using the notation in , this allows to express the polynomial of interest

as follows.

Definition 1 (Regularized Christoffel-Darboux polynomial). The regularized Christoffel-
Darboux polynomial is the SOS

- Piz)
Qyut-Bruo,d(2) = . et 8 (10)
=1

This provides a geometric interpretation of the regularization parameter as a combination
of two measures: p which is supported on the graph of the function of interest and pg which is
a reference measure, used for regularization purposes. The supported boundedness hypothesis
in Assumption [1] will allow to provide quantitative estimates in further sections and it could in
principle be replaced by a fast decreasing tail condition. An important example for measures
satisfying Assumption [1}is the restriction of Lebesgue measure to the unit hypercube together
with Legendre polynomials which form an orthonormal basis.

Making Assumption [I]is a slight restriction for which a few comments are in order. Firstly,
this could be relaxed in various ways to remove the restriction on the polynomial basis, for
example:

e Replace the identity matrix by the moment matrix of po;
e Add assumption on the spectrum of the moment matrix .

These would lead to a lot of technical complications and we find our results clearer and easier
to state under Assumption [I] Secondly, working numerically with polynomials in the standard
monomial basis is problematic in many situations. Better conditioned polynomial bases are
often those enjoying orthonormality properties with respect to a certain reference measure, such
as e.g. Chebyshev or Legendre polynomials. We would like to argue here that the restrictions
induced by Assumption [l| are quite benign since it is already common in practice to work in
such polynomial bases for numerical reasons.

2.4 Semi-algebraic approximant

Definition 2 (Semi-algebraic approximant). The regularized Christoffel-Darboux semi-
algebraic approzimant fg 4 is defined as follows:

x € X fgalx) = min{argminyey QutBuo.d(X, y) }- (11)

10



Remark 1. If X and Y are semi-algebraic, then the set-valued map which associates to each
x € X the set

argming ey qu+puo,d(X, Y)

is semi-algebraic. Recall that a map is semi-algebraic if its graph is semi-algebraic. By the
Tarski-Seidenberg Theorem (see for example [5, Theorem 2.6]), any first order formula involving
semi-algebraic sets describes a semi-algebraic set. Since minima are described by first order
formulas, the argmin of a polynomial on the compact semi-algebraic set Y is a compact semi-
algebraic subset of Y, which is itself a subset of the real line. Hence the argmin set has a minimal

element and the function in s well defined.

Remark 2. For clarity of exposition we describe our main results by considering that the partial
minimization in y over Y is exact. As will be seen from arguments in the proof, especially in
the proof of Lemmam approzimate minimization up to a factor of the order dP*? enjoys similar
approximation properties. Indeed, in Remark@ we mention the precision %, where yq is chosen
later on with more justifications in to be of order dPt2.

The two parameters d and 3 control the behavior of the approximant fz 4. In latter sections,
we describe an explicit dependency between d and 8 which allows to construct a sequence of
regularization parameters (84)q4ecn, and we investigate the asymptotic properties of the sequence

of approximants (fﬁd,d)deN'

3 Main results

Our main theoretical contribution is an investigation of the relations between the function f to
be approximated and its regularized Christoffel-Darboux approximant fz 4 under Assumption
In particular we are interested in building an explicit sequence (84),cp and investigating the
convergence fg, 4(x) — f(x) for x € X, fixed, as well as the convergence || f — fg,.4ll 1 (x) = 0,
when d — oo.

3.1 Convergence under continuity assumptions

The following section describes our main result regarding convergence of the approximant fg, 4
in under different regularity assumptions for the function f to be approximated. Let us
define

9 = diam(supp(se + o)), m i= p(RP), o i= io(RP).
Theorem 1. Under Assumption and with the choice Bg = 23~V in Deﬁnition@ it holds:

(i) If the set S C X of continuity points of f is such that X \ S has Lebesque measure zero,
then

f8a,a(x) d_> f(x)
—00
for almost all x € X, and
If = fﬂd,d”xl(x) d—> 0.
—00

(ii) If f is L-Lipschitz on X for some L > 0, then for any d > 1 and any r > p,

If = faaallzr(x)
do

8(m + mo)(ST)Qre%
Vd-1 '

<vol(X) Py T

(1+ L) + diam(Y)

Remark 3.

o As proved recently in [35], the solutions to scalar conservation laws are continuous almost
everywhere, i.e. the Lebesgue measure of the set of discontinuity points reduces to 0.
It is then clear that Item (i) of Theorem 1| can be applied directly to the case of scalar
conservation laws.
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e Thanks to Egorov’s Theorem, pointwise convergence almost everywhere implies almost
uniform convergence, that is uniform convergence up to a subset of X whose measure can
be taken arbitrarily small. Since we manipulate bounded functions, this in turn implies
convergence in L.

e For Lipschitz continuous functions, we obtain an O(d71/2) convergence rate in L' norm
by setting r =p+ 1/2.

o The convergence rate for Lipschitz functions is slow and we observe in practice a much
faster convergence. We conjecture that faster rates can be obtained for special classes of
functions.

Theorem [1]is a special case of a more general result described in Theorem [3]and proven later
on.

