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Introduction : Wschebor's theorem and beyond

In 1992, Mario Wschebor [START_REF] Wschebor | Sur les accroissements du processus de Wiener[END_REF] proved the following remarkable property of the linear Brownian motion (W (t), t ≥ 0; W (0) = 0). If λ is the Lebesgue measure on [0, 1], then, almost surely, for every x ∈ R and every t ∈ [0, 1]:

lim ε→0 λ{s ≤ t : W (s + ε) -W (s) √ ε ≤ x} = tΦ(x) , (1) 
where Φ(x) = N ((-∞, x]) and N is the standard normal distribution. It is a sort of law of large numbers (LLN) for the random measure defined as

µ ε (A) = λ{s ∈ [0, 1] : W (s + ε) -W (s) √ ε ∈ A} ,
that a.s. weakly converges towards N . This result was generalized shortly after by Wshebor [START_REF] Wschebor | Almost sure weak convergence of the increments of Lévy processes[END_REF] for Lévy processes and by Azaïs and Wschebor [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF] for random processes with stationary increments and other processes. Moreover, also in [START_REF] Wschebor | Sur les accroissements du processus de Wiener[END_REF] and [START_REF] Wschebor | Almost sure weak convergence of the increments of Lévy processes[END_REF], the result was shown for mollified processes as follows.

For ψ ∈ BV (the set of bounded variation functions on R), let

ψ ε (t) = 1 ε ψ t ε
denote the rescaled version of ψ and for X a measurable function, set X ε ψ = X ψ ε , i.e.

X ε ψ (t) := ψ ε (t -s)X(s)ds , [START_REF] Berzin | Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion[END_REF] and Ẋε ψ := X(s)dψ ε (t -s) .

(3)

The result reads, when X = W and ψ ∈ BV ∩ L 2 , λ{s ≤ t : W ε ψ (s) ≤ x} → tΦ(x/||ψ|| 2 ) (a.s.) ,

with

W ε ψ (s) := √ ε Ẇ ε ψ (s) . (5) 
Notice that when ψ = ψ

1 := 1 [-1,0] , Ẋε ψ (t) = ε -1 (X(t + ε) -X(t)) , W ε ψ := ε -1/2 (W (• + ε) -W (•)) ,
and we recover [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF].

In subsequent articles the a.s. result was extended to obtain a stable central limit theorem (CLT).

For instance, let us consider a real even function g such that E[g 2 (N )] < ∞, for N ∼ N (a typical example is g(x) = |x| p -E[|N | p ]). Defining for a bounded and continuous function f the family

Z ε = 1 √ ε 1 0 f (W (s)) g W ε ψ (s) -Eg(N ) ds,
we observe first that the convergence in (4) implies that lim

ε 1 0 f (W (s))g W ε ψ (s) ds = Eg(N/||ψ|| 2 ) 1 0
f (W (s))ds (a.s.) .

Moreover, for S the convergence stable of measures we have

lim ε Z ε S = σ(g) 1 0
f (W (s))dB(s), [START_REF] Bryc | On large deviations of empirical measures for stationary Gaussian processes[END_REF] where B(s) is another Brownian motion independent of W and σ is an explicit positive constant. Let us point out that if we take f = 1 and by integrating on the interval [0, t] the above result turns into a functional CLT:

lim ε 1 √ ε t 0 g W ε ψ (s) -Eg(N ) ds, t ∈ [0, 1] = (σ(g)B(t), t ∈ [0, 1]
) , [START_REF] Bryc | Large deviations and strong mixing[END_REF] in distribution. The result in [START_REF] Bryc | On large deviations of empirical measures for stationary Gaussian processes[END_REF] was obtained in [START_REF] Berzin | Weak convergence of the integrated number of level crossings to the local time for Wiener processes[END_REF]. Since then, such type of matters were generalized to: diffusions, fractional Brownian motion (fBm), stationary increments Gaussian processes, Lévy processes, etc. A very complete review with a large number of references can be found in [START_REF] Wschebor | Smoothing and occupation measures of stochastic processes[END_REF]. More recently, in 2008, Marcus and Rosen in [START_REF] Marcus | CLT for L p moduli of continuity of Gaussian processes[END_REF] have studied the convergence of the L p norm (this is g(x) = |x| p in [START_REF] Bryc | Large deviations and strong mixing[END_REF]) of the increments of stationary Gaussian processes. In the cited article the authors closed the problem in a somewhat definitive form. In another article ( [START_REF] Marcus | L p moduli of continuity of Gaussian processes and local times of symmetric Lévy processes[END_REF]) they said that their proofs were initially based on Wschebor's method, but afterwards they changed and looking for a more general and broadly used procedure. When we are faced with a LLN-type result (a.k.a. convergence of a family of random objects to a deterministic one), it is nowadays natural to ask for a possible large deviation principle (LDP). Let us give some notations. If Σ = R, R + × R or [0, 1] × R, we denote by M + (Σ) and M r (Σ) the set of Borel measures on Σ positive and having total mass r, respectively.