3.2 Convergence for univariate functions of bounded variation

Spaces of functions of bounded variations are of interest because many PDE problems are
formulated on such spaces, see [I] for an introduction. Modern construction of such spaces
is done by duality through measure theoretic arguments. Our main proof mechanisms rely
on pointwise properties of the function f, which are not completely captured by the measure
theoretic construction.

We prove ! convergence for univariate bounded variation functions. The reason we are
limited to the univariate setting is that we can use the classical definition of total variation
which is directly connected to pointwise properties of the function of interest. We conjecture
that the proposed approximation scheme is also convergent for multivariate functions of bounded
variation, but we leave this question for future work.

Definition 3. Let f: R +— R be a measurable function. The (Jordan) total variation norm of
f is given by

V(f) = sup sup Z |f(zi) = f@iz)]-

neNzo<r <x2<...<Tp i1

Theorem 2. Under Assumption[d] let X and Y be intervals of the real line, and assume that
V(f) < +o00. With the choice Bq = 23-Vd Deﬁmtion@ for any r > 2 and for any d > 1, it
holds

If = faaall2r(x)

269 _1>
<vol(X +d i
voll >(\/a_1
8(m + mo)(3r)2red n 4diV (f)do
Je2r—24r—2 \/8_ 1 )

+ diam(Y) (

We remark that we obtain a convergence rate in O(d~'/4). This result is a special case of a
more general result described in Theorem [4] and proven later on.

3.3 Robustness to small perturbations

In many situations, one only has access to an approximation of the regularized Christoffel-
Darboux polynomial. This is for example the case when applying the Moment-SOS hierarchy.
At the end, one indeed obtains pseudo-moments of the measure under consideration, i.e. a
vector of real numbers close to the actual moments of the measure. The moment matrix is
then not M4 5,,, as in ([9) but a matrix M close to it. The effect of this perturbation on the
Christoffel-Darboux polynomial is captured by the following result.
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Lemma 1. Assume that the approzimate moment matriz M € S™4 is positive definite and let

M_lM%

1
o= [[Tng = M, bt Bapo |

pu+Bapo

where we used the matriz operator norm. Then the polynomial q5 : z + b(z) "M ~'b(z) satisfy

sup |1 — qdi(z) < a.
zZERP QM+ﬂdM0,d(Z)
Proof: For any z € RP, we have
a(z) 1'
Q;Hrﬁduo,d(z)
1 ‘ Tng—1 -1
- @M '-M b(z ’
trron@ ) o) DL
_ 1 M_% b T I 2 M—IM% M_% b
- ( pA-Bapo (2)) " (In, — p+Bato u+b’dﬂo) pA-Bapo ()

Byt Bapio,a(2)
1 _q 1
’ Ind - M/iJrﬁdHoM Mi+5d#0

IN

Remark 4 (Accuracy of the moments). In this paper, we assume the existence of a positive
number o which makes the link between an approximated moment matriz and the real one,
which exists in general, but estimates for a are not known in general. Such an analysis has been
performed for the moments themselves in [29], but not for moment matrices. Indeed, the bounds
linking moment matrices and their corresponding depend nonlinearly on too many variables to
obtain easily bounds on the approximated moment matriz and the real one. This is a topic of
further investigation.

More generally, we can consider a robust Christoffel-Darboux function satisfying the following
inequality.

Assumption 2. For a given a € [0,1), let (Ba)aen be a sequence of positive numbers and
(q3)den be a sequence of continuous functions over RP such that for any d € N and any z € RP,
we have

(07
PR 1O P,
qM+5dlto7d(Z)
Note that Assumption [2] ensures that
(1 = )Gt Bapno.a(2) < 43 (2) < (1 + )Gt Bapo,d(2)- (12)

Furthermore, one can always choose ¢3(z) = ¢u+8,40,4(2z) and a = 0 which corresponds to the
nominal case. The robust approximant is then defined similarly as in Definition

Definition 4 (Robust semi-algebraic approximant). Given a degree d € N, a regularizing
parameter 3 > 0, and a scalar « € [0,1), our robust approximant J5,.q 18 defined as follows:

x € X = fg, 4(x) := min{argmin, ¢y g5 (x,y)}. (13)

The main technical result of this paper is the following from which Theorem [1| directly
follows.

13



Theorem 3. Under Assumptions and@ and with the choice o € [0,1) and By = 23-Vd g,
Definition[]), it holds:

(i) If the set S C X of continuity points of f is such that X \ S has Lebesgue measure zero,
then

Fa) > F(x)
for almost all x € X, and
If = f5,.all. 2 (x) 0
(i) If f is L-Lipschitz on X for some L > 0, then for any d > 1 and any r > p,

If = fa,allzrx)

p2

1+ a8(m+mg)(3r)?red
11—« pPe2r—pdr—p '

do

§vol(X)\/g_ N

(14 L) + diam(Y)

Furthermore, we have the following robust convergence result for univariate functions of
bounded variation, from which Theorem 2] directly follows.