If Z is a measurable function from R + to R, let M Z ∈ M + (R + × R) be defined by M Z (I × A) = λ{s ∈ I : Z(s) ∈ A} , (8) 
for every Borel subset

I × A of R + × R. The first marginal of M Z is λ. The second marginal µ Z is defined either by its action on a Borel set A µ Z (A) = M Z ([0, 1] × A) = λ{s ∈ [0, 1] : Z ∈ A} (9)
or, by its action on a test function

f ∈ C b (R) (set of bounded continuous functions on R) R f (x)dµ Z (x) = 1 0 f (Z(t)) dt , so that µ Z is the occupation measure µ Z = 1 0 δ Z dt .
In this framework, we can consider (1) and (4) as laws of large numbers (LLN):

M W ε 1 ⇒ λ × N (a.s.)
where ⇒ stands for the weak convergence. Since the Brownian motion W is self-similar (Property P1) and has stationary increments (P2), it is possible to reduce the problem about µ W ε 1 (ε → 0) to a problem of an occupation measure in large time (T := ε -1 → ∞) for a process Y independent of ε. This new process is stationary and ergodic. Moreover the independence of increments of W (P3) and its self-similarity induces a 1-dependence for Y , which allows to apply a criterion of Chiyonobu and Kusuoka [START_REF] Chiyonobu | The large deviation principle for hypermixing processes[END_REF] to get an LDP. Actually, as the crucial properties (P1, P2, P3) are shared by α-stable Lévy processes, we state the LDP in this last framework. This is the content of Section 3 with an extension to random measures built with mollifyers. Previously a basic lemma on equalities in law is stated in Section 2. The fBM with Hurst index H = 1/2 shares also properties (P1, P2) but not (P3) with the above processes. Nevertheless, since it is Gaussian, with an explicit spectral density, we prove the LDP for (µ ε ) under specific conditions on the mollifier, thanks to a criterion of [START_REF] Bryc | On large deviations of empirical measures for stationary Gaussian processes[END_REF]. This is the content of Section 4. In Section 5 we state an LDP for the space-time measure defined in [START_REF] Chiyonobu | The large deviation principle for hypermixing processes[END_REF] when Z is one of the above processes and in Section 6, we state a result for some "process level" empirical measure. At last, in Section 7 we study discrete versions of Wschebor's theorem. Among the issues not addressed here, we may quote: increments for Gaussian random fields in R d and multi-parameter indexed processes. Let us notice that except in a specific case in Section 4.3.2, we cannot give an explicit expression for the rate function. Moreover if one would be able to prove that the rate function is strictly convex and its minimum is reached at λ × N , this would give an alternate proof of Wschebor's results.

General framework

Recall that a real-valued process {X(t), t ∈ R} • has stationary increments if

{X(t + h) -X(h), t ∈ R} (d) = {X(t) -X(0), t ∈ R} , • is self-similar with index H > 0 if ∀a > 0 {X(at), t ∈ R} (d) = {a H X(t), t ∈ R} . If X is a self-similar process with index H we set, if ψ ∈ BV X ε ψ = ε 1-H Ẋε ψ , (10) 
where Ẋε ψ is defined as in (3) by

Ẋε ψ = X(s)dψ ε (t -s) = 1 ε X(t -εu)dψ(u) . (11) 
In particular

X 1 ψ (t) = X(s)dψ(t -s) . ( 12 
)
The following lemma is the key for our study. Lemma 2.1. Assume that X is self-similar with index H. For fixed ε and ψ ∈ BV , we have

X ε ψ (t), t ∈ R (d) = X 1 ψ (tε -1 ), t ∈ R (13) µ X ε ψ (d) = ε ε -1 0 δ X 1 ψ (t) dt . (14)
Moreover, if X has stationary increments, then X 1 ψ is stationary.

Proof: It is straightforward. First, Ẋε ψ (t) = ε -1 X(t -εu)dψ(u) (d) = ε H-1 X t ε -u dψ(u) , (15) 
where the last equality comes from self-similarity and holds as a process in t ∈ R. This yields [START_REF] Erdélyi | Tables of integral transforms[END_REF], and then

µ X ε ψ = 1 0 δ X ε ψ (t) dt = ε 1/ε 0 δ X ε ψ (ετ ) dτ (d) = ε 1/ε 0 δ X 1 ψ (τ ) dτ . ( 16 
)
We give now a definition which will set the framework for the processes studied in the sequel. Recall that the τ -topology on M 1 (R) is the topology induced by the space of bounded measurable functions on R. It is stronger than the weak topology which is induced by C b (R). Definition 2.2. Let F be a subset of the set BV of bounded variation function from R in R. We say that a process X with stationary increments and self-similar with index H has the (LDP w , F, H) (resp. (LDP τ , F, H)) property if the process X 1 ψ is well defined and if for every ψ ∈ F, the family (µ X ε ψ ) satisfies the LDP in M 1 (R) equipped with the weak topology (resp. the τ -topology), in the scale ε -1 , with good rate function

Λ * ψ (µ) = sup f ∈C b (R) f dµ -Λ ψ (f ) , (17) 
(the Legendre dual of Λ ψ ) where for f ∈ C b (R), Λ ψ (f ) = lim T →∞ T -1 log E exp T 0 f (X 1 ψ (t))dt , ( 18 
)
in particular, the above limit exists.

Roughly speaking, this means that the probability of seeing µ X ε ψ close to µ for a small ε is asymptotically e -Λ * ψ (µ)/ε .

3 The α-stable Lévy process

Let α ∈ (0, 2] fixed. The α-stable Lévy process (S(t), t ≥ 0; S(0) = 0) has independent and stationary increments and is 1/α-self-similar. If ψ ∈ BV is compactly supported, we set

S ε ψ (t) := ε 1-1/α S(s)dψ ε (t -s)
and as in [START_REF] Chiyonobu | The large deviation principle for hypermixing processes[END_REF][START_REF] Csörgo | Strong approximations in probability and statistics[END_REF], we may build the measures M S ε ψ and µ S ε ψ . In [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF], Theorem 3.1, it is proved that a.s.

M S ε ψ ⇒ λ × Σ α (a.s.
) where Σ α is the law of ||ψ|| α S(1). Proposition 3.1. If F is the set of bounded variation functions with compact support, then the α-stable Lévy process has the (LDP τ , F, 1/α) property.

Proof: We apply Lemma 2.1 with X = S and H = 1/α. Assume that the support of ψ is included in [a, b]. Since S has independent and stationary increments, the process S 1 ψ is stationary and (b -a)-dependent. This last property means that σ(S 1 ψ (u), u ∈ A) and σ(S 1 ψ (u), u ∈ B) are independent as soon as the distance between A and B is greater than 1. The process (S 1 ψ ) satisfies the condition (T) in [START_REF] Chiyonobu | The large deviation principle for hypermixing processes[END_REF] (see also condition (S) in [START_REF] Bryc | Large deviations and strong mixing[END_REF] p. 558). Then the family (µ S ε ψ ) satisfies the LDP and the other conclusions hold. Remark 3.2. When α = 2 we recover the Brownian case. In particular, when ψ = ψ 1

S 1 ψ (u) = W (u + 1) -W (u) , u ∈ R . ( 19 
)
This process is called often Slepian process; it is Gaussian, stationary and 1-dependent.

The fractional Brownian motion 4.1 General statement

We treat now the case of self-similar Gaussian processes with stationary increments, i.e. fractional Brownian motion (fBm in short). The fBm with Hurst parameter

H ∈ [0, 1) is the Gaussian process (B H (t), t ∈ R) with covariance EB H (t)B H (s) = 1 2 |s| 2H + |t| 2H -|t -s| 2H ,
It has a chaotic (or harmonizable) representation of B H (see [START_REF] Samorodnitsky | Non-Gaussian Stable Processes: Stochastic Models with Infinite Variance[END_REF] Prop. 7.2.8)

B H (t) = 1 C H R e iλt -1 |λ| -H-1 2 dW(λ) (20)
where W is a complex Brownian motion and

C 2 H = 2π Γ(2H + 1) sin(πH)
.

This process has stationary increments and is self-similar of index H. When H = 1/2 we recover the Brownian motion, and it is the only case where the increments are independent. When ψ ∈ BV with compact support, the LLN can be formulated as :

M X ε ψ ⇒ λ × N (• σ ψ ) (a.s.) , (21) 
where

σ 2 ψ = - 1 2 |u -v| 2H dψ(u)dψ(v) ,
(see [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF]). Our result on large deviations is the following. In Fourier analysis we adopt the following notation:

when f, g ∈ L 1 (R) f (θ) = e itθ f (t)dt , ǧ(γ) = 1 2π e -iγx g(x)dx . Proposition 4.1. Denote G := {ψ ∈ BV ∩ L 1 } G H = {ψ ∈ L 1 : ∃ lim λ→0 | ψ(λ)||λ| 1 2 -H } , (0 < H < 1) .
The process B H has the (LDP w , F, H) property if one of the following conditions are satisfied:

H ≤ 1/2 and F = G , (22) 1/2 < H < 1 and F = G ∩ G H . ( 23 
)
Particular cases are examined in Section 4.3.

Remark 4.2. If we define

G 0 = {ψ ∈ L 1 : ψ(t)dt = 0 and |tψ(t)|dt < ∞} then it holds that G 0 ⊂ G 1 ⊂ G H . ( 24 
)
Proof of Proposition 4.1: We apply Lemma 2.1 with X = B H . But now, for lack of independence, we will work with the spectral density and apply Theorem 2.1 in [START_REF] Bryc | On large deviations of empirical measures for stationary Gaussian processes[END_REF], which ensures the LDP as soon as the spectral density is in C 0 (R).

Using [START_REF] Samorodnitsky | Non-Gaussian Stable Processes: Stochastic Models with Infinite Variance[END_REF], the process X 1 ψ may be written as

X 1 ψ (t) = B H (t -s)dψ(s) = C -1 H e iλ(t-s) -1 |λ| -H-1 2 dW(λ)dψ(s) . (25)
Now, when ψ ∈ G it holds that lim |t|→∞ |ψ(t)| = 0 and by integration by parts,

e iλs dψ(s) = -iλ ψ(λ) (26) e iλ(t-s ) -1 dψ(s) = iλe iλt ψ(-λ) so that X 1 ψ (t) = iC -1 H e itλ ψ(-λ) λ |λ| H+ 1 2 dW(λ) . ( 27 
)
The spectral density of the stationary process X 1 ψ is then

H (λ) = C -2 H ψ(λ) 2 |λ| 1-2H . (28) 
Let us check conditions on H and ψ so that H ∈ C 0 (R).