Theorem 4. Under Assumptions[]] and[3 let X and Y be intervals of the real line and assume

that V(f) < +oo. With the choice a € [0,1) and Bq = 23~V in Deﬁnition for any r > 2 and
for any d > 1, it holds

If = fa,allzr(x)
§V01(X)< 2% +di>

Vd—1
1+ o 8(m +mg)(3r)¥ei 4diV(f)50>

+ diam(Y) (1 — Torr—a g2 Jao1

The next section is dedicated to the proof of these theorems.

4 Proofs

This section is divided into several subsections. Subsection gives some quantitative results
on the estimation of the support of u which does not depend on the nature of x4 and could be of
independent interest. More precisely, we show that the regularized Christoffel-Darboux polyno-
mial takes large values outside the support of p and smaller values inside. This is expressed by
describing properties of certain sublevel sets of the polynomial being close to the support of p.
In subsection [4.2| we translate these geometric results in functional terms. In subsection we
prove our main results: the argument of the minimum of the regularized Christoffel-Darboux
polynomial is close to the graph of the function f.

4.1 Estimation of the support

In this section we build a polynomial sublevel set that will be instrumental for our proofs of
convergence in functional terms. Note that in practice this sublevel set is not computed: we
just focus on the argmin of the regularized Christoffel-Darboux polynomial. The contents of
this section may be considered of independent interest.

For any d € N and r € N such that r > p and for any « € [0,1) , define

11—« exrdr

8(m +mo) (3r)%"

Va = (14)
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Figure 3: Illustration of the result of Theorem [5 the dotted curve represents the boundary of the
set Sy and the considered function f is the absolute value. The theorem states that (i) most of the
points of the graph of f will be in S; and that (ii) all points in Sy will be close to the graph of f.
More precisely, (i) states that the measure of R; U Re U R will vanish and (ii) the distance r of
any point in Sy to the graph of f will go to zero for d — oo, respectively.

and
Su= {2 € R : g5(2) < ). (15)

We aim at proving that the sublevel set S, is approaching the support of u as d goes to infinity,
with a given convergence rate. It is precisely quantified with the following result which is
illustrated in Figure

Theorem 5. For d > 1 it holds
(i)

p2

1+ a8(m+mo)(3r)* e T
.
p{z e RP 1z € S4}) < I—a pPe2r—pdr—p ’

(ii) For any z € Sy,

) do
dist(z, su < .
(7 supp(p)) < =

The results and techniques that we will use to prove this theorem are adapted from [25]
which considers the absolutely continuous setting without regularization.

Proof of Theorem [5| (i) Using and (d), we obtain

ng e e p p?
z)du(z) = — <ng<dP (=) eT 16
/Rp Qpt-Bapno,d(2)dpi(2) ;ei+5d == <p> 1o

where the last inequality is given in [25, Lemma 6.5]. Using Markov’s inequality [36, Page 91]
and yields

o iy e (05 s a()dp(2)
“l+ta’ T Yd

& (5) e

Yd

p({z € R : QM-&-Bduo,d(z)

<(1+a
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Now using and , we have the following implications

Yd
14+a

z¢Sq © qi(2) =27 = QuiBapo.d(z) >

Hence pu({z € R? : z ¢ Sa}) < u({z € R” : gy p.u0,4(2) > 135 }). Using the expression of 74 in
and the inequality , one has:

2
1+a8(m+ mo)(3r)2rep7
p.
‘U({Z €R":z ¢ Sd}) < 11—« pP€2T*PdT7P

which concludes the proof of item () of Theorem O

To carry out the proof of Theorem 5| (i), we begin with a few lemmas. The following result is
classical, see e.g. [25] Remark 3.6.] and [20, Equation (1.1.)].

Lemma 2. Let d € N, z € RP, 5> 0, and q be a polynomial of degree at most d. Then

q°(2)
Jro @ (2)d(p + Bro)(z) < utppuo.d(2).

The following Lemma defines the needle polynomial, introduced first in [20], and gives a
quantitative result crucial for our analysis.

Lemma 3 (Existence of a needle polynomial). Let Bs denote the euclidean ball of radius 9.
Then, for all 6 € (0,1) and d € N, d > 0, there exists a polynomial q of degree 2d such that

q(0) =1, q(z) € [-1,1] for all z € By, and

18
lq(z)| < 2'7%? for all z € By \ Bs. (18)

A detailed proof is provided in [25, Lemma 6.3]. Thanks to the latter lemma, we can
characterize the behavior of the regularized Christoffel-Darboux polynomial ¢, 4,.,,4 outside
the support of u:

Lemmad. Letd € N, d > 1 andz € RP. Recall that B4 := 23~V<. Assume that dist(z, supp(u)) >
7\/30—1' Then
2\/373
P Qt-Bapio,d(2)- (19)
Proof of Lemma 4t Let d > 1, z € RP, § = dist(z,supp(p)). Let d’ € N and ¢t > 0, arbitrary
for the moment. Consider the affine map T : w — g";sﬁ. Let ¢ be the degree 2d’ polynomial
given as in Lemma |3| such that

q(0) =1, ¢(w) € [-1,1] for all w € By, and

lg(w)| <2755 for all w € By \ B _s_ (20)
0
Let r = goT. The polynomial r satisfies
Ir(z")| <1, Vz' € supp(p + po),
r(2) <275, Vel e supp(p),
r(z) = 1. (21)
Using Lemma [2| and the fact that 7(z) = 1 we obtain
-1
([ o0+ o)) < s na) 22)
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and