• From (26) it holds that | ψ(λ)| = 0(|λ| -1 ) and then, for all 0 < H < 1

lim |λ|→∞ | H (λ)| = 0 . (29) • If ψ ∈ L 1 , ψ ∈ C 0 (Riemann-Lebesgue
) and H is even and continuous on (0, ∞).

• For H ≤ 1/2, the continuity of H at 0 is obvious.

For H > 1/2, this continuity is ensured by the assumption ψ ∈ G H .

Proof of Remark 4.2:

To prove [START_REF] Wschebor | Smoothing and occupation measures of stochastic processes[END_REF], note that

G 1 ⊂ G H is obvious and that, if ψ ∈ G 0 , ψ(0) = ψ(x)dx = 0 | ψ(λ)| = (e iλx -1)ψ(x)dx ≤ |λ| |xψ(x)|dx , so that ψ ∈ G 1 .

Contraction

Since the mapping µ → |x| p dµ(x) is not continuous, we cannot obtain an LDP for the moments of µ X ε ψ by invoking the contraction principle (Th. 4.2.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF])). Nevertheless, in the case of the fBm, the Gaussian stationary character of the process allows to conclude . It is a direct application of Corollary 2.1 in [START_REF] Bryc | On large deviations of empirical measures for stationary Gaussian processes[END_REF].

Proposition 4.3. If either H ≤ 1/2 and ψ ∈ G or H > 1/2 and ψ ∈ G ∩ G H , then the family 1 0 |X ε ψ (t)| 2 dt
, where X = B H , satisfies the LDP, in the scale ε -1 with good rate function

I ψ (x) = sup -∞<y<1/(4πM ) {xy -L(y)} ,
where

L(y) = - 1 4π log(1 -4πy H (s))ds and M = sup λ H (λ) .
More generally, for 0 ≤ p ≤ 2, the family 

1 0 |X ε ψ (t)| p dt
X(t + ε) -X(t). It belongs to G but since | ψ1 (λ)| = | sin(λ/2)| |λ/2| it does not belong to G H for H > 1/2.
For H = 1/2, we recover the Brownian motion and replace the notation X by W. The process W 1 ψ 1 is the Slepian process [START_REF] Marcus | L p moduli of continuity of Gaussian processes and local times of symmetric Lévy processes[END_REF] with covariance

r(t) = (1 -|t|) + ,
and spectral density:

ř(λ) = 1 2π sin λ 2 λ 2 2 .
As it is said above since ř is C 0 , the occupation measure satisfies a LDP in the weak topology in the scale ε -1 . in the scale ε -1 . This argument could have been used to prove the LDP, instead of the argument in Section 2 (but for the weak topology and not the τ -topology). Notice that although ř is differentiable, we could not apply Theorem 5.18 in Chiyonobu and Kusuoka [START_REF] Chiyonobu | The large deviation principle for hypermixing processes[END_REF], since the condition (5.19) therein is violated in x ∈ 2πZ. 2) Another interesting function is

ψ 2 = 1 2 1 [-1,0] -1 [0,1] which yields Ẋε ψ 2 (t) = X(t + ε) -2X(t) + X(t -ε) 2ε . (30) Since | ψ2 (λ)| = sin 2 (λ/2) |λ/2| ,
we see that ψ 2 ∈ G ∩ G H for every H ∈ (0, 1) and then (µ X ε ψ 2

) satisfies the LDP.

In (30) we are faced with second order increments of the process X. These increments are linked with the behavior of the second derivative of X ε when it exists. Let us consider ψ smooth enough so that X ε ψ , defined in (2), has a second derivative. For instance, let ψ ∈ G and such that ψ ∈ G. Then the function X ε ψ is twice differentiable and

Ẍε ψ (t) = ε -2 X(t -εs)dψ (s) = ε -1 Ẋε ψ (t) . Now, ψ ∈ G H since | ψ (λ)||λ| 1 2 -H = | ψ(λ)||λ| 3 2 -H → 0 as λ → 0. Since X ε ψ = ε 2-H Ẍε ψ ,
we conclude that for every H ∈ (0, 1), the family (µ ε 2-H Ẍε ψ ) satisfies the LDP in the scale ε -1 and good rate function Λ ψ . The choice

ψ(t) = 1 2 (1 -|t|) +
allows to recover ψ = ψ 2 and the second order increments.

Looking for an explicit rate function

It is not easy to find examples of explicit rate functions for the occupation measures of the above stationary processes X 1 ψ , since in general the limiting cumulant generating function Λ is not explicit. A particularly nice situation in the Gaussian case will occur if the process is also Markovian, i.e. if X 1 ψ is the Ornstein-Uhlenbeck (OU) process. Indeed, for the OU, the rate function for the LDP of the occupation measure is given by the Donsker-Varadhan theory ( [START_REF] Stroock | An introduction to the theory of large deviations[END_REF] ex. 8.28) :

Λ * (µ) = 1 2 R |g (x)| 2 dN (x) if dµ = g 2 dN .
The goal is then to find a mollifier ψ such that X 1 ψ is distributed as OU. To begin with, let us assume that the underlying process is Brownian, which implies that W 1 ψ is again Gaussian and stationary, with spectral density (cf. (28)):

ř(λ) = 1 2π | ψ(λ)| 2 .
For OU, the covariance and spectral density are, respectively

r(t) = e -|t| , ř(λ) = 1 π(1 + λ 2 )
.

To solve the equation

X 1 ψ (d) = OU turns out to solve | ψ(λ)| 2 = 2 1 + λ 2 . ( 31 
)
We present two answers. 1) Let us choose

ψ(λ) = √ 2 1 -iλ , ψ(x) = √ 2e -x 1 [0,∞) (x) ,
and then, the formula (5) becomes

W 1 ψ (t) = √ 2 t -∞
e -(t-s) dW s which is the classical representation of the stationary OU as a stochastic integral ( [START_REF] Samorodnitsky | Non-Gaussian Stable Processes: Stochastic Models with Infinite Variance[END_REF] p.138).

2) Let us choose ψ such that

ψ(λ) = √ 2 √ 1 + λ 2
This is equivalent to say

ψ(x) = 1 2π e -ixλ √ 2 √ 1 + λ 2 dλ i.e. ψ(x) = √ 2 π ∞ 0 cos(xλ) √ 1 + λ 2 dλ = √ 2 π K 0 (x),
where K 0 is the MacDonald (or modified Bessel) function (see [START_REF] Davies | Integral transforms and their applications[END_REF] p.369 or [START_REF] Erdélyi | Tables of integral transforms[END_REF] formula 17 p.9). This function can be expressed also as

K 0 (x) = √ πe -x Ψ(1/2, 1; 2x) ,
where Ψ is the confluent hypergeometric function (see [START_REF] Erdélyi | Higher transcendental functions[END_REF] p. 265).

Let us now extend the study to the fBm. Looking for a kernel ψ leading to the OU process, (28) leads to the equation

ψ(λ) 2 = C 2 H |λ| 2H-1 π(1 + λ 2 ) , hence, for instance if ψ is even, ψ(λ) = C H |λ| H-1 2 π(1 + λ 2 ) .
For H < 1/2, we did not find a closed expression for the kernel

ψ(x) = C H π ∞ 0 cos(λx) |λ| H-1 2 π(1 + λ 2 ) dλ (32)
in the literature. For H > 1/2, this function is not continuous in 0, so it cannot be the Fourier transform of an integrable kernel. We have proved Proposition 4.4. When H ≤ 1/2 and ψ is given by (32), the family (µ H ε ψ ) satisfies the LDP, in the scale ε -1 with good rate function

Λ * (µ) = 1 2 R |g (x)| 2 dN (x) if dµ = g 2 dN .
Remark 4.5. In this case, Λ * has a unique minimum at µ = N which allows to recover Wschebor's result on a.s. convergence.

A space-time LDP

We will state a complete LDP for some of our models, i.e. an LDP for (M X ε ψ ), whenever (µ X ε ψ ) satisfies the LDP. Following the notations of Dembo and Zajic in [START_REF] Dembo | Large deviations: from empirical mean and measure to partial sums process[END_REF] we denote by AC 0 the set of maps ν : [0, 1] → M + (R) such that • ν is absolutely continuous with respect to the variation norm,

• ν(0) = 0 and ν(t) -ν(s) ∈ M t-s (R) for all t > s ≥ 0,

• for almost everty t ∈ [0, 1], ν(t) possesses a weak derivative.

(This last point means that ν(t + η) -ν(t)/η has a limit as η → 0 -denoted by ν(t)-in M + (R) equipped with the topology of weak convergence). Let F

M + ([0, 1] × R) → D [0, 1]; M + (R) M → (t → F (M )(t) = M ([0, t], •)) (33)
or in other words F (M )(t) is the positive measure on R defined by its action on ϕ ∈ C b :

F (M )(t), ϕ = M, 1 [0,t] × ϕ .
Here D([0, 1]; •) is the set of càd-làg functions, equipped with the supremum norm topology. At last, let E be the image of F . Theorem 5.1. When the process X is the α-stable Lévy process and ψ ∈ BV has a compact support, the family M X ε ψ satisfies the LDP in M 1 ([0, 1] × R) equipped with the weak topology, in the scale ε -1 with the good rate function

Λ * (M ) =    1 0 Λ * ψ ( γ(t))dt if γ := F (M ) ∈ AC 0 , ∞ otherwise. (34) 
Proof: As in the above sections, it is actually a problem of large deviations in large time. For the sake of simplicity, set Y = X 1 ψ and T = ε -1 . Using Lemma 2.1, the problem reduces to the study of the family (M Y (•T ) ). First, we study the corresponding distribution functions. Actually, we have

F (M Y (•T ) )(t) = t 0 δ Y (sT ) ds = T -1 tT 0 δ Y (s) ds =: H T (t) . ( 35 
)
In a first step we will prove that the family (H T ) satisfies the LDP, then it a second step we will transfer this property to M Y (•T ) .