-1
([ ot o)) < ausspozan(@) (23)
From , we deduce
[+ o)) < 27 ki (24)
[ v+ Bpo)w) < 27 F kg (25)

Combining , , and , we obtain the following bounds

-1
_8(2d)
Qut Buo.2d (2) > (23 3% m + ﬁmo) ;

—1
_8(2d'+1)
q,u+[’3,uo,2d/+1(z) > <23 5+30 m+/3m0> . (26)

Recall that d’ and 8 were arbitrary. Now we can choose d' = |d/2]|, 8 = B4 in one of the
identities in (depending on the parity of d) to obtain

2\/&_3

3—_9d_ -1
qﬂ+5d#0’d(z) 2 (2 stoom + Bdm0> > M+ mo

; (27)

where the last inequality follows because the right hand side is strictly increasing as a function

of § and § > \/gil. This proves the desired result. O

Let us give two additional simple technical lemmas.

Lemma 5. For any r > 0,

min {log(2)z — (2r)log(z)} = (2r) (1 ~log (m?@)))

> (2r) (1 log(3r)).

Proof of Lemma |5; A simple analysis shows that the minimum is attained at x = 10;2’2). The
lower bound follows because % <3. O

g(2)
Lemma 6. For any d € N, we have

gvd-3 Vd
m+mg  1l—a

Proof of Lemma @: Using the definition of v4 in , we have

8(m + my)

log Yoo ) T 2r(1 — log(3r) + log(Vd))
< log(2)Vd, (28)

where the inequality follows from Lemma [5| with 2 = v/d. This proves the desired result. O
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Proof of Theorem [5| (ii): We prove the result by contraposition. We have the following
chain of implications for z € RP,

_ %
Vd—1

dist(z, supp(u)) >

9Vd-3
RETE—— Qt-Bapo,d(2)
= va/(1 — @) < qutpapo,d(2)
= 1< qq(2)
= z¢& Sy, (29)

where the first implication is from Lemma [4] the second implication is due to Lemma [6] the
third implication is deduced from and the last implication is from the definition of Sy in

(). O

4.2 Estimation of functions

We now translate Theorem [j] in functional terms. Considering that z can be written as follows
z = (x,y), let us introduce a specific set which will be of interest throughout the proof:

Ip:={xe X :inf ¢5(x,y) > a} (30)
yey

Lemma 7. Suppose that d > 1. Then, we have

2

2r P
/ dx < 1+a8(m—|—72n0)(3r) e (31)
I 1—a pPe2r—pPdr—p
Proof of Lemma [7} For all x € X and all A C RP measurable, one has
] 1Ak 908100 (d9) = T, £0) (32)

and hence

mm:mewwmmzémwﬂmw:[dx (33)

where Iy = {x € X : (x, f(x)) € A}. One can see from that x € I; implies that
(x, f(x)) € Sa and hence Iy C Is: where Sg denotes the complement of Sy given in (15). We
deduce that

/dxg dx = i(S5) (34)
Id ISS

and the result follows from Item (i) of Theorem i

Remark 5. Letting I; := {x € X rinfycy ¢5(x,y) > va/2} it can be seen using the exact same
arguments that a bound on | i, dx holds similarly as in Lemma |7 with a multiplicative factor
of 2. This can be used to handle the situation where the argmin in is computed up to a
precision of the order v4/2. See also Remark @

Thanks to Lemma [7] it is sufficient to prove the convergence of the approximated function
in the set IS := X \ I,.
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Proposition 1. Let d € N, d > 1. Let a € [0,1) be as in Assumption@ with Bg = 93-Vd,
Consider fg, 4 as in and let I be defined by . Then for any r > p, we have

[ 1769 = g5, a0lax < [ 1760) = 15,400 lix
b's Is
1+ a8(m+ mo)(?ﬂ')Q’"e%

+ diam(Y) s Ty

Proof of Proposition Since y takes values in the compact set Y, it is clear that fg , €
Z°(X). We have

/X F) = 13, () dx
- /X 00 = 5, e + / 109 ~ 5, )l

foo([d)/ dx
I

< / F) = 13, a()ldx + [|f = f5,.4
I3

< / 10 = 15,

2
14 a 8(m + myg)(3r)2e'T

diam (Y
+ diam( )1—a YT

where we have used Lemma [7] for the last inequality. |

4.3 Proofs of the main theorems

We are now in position of proving Theorem [3| We start with the Lipschitz case, which is the
simplest and conveys most of the ideas.

Proof of Theorem [3| (ii) Using Proposition |1} It remains to bound the term
] 1760 = 15, a0l (36)
d

For any x € X define

ug(x) € argmin ¢ x H (x, fg‘d’d(x)) — (u, f(u))H , (37)

with an arbitrary choice in the case where the argmin is not unique. Note that by continuity,
the graph of f is closed so that the minimum is attained. Using the definition of I; in , the
fact that x € I implies that

(%, f5,,4(x)) € Sa. (38)
Moreover, Theorem [5| implies that
75ya() — F(a))] < —° (39)
Ba,d d = \/8 1
do
x —ug(x)| < ,
= o) < 2
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where ||-|| denotes the usual Euclidean distance in RP~!. Therefore, using Lipschitz continuity
of f, we have, for any x € I3,

[f5a,a(x) = F < 15,,a(%) = F(ua(x))| + | (%) = f(ua(x))]

do

< 1+1L). 40
A+ (40)

We deduce that

do

x) — fg 4(x)|dx < vol(X 1+ L 41
17060 = 5,0l < voll) 2 (14 1) (41)
which concludes the proof. ]

We now turn to case (i), starting with the pointwise convergence.
Proof of Theorem 3| (i): We rely on a slighlty different use of Lemma |7/} Choose r = p + 2
and let
I:= {X € X:VdpeN,ddeN, d>dy, x € Id} = NdyeN Ud>d, 1. (42)

Lemma [7] ensures that vol(I;) = O(1/d?) so that

vol (UdZdOId) < Z VOl(Id) — 0.

d()A)OO
d>do

We have vol(I) = limg, o0 (Ug>d,Za) = 0. This means that we have the two following properties,
for almost every x € X:

e f is continuous at x (by assumption),
e Jdp e N,Vd €N, d > doy, x € I; (because vol(I) = 0).

Fix any such x and for any d > dj consider

(g, va) € argminge x ey || (%, f§, (%)) — (W, 0)||, st (w,v) € supp() (43)

with an arbitrary choice when the argmin is not unique. Note that the support of p is actually
the closure of the graph of f so that the minimum is attained. Using the definition of I; in ,
we have that x € I§ for all d > dop which implies that

(X, fgd,d(x)) € Sda (44)
and Theorem [5] implies that
do
2 (x) =gl < ,
|fﬁd,d( ) d| — \/&7 1
do
x—uy| < .
” dH = \/&_ 1

Since (ug,vq) € supp(p) and supp() is the closure of the graph of f, there exists hy € X, such
that

200

Vd—1
25(]

Vd—1

This concludes the proof of pointwise convergence since

/54,000 = F () < 1f5,,a(x) = f(ha)| + [f(x) = f(ha)|

|f6s,a(%) — f(ha)| <

[x = hq|| < (45)
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and both terms tend to 0 as d — oo, using and continuity of f at x.

Convergence in .#! follows from Egorov’s Theorem (see e.g. [33, chapter 18]): for any € > 0,
there exists Sc C X, measurable, of Lebesgue measure smaller than € such that fg ;, — f
uniformly on X \ S.. We have

1780 — Flln ) = /X 12, 4(x) — F(x)]dx
- / 15, 4(x) — F(x)dx + / 12, 2(%) — F(x)|dx
S. X\S.

< vol(Se) diam(Y) + vol(X)|[f5, 4 — f(X) [ 2z (x\s.)
< e diam(Y) + vol(X)[[f5, 4 — f (%)l 2= (x\5.)-

By uniform convergence the second term goes to 0 as d — oo, this shows that
lim sup || f§, 4 — fller(x) < € diam(Y).
d—o00
Moreover, since € > 0 was arbitrary, the limit is 0. O

We now turn to the proof of convergence in %! norm for univariate functions of bounded
variation.

Lemma 8. Let f: R+ R be such that V(f) is finite and [ vanishes outside a segment I. Let
a,b > 0 be positive constants. Let

J={tel:3u|t—ul <buel|f(u)— f(t)]>a}.

Then "
/dx <2V(f)-.
J

a

Proof of Lemma [8; This is a packing argument. Let Jy = J and follow the recursive process,
forkeN k>1,

if J_1NJ 7’5 0
let tp, € Jo_1NJ, up € J, |tk —uk| <b
let Ji = Jrp—1\ [tk — bt + b]
otherwise  stop.

This process must stop after a finite number of iterations. Indeed, the set I, = I\ UX_[t; —
b, t, + b] consists of a finite union of intervals. At iteration k, either one of these intervals is a
subset of [tg4+1—b, tg+1+b] and then it is removed entirely from I}, or otherwise t;1 is contained
in an interval which contains either [tx+1 — b, tg41] or [tg+1,tk+1 + b] and the Lebesgue measure
of Iy is reduced by at least b compared to I}, possibly creating a new interval.

Let K be the last iteration, so that Jx NJ = (). By the iterative process, at each step, the
measure of Ji is reduced by at most 2b and we have

0:/ dmz/ d:cbeZ...E/ dr — 2Kb
JrNJ Jr_1N0J JoNJ

so that

/dx < 2Kb.
J
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Finally, since the intervals [tg, ug], K =1,..., K are disjoint, we have

V(f) >

-

60 = )] > Ko > 5 [ .