First step : We follow the method of Dembo-Zajic [START_REF] Dembo | Large deviations: from empirical mean and measure to partial sums process[END_REF]. We begin with a reduction to their "discrete time" method by introducing

ξ k = k k-1 δ Ys ds, (k ≥ 1) and S T (t) = tT 1 ξ k .

It holds that

T -1 tT 0 δ Y (s) ds -T -1 S T (t) = T -1 tT tT δ Y (s) ds (36)
and this difference has a total variation norm less than T -1 , so that the families (T -1 S T ) and (H T ) are exponentially equivalent (Def. 4.2.10 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]). The sequence ξ k is 1-dependent, hence satisfies condition (S) in [START_REF] Dembo | Large deviations: from empirical mean and measure to partial sums process[END_REF] p.22 which implies, by Th. 4 in the same paper that (T -1 S T ) satisfies the LDP in D([0, 1]; M + (R)) provided with the uniform norm topology, with the convex good rate function

I(ν) = 1 0 Λ ψ ( ν(t))dt (37)
when ν ∈ AC 0 and ∞ otherwise. We conclude, owing to Th. 4.2.13 in [START_REF] Dembo | Large deviations techniques and applications[END_REF], that (H T ) satisfies the same LDP.

Second step : We have now to carry this LDP to (M Y (•T ) ) (see ( 35)). For every T > 0, H T ∈ E ⊂ D([0, 1); M + (R). We saw that the effective domain of I is included in E. So, by Lemma 4.1.5 in Dembo-Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF], (H T ) satisfies the same LDP in E equipped with the (uniform) induced topology. Now,

F is bijective from M 1 ([0, 1] × R) to E. Let us prove that F -1 is continuous from E (equipped with the uniform topology) to M 1 ([0, 1] × R) equipped with the weak topology. For f : [0, 1] → R, let f BL = sup x |f (x)| + sup x =y |f (x) -f (y)| |x -y| (38) d BL (µ, ν) = sup f :|f BL ≤1 f dµ -f dν (39)
The space M + (R) is a Polish space when equipped with the topology induced by d BL , compatible with the weak topology. It is known that

M n → M ∈ M 1 ([0, 1] × R) weakly as soon as M n (1 [0,t] ⊗ f ) → M (1 [0,t] ⊗ f ) (40)
for every t ∈ [0, 1] and every f such that f BL < ∞. But, for such t, f we have

sup t |M n (1 [0,t] ⊗ f ) -M (1 [0,t] ⊗ f )| ≤ d BL (F (M n ), F (M )) (41) which implies that F -1 is continuous from E to M 1 ([0, 1] × R).
By the contraction principle (Th. 4.2.1 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]) we deduce that M Y (•T ) satisfies the LDP in M 1 ([0, 1] × R) with good rate function J(M ) = I(F (M )), wherer I is given by (37).

"Level process" study

In the study of strong convergence problems such as the a.s. CLT (see [START_REF] Heck | The principle of large deviations for the almost everywhere central limit theorem[END_REF] and [START_REF] March | Large deviations from the almost everywhere central limit theorem[END_REF]), an interesting problem is the LDP of empirical measures at the level of processes. If we restrict us to the Brownian case to simplify, the corresponding problem could be the behavior of

1 0 δ W (s+ε)-W (s) √ ε
, s≥t dt .

Here we do not see clearly the interest of such a study for the Wschebor's theorem. Nevertheless, it seems natural to consider the family (ξ ε t , t ≥ 0) of shifted processes

ξ ε t : s → W (t + εs) -W (t) √ ε ∈ C([0, 1]) , ( 42 
)
and the following empirical measure

L ε := 1 0 δ ξ ε t dt . ( 43 
)
By the scaling invariance, for every ε > 0,

(ξ ε εt , t ≥ 0) (d) = (ξ 1 t , t ≥ 0) , (44) 
and then

L ε = 1 0 δ ξ ε t dt (d) = Lε := ε ε -1 0 δ ξ 1 t dt . (45) 
Since we have

ξ 1 t = (W (t + s) -W (t), s ∈ [0, 1]), (46) 
the process (ξ 1 t , t ≥ 0) will be called the the meta-Slepian process in the sequel. For every t, the distribution of ξ 1 t is the Wiener measure W on C([0, 1]). The meta-Slepian process is clearly stationary and 1-dependent. Since it is ergodic, the Birkhoff theorem tells us that, almost surely when ε → 0, Lε converges weakly to W. From the equality in distribution (45) we deduce that (L ε ) converges in distribution to the same limit. But this limit is deterministic, hence the convergence of (L ε ) holds in probability. We just proved: Theorem 6.1. When ε → 0, the family of random probability measures (L ε ) on C([0, 1]) converges in probability weakly to the Wiener measure W on C([0, 1]).