=1

which proves the desired result. O

Proof of Theorem [4} For any d > 1 consider
Jy = {x € X:due X, |z —ul <20/(Vd—1),|f(u) — f(t)] > d*1/4} :

By Lemma [8] for any d > 1 we have

480dM AV (f)
vol(Jy) £ —————— 46
(1) < (46)
Choose any d > 1 and any x such that z € I and = ¢ J4. Consider
(uava) € argmin,ex gy | (2, fa(@) — (u0)| st (uw,v) €supp()  (47)

with an arbitrary choice when the argmin is not unique.
Note that the support of u is actually the closure of the graph of f so that the minimum is
attained. Using the definition of I in , x € I§ implies that

(@, f5.,a(z)) € Sa (48)
and Theorem [5] implies that
do
2 (x) —wg| < ,
o) — v < S
o — gl < —0
N=Vai-1

Since (uq,vq) € supp(u) and supp(u) is the closure of the graph of f, there exists hy € X, such
that

20,
uala) = Fh)] < 2,
o= hal < 20 (49)

Now since z € Jq and |z — hy| < \/236;7 we have |f(x) — f(hq)] < d~'/*. This entails

[ f5a,a(@) = F@)| < 1f5,,a(2) = f(ha)l + [f(2) = f(ha)

250 i
<=0 gl
Vd—1

The latter expression does not depend on x which was arbitrarily chosen outside of I and Jg.
We deduce that

If = fa,allzr(x)

< vol(X) <\/§50 N

and the result follows by invoking Lemma |7| and using Inequality . m|

4 d1/4> + diam(Y") (vol(1z) + vol(Jy))
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5 Numerical examples

5.1 Computational tractability

Working with a large class of approximation functions may pose computational difficulties. An
advantage of our Christoffel-Darboux semi-algebraic approximant is that it can be computed
efficiently.

If the input moments are exactly known and given in rational form, the Christoffel-Darboux
polynomial to be partially minimized is obtained through formal inversion of the moment matrix.
This operation has efficient implementations, namely polynomial time algorithms over rational
entries, an example is given in [2].

In most of the applications, the moments are however known only approximately, and the
Christoffel-Darboux polynomial is constructed via the numerical eigenvalue decomposition of
the approximate moment matrix. Since the moment matrix is symmetric, its eigenvalue de-
composition can be computed efficiently with numerically stable algorithms in floating point
arithmetic [13].

In addition, the computational overhead of evaluating the semi-algebraic approximant at
a given point x is that of minimizing a univariate polynomial over the segment [—1,1]. The
Lipschitz constant of a univariate polynomial with coefficients p = (pg, ..., p2q) over [—1,1] is
at most ||p||; and hence grid search finds an e-accurate solution to this problem using M
evaluations. In our case the entries of p are polynomials in x which are deduced from moment
data so that for a fixed d estimating and evaluating our semi-algebraic approximant up to a
fixed arbitrary precision with rational inputs (moment matrix and x) can be done in polynomial
time. Note also that our analysis shows that a level of precision of the order d=P~2 is sufficient
so that the cost of the overall procedure has a complexity which is polynomial in the bit size of
the moment matrix, the target evaluation point x, as well as in d, the degree bound.

5.2 Prototype code

We provide a simple Matlab prototype to validate our algorithm. All the examples described
below are reproducible, and the Matlab scripts can be found at

homepages.laas.fr/henrion/software/momgraph
The calling syntax of the main routine is
[Y,P] = momgraph(M,X)

It takes as an input an approximate moment matrix
M = [ b, )bl 7)) dx
X

(in Matlab floating point format) for b the monomial basis vector (in grevlex ordering), and a
collection of points
{x1, X9,...,Xny} C X C [-1,1]P7!

(in Matlab floating point format) with p > 1. It outputs an approximation

{v1, y2,. . yn} CY = [=1,1]

(in Matlab floating point format) of the values {f(x1), f(x2),..., f(xn)}, as well as a matrix
P of coefficients (in Matlab floating point format) of the vector of polynomials p whose sum of
squares yields the Christoffel-Darboux polynomial.

Our implementation is straightforward, not optimized for efficiency. The regularization pa-
rameter 3 is set to the default value of 1078, and the Christoffel-Darboux polynomial is computed
from the eigenvalue decomposition (Matlab’s command eig) of the approximate moment matrix
M + SLL
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Figure 4: Graph of the sign function (red) and its degree 2 (left) and degree 4 (right) semi-algebraic
approximations (black).

5.3 Sign function

Consider the measure supported on the graph of the sign function f(x) = sign(x) whose moments
in the monomial basis on X :=[—1,1] are

_1)112 (0a1+1 _ (_1)a1+1) +1— gart+l
a; +1

/1 x" f(x)*dx = (=1)* /0 x“dx+(1)*2 /01 xdx = (

-1 -1

for (a1, az) € N?. Here is an example of the use of momgraph to recover the sign function from
the (floating point approximations) of the (exact) moments:

>> M % moment matrix of degree 4 for the sign function

M =
2.0000 0 0 0.6667 1.0000 2.0000
0 0.6667 1.0000 0 0 0
0 1.0000 2.0000 0 0 0
0.6667 0 0 0.4000 0.5000 0.6667
1.0000 0 0 0.5000 0.6667 1.0000
2.0000 0 0 0.6667 1.0000 2.0000

>> X = linspace(-1,1,1e3)’; % samples for evaluation

>> [Y,P] = momgraph(M,X); % Christoffel-Darboux approximation

>> plot(X,graph(X),’-r’,’linewidth’,6); hold on; 7% exact graph

>> plot(X,Y,’-k’,’linewidth’,3); xlabel(’x’); ylabel(’y’); % approximate graph

This code corresponds to a degree 4 approximation from a moment matrix of size 6 with 15
moments. A degree 2 approximation can be obtained from its 3 by 3 submatrix

>> M(1:3,1:3)
ans =
2.0000 0 0

0 0.6667 1.0000
0 1.0000 2.0000
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Figure 5: Degree 10 semi-algebraic approximations (black) for the discontinuous univariate func-
tions (red) of Examples 65 (left), 66 (middle) and 67 (right) of reference [11].

On Figure [4] we see that the resulting degree 4 semi-algebraic approximation cannot be dis-
tinguished from the graph of the sign function. Our semi-algebraic approximant is x
argminye[_lyl]q(x,y) with ¢ the Christoffel-Darboux polynomial constructed as the sum of
squares of the polynomials returned by the momgraph function:

>> mpol x y; b = mmon([x y],2); % GloptiPoly monomial vector of degree 2
>> P*b

6-by-1 polynomial vector

(1,1) :7071.0678-7071.0678y"2
(2,1):0.86713+9.4x"2-9.7305xy+0.86713y"2
(3,1):2.4315x-1.3013y
(4,1):-0.53517+1.2757x"2+1.137xy-0.53517y"2
(5,1):0.29635x+0.55374y

(6,1) :0.29443+0.10761x~2+0. 15643xy+0. 29443y "2

We see in particular that the first polynomial is (x,y) + 1 —? with a large scaling factor. This
polynomial vanishes on the graphs of the functions y — —1 and y +— 1. The other polynomials
are instrumental to determining which one of the two graphs corresponds to a given value of x.

5.4 Discontinuous functions

Let us revisit the discontinuous univariate examples of [IT]. Since in this case we do not have
the analytic moments of the measure supported on the graph of the function f to input to our
algorithm, we use the empirical moment matrix computed by uniform sampling, i.e.

N
M = 3 3 bl s 50" (50)

for N sufficiently large, i.e. 102, and b the monomial basis vector. Degree 10 semi-algebraic
approximations are reported on Figure [5| for three benchmarks [IT, Examples 65, 66, 67] of
discontinuous functions f, appropriately scaled in X =Y = [—1, 1]. We observe that the second
rightmost discontinuity in the middle example is not detected. Increasing the degree of the
approximations does not fix the issue, and we believe that it is due to the poor resolution of
the monomial basis. It would be more appropriate to use here a complex exponential basis (i.e.
Fourier coefficients) or an orthogonal basis (e.g. Chebyshev or Legendre polynomials).

5.5 Interpolation

Suppose now that we have access only to the values {f(xy)}x=1,.. n~ of the function to be
approximated at given sampling points {xy }x=1,... n, for N small. Our algorithm takes as input
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Figure 6: Degree 10 semi-algebraic approximations (black) of a discontinuous function (red) com-
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40 (lower right) uniformly distributed samples.
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Figure 7: Minimum time double integrator with state constraint: control (left), first state (middle)
and second state (right) trajectories (red) and their degree 8 semi-algebraic approximations (black)
constructed from the pseudo-moments of the occupation measure.
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Figure 8 Minimum time double integrator with state constraint: control trajectories (red) and
their degree 8 semi-algebraic approximations (black) constructed from the pseudo-moments (left,
same as left of Figure 7)) and from the analytic moments (right) of the occupation measure.

the empirical moment matrix . On Figure @ we revisit [T1, Example 65] to study the effect
of the number of samples NV on the quality of the approximation, for a uniform distribution of
samples. We see that with 20 samples the function is already well approximated.

5.6 Recovering trajectories for optimal control

In [23], the moment-SOS hierarchy is applied to solve numerically non-linear optimal control
of ODEs with polynomial data and semi-algebraic state and control constraints. Non-linear
optimal control is formulated as a linear problem on moments of occupation measures supported
on optimal trajectories. Let us show how numerical approximations of these moments obtained
by semidefinite programming can be input to our algorithm to approximate optimal state and
control trajectories.

Let us revisit the state-constrained double integrator problem of [23] Section 5.1] to approxi-
mate the time optimal trajectories. After a scaling of time, state and control, we use the Matlab
interface GloptiPoly 3 and the conic solver MOSEK to compute the pseudo-moments of the oc-
cupation measure of degree up to 8. This can be achieved in less than 2 seconds on a standard
desktop computer. From this output, we construct the 45-by-45 moment matrices of the control
and state marginals, conditioned w.r.t. time. Using our notations, the independent variable x
is time, while the dependent variable y is respectively the control, the first state and the second
state. For this example, the analytic trajectories are available for comparison. We see on Figure
[7] that the state trajectory approximations are tight, whereas the control trajectory approxima-
tion misses partly the central region corresponding to the saturation of the second state. Indeed,
since it is obtained by solving numerically the degree 8 semidefinite relaxation of the moment-
SOS hierarchy, the approximated moment matrix differs from the exact moment matrix, and
this has an impact on the quality of the Christoffel-Darboux approximation. For this example,
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Figure 9: Degree 4 (left) semi-algebraic approximation, and Chebyshev polynomial approximation
(right) of the indicator function of a disk.