The problem of almost sure convergence raises some difficulties. We have obtained on the one hand a partial almost sure fidi convergence (which is no more that a multimiensional extension of Wschebor theorem) and on the other hand an almost sure convergence when we plug C([0, 1]) into the Hilbert space L 2 ([0, 1]), equipped with its norm. To this last purpose, if µ is a measure on C([0, 1]), we will denote by µ L its extension to L 2 ([0, 1)], i.e. that for every B Borel set of L 2 ([0, 1]),

µ L (B) = µ(B ∩ C([0, 1]) . Theorem 6.2.
1. For every integer d and every t 1 , . . . , t d ∈ [0, 1], almost surely when ε → 0, the family (L ε π -1 t 1 ,...,t d ) of random probability measures on R d converges weakly to Wπ -1 t 1 ,...,t d on C([0, 1]), where π t 1 ,...,t d be the projection :

f ∈ C([0, 1]) → f (t 1 ), . . . , f (t d ).
2. When ε → 0, the family of random probability measures (L L ε ) on L 2 ([0, 1]) converges weakly almost surely to the Wiener measure W L on L 2 ([0, 1]).

We failed to prove a (full) almost sure fidi convergence, i.e. in 1. to state that "almost surely, for every t 1 , . . . , t d ...". Moreover we do not know if an almost sure convergenge at the level of processes is true. For the proof, we need the following lemma, which is straightforward owing to the properties of stationarity and 1-dependence.

Lemma 6.3. If F is a bounded differentiable function with bounded derivative from C([0, 1]) (resp. L 2 ([0, 1])) to R. Then a.s. lim ε→0 1 0 F (ξ ε t ) dt = C([0,1]) F (ξ)W(dξ) . (47) 
Proof of Lemma 6.3: It is along the lines of [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF]. We first claim a quadratic convergence as follows. By Fubini and stationarity

E 1 0 F (ξ ε t )dt = 1 0 EF (ξ ε t )dt = C([0,1]) F (ξ)W(dξ) ,
and by Fubini and 1-dependence,

Var 1 0 F (ξ ε t )dt = |t-s|<2ε Cov (F (ξ ε t ), F (ξ ε s )) dtds ≤ 4ε||F || ∞ . (48) 
The Borel-Cantelli lemma implies a.s. convergence of

1 0 F (ξ ε t )dt along any sequence (ε n ) such that n ε n < ∞.
To go on, take ε n+1 < ε < ε n and notice that

1 0 F (ξ ε t ) -F (ξ εn t ) dt ≤ ||F || ∞ sup t,u |ξ ε t (u) -ξ εn t (u)| . ( 49 
)
Now we use the properties of Brownian paths. On the interval [0, 2] the Brownian motion satisfies a.s. a Holder condition with exponent β < 1/2, so that we can define the a.s. finite random variable

M := 2 sup u,v∈[0,2] |W (u) -W (v)| |v -u| β . (50) So, sup s∈[0,1] |ξ ε t (s) -ξ εn t (s)| ≤ M 2 (ε n -ε) β ε 1/2 + M 2 (ε n ) β ε -1/2 -(ε n ) -1/2 = M 2 (ε n ) β ε 1/2 1 - ε ε n β + 1 - ε ε n ≤ M ε β n -ε β ε 1/2 ≤ M ε β n -ε β n+1 ε 1/2 n+1 . ( 51 
)
The choice of ε n = n -a with a > 1 and β ∈ a 2(a+1) , 1 2 ensures that the right hand side of (51), hence of (49) tends to 0 a.s., which ends the proof.

Proof of Theorem 6. 

exp i d 1 a k ξ ε t (t k ) dt = Ĝ d 1 a k δ t k . (54)
By a slight adaptation of the Lévy's continuity theorem (which is detailed in Appendix), we conclude that (L ε π -1 t 1 ,...,t d ) converges weakly to the good limit.

2. We will use a method coming from [START_REF] Giné | On the central limit theorem in hilbert space[END_REF] p. 461 . It consists in checking Billingsley's criterion on intersection of balls ([5] p.18) and approximating indicators by smooth functions. Let us give details for only one ball to shorten the proof. For δ ∈ (0, 1), define

φ δ (t) = 1 (-∞,1] (t) + 1 [1,(1+δ) 2 ] (t) 1 C ((1+δ) 2 -t) (2δ+δ 2 ) 0 e -1 s(1-s) ds , (55) 
where

C = 1 0 e -1
s(1-s) ds .

The function φ δ has a bounded support and it is continuous and ||φ δ || ∞ = 1. Now we consider

ψ δ : L 2 ([0, 1] → R defined by ψ δ (ξ) = φ δ (||ξ|| 2 ).
This function is C ∞ and has all its derivatives bounded. For every ξ c ∈ L 2 ([0, 1]), r > 0, δ ∈ (0, r) we have the nesting

1 B(ξc;r-δ) (ξ) ≤ ψ δ r-δ ξ -ξ c r -δ ≤ 1 B(ξc;r) (ξ) ≤ ψ δ r ξ -ξ c r ≤ 1 B(ξc;r+δ) (ξ) . (56) 
Take a sequence δ n → 0. Let us remind that the measure L L ε is random. We did not write explicitly the item W for simplicity, although it is present in (42). For every test function F as in Lemma 6.3, we have a null set N F such that for W /