1.2 1.2

Figure 10: Degree 8 (left) and degree 16 (right) semi-algebraic approximations of the superposition
of signed indicator functions of two disks.

we can construct analytically the exact moment matrix of the control trajectory and observe
that indeed its Christoffel-Darboux semi-algebraic approximation of degree 8 identifies well the
optimal control trajectory switching times, see Figure

5.7 Bivariate examples

Consider the indicator function

f(X) = ]I{XERZ:X%+x§§1/4} (X)

of a centered disk of radius 1/2. We compute the emprical moments obtained by sampling
100? points on a uniform grid of X := [~1,1]2. With this input, our algorithm computes the
degree 8 semi-algebraic approximation reported on Figure[d] to be compared with the Chebyshev
polynomial approximation obtained from 1002 points by the chebfun2 command, showing the
typical Gibbs phenomenon.

We perform the same computations for the piecewise constant function

1
f(X) = H{xeRzzx%—kx%Sl/Al} (X) - Q]I{XEJRZ:(x1+%)2+(x2+%)2§1/4} (X)
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Figure 11: Contour plots of the absolute error between the two disk indicator function and its
degree 8 (left) and degree 16 (right) semi-algebraic approximations of Figure

obtained as a superposition of signed indicator functions of two disks. Its degree 8 and 16 semi-
algebraic approximations are reported on Figure The absolute pointwise error between the
approximations and the original function is displayed on Figure [T}

5.8 Discontinuous solutions of non-linear PDEs

In [26], the moment-SOS hierarchy is applied to solve numerically a class of non-linear PDEs
for which we known that classical (i.e. differentiable) solutions do not exist. The advantage
of optimizing over occupation measures is that they can be supported on graphs of weak (i.e.
possibly discontinuous) solutions. Let us show how approximate moments of these measures
computed by semidefinite programming can be processed by our algorithm so as to recover
these discontinuous solutions.

We focus on the Burgers equation and choose the initial data (a function of one space
coordinate, at time zero) in a way that at a given time a shock appears, i.e. the solution becomes
a discontinuous function of the space coordinate. Once the shock appeared, it propagates
through, i.e. the discontinuity remains but its location varies. In Figures [12] [I3] and [[4] we
show the graphs obtained from the moment relaxations proposed in [26]. In all cases we use the
969 triviate moments of degree 16 of the occupation measure (supported on time, space, and
solution) to recover the graph of the approximated solution. For comparison we also sketch the
analytic solution with red lines.

For the graphs in Figures[I2]and[I3] the approximated moments match the analytic moments
up to an error of the order of 1078, Our semi-algebraic approximations are almost identical to
the analytic solution.

For the graph in Figure [[4] the approximated moments are noticeably incorrect, i.e., the error
is of order 10™*. Nevertheless, our semi-algebraic approximation is able to reproduce the graph
of the solution quite accurately. In particular the propagation of the shock is retrieved from the
moment data. However, the approximation is erroneous when the solution passes over from its
continuous to its discontinuous part.

6 Conclusion

In this paper, we describe a new technique to estimate discontinuous functions from moment
data, based on Christoffel-Darboux kernels. Instead of using polynomial or piecewise polynomial
approximants, we use a class of semi-algebraic approximants, namely arguments of minima of
polynomials. This is another occurrence of a lifting technique: instead of using only moments
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space

Figure 12: Graph of the solution (a function of time and space) recovered from approximate
moments for the Burgers PDE: Discontinuous initial data. The shock propagates linearly with
time.

0

space 0.5

Figure 13: Graph of the solution (a function of time and space) recovered from approximate
moments for the Burgers PDE: Initial condition chosen to produce a shock at final time.
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Figure 14: Graph of the solution (a function of time and space) recovered from approximate

moments for the Burgers PDE: Initial function chosen such that the shock occurs at ¢ = %

depending linearly on the function so as to recover directly the function, we use also moments
depending non-linearly on the function so as to approximate the support of a measure concen-
trated on the graph of the function. We provide functional analytic and geometric convergence
proofs. Finally, some numerical examples illustrate the efficiency of our algorithm.

We believe that this work opens the way to many other further research lines:

o When applying the Moment-SOS hierarchy, the moments are numerical approximations of
the real ones. It would be interesting to provide a sensibility analysis of the application of
our algorithm for the real moments and the approximated ones. We believe that such an
analysis can be performed, since promising results were achieved recently in [I9] for the
case of zero dimensional manifolds, i.e. unions of finitely many points.

e It could also be interesting to investigate in a more quantitative way why the Gibbs
phenomenon might be avoided or at least attenuated with the technique we provide. We
believe that it is mainly due to the semi-algebraic point of view we are following.

e We could also check whether our algorithm works as well when considering only the knowl-
edge of Fourier coefficients, namely moments depending linearly on the function that we
want to approximate. In many problems, this is the only measurement that we might
have. This is therefore a partial moment information, and we may want to complement it
with estimates of higher degree moments. This makes the problem challenging.
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