∈ N F L 2 ([0,1]) F (ξ)L L ε (dξ) → C([0,1]) F (ξ)W(dξ) . (57) 
Let (g k ) k≥1 be a countable dense set in L 2 ([0, 1]), and for q ∈ Q,

F - n,k,q (ξ) = ψ δn/(q-δn) ξ -g k q -δ n , F + n,k,q (ξ) = ψ δn/q ξ -g k q and N = n,k,q N F - n,k,q ∪ N F + n,k,q . 
Take W / ∈ N . Assume that the ball B(ξ c ; r) is given. Take γ > 0, then by density one can find k ≥ 1 and q ∈ Q + such that

||ξ c -g k || ≤ γ , |r -q| ≤ γ . (58) 
By (56) we have

L L ε (B(ξ c ; r)) ≤ ψ δn/r ξ -ξ c r L L ε (dξ) . (59)
Besides, by (58) and by differentiability, there exists C n > 0 such that

ψ δn/r ξ -ξ c r ≤ F + n,k,q (ξ) + C n γ . (60) Now, by (57), lim ε L 2 ([0,1]) F + n,k,q (ξ)L L ε (dξ) = C([0,1]) F + n,k,q (ξ)W(dξ) (61) By (56) again C([0,1]) F + n,k,q (ξ)W(dξ) ≤ W(B(g k , q + δ n )) . (62) So far, we have obtained lim sup ε L L ε (B(ξ c ; r)) ≤ W(B(g k , q + δ n )) + C n γ . (63) 
It remains, in the right hand side, to let γ → 0 (hence g k → ξ c and q → r) , and then n → ∞ to get lim sup

ε L L ε (B(ξ c ; r)) ≤ W(B(ξ c , r)) (64)
With the same line of reasoning, using the other part of (56) we can obtain

lim inf ε L L ε (B(ξ c ; r)) ≥ W(B(ξ c , r)) , (65) 
which ends the proof for one ball. A similar proof can be made for functions approximating intersection of balls as in Theorem 2.2 of [START_REF] Giné | On the central limit theorem in hilbert space[END_REF] and as a consequence the a.s. weak convergence follows. Eventually, we have the LDP as in Proposition 3.1. Recall that (ξ 1 t ) is the meta-Slepian process defined in (46). We omit the proof since it is the same as in the scalar case. Proposition 6.4. The family (L ε ) satisfies the LDP in M 1 (C([0, 1])) equipped with the weak topology, in the scale ε -1 with good rate function

Λ * (L) = sup F ∈C b (C([0,1])) C([0,1]) F (ξ)L(dξ) -Λ(F ), (66) 
(the Legendre dual of Λ) where for every

F ∈ C b (C([0, 1])), Λ(F ) = lim T →∞ T -1 log E T 0 F (ξ 1 t )dt . (67) Remark 7.3.
Two examples of (r n ) satisfying the aassumptions of Prop. 7.1 2. are of interest, particularly in relation to the LDP of Prop. 7.2. The first one is r n = n γ with γ ∈ (0, 1) (hence ε n ∼ n γ-1 ), for which we can choose n k = k a(1-γ) with a > 1. The second one is r n = n/ log n (hence ε n ∼ (log n) -1 ), for which we can choose n k = e k 2 . Proof of Prop. 7.1: We use the method of the above Lemma 6.3 inspired by [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF]. For a bounded continuous test function f

E f dm n = Ef S rn √ r n → f dN thanks to the CLT. Moreover Var f dm n = 1 n 2 |j-k|≤rn Cov F S j+rn -S j √ r n , F S k+rn -S k √ r n ≤ 2r n n ||f || ∞ .
This gives the convergence in probability.

In the Gaussian case, it is possible to repeat the end of the proof of Lemma 6.3. Under our assumption, we see that for any β ∈ (0, 1/2)

ε β n k -ε β n k+1 ε 1/2 n k+1 = o ε δ+β-1 2 n k+1
, which implies that it is enough to choose β ∈ 1 2 -δ, It is known that d BL (µ, ν) given by ( 39) is a convex function of (µ, ν) so that : ) are exponentially equivalent in the scale ε -1 n (Def. 4.2.10 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]). Now, from our Prop. 3.1 or 4.1, (µ W εn 1 ) satisfies the LDP in the scale ε -1 n . Consequently, from Th. 4.2.13 of [START_REF] Dembo | Large deviations techniques and applications[END_REF], the family (m n ) satisfies the LDP at the same scale with the same rate function.

d BL (m n , µ W εn 1 ) ≤ 1 0 d BL (δ ε -1/2 n (W (t+εn)-W (t)) , δ V n nt )dt ≤ ε -1/2 n 1 0 W (t + ε n ) -W (t) -W nt n + ε n + W nt n dt ≤ 2(ε n ) -1/
2) Let us go to the case when X 1 is not normal. We use the Skorokhod representation, as in [START_REF] Heck | The principle of large deviations for the almost everywhere central limit theorem[END_REF] or in [START_REF] March | Large deviations from the almost everywhere central limit theorem[END_REF] (see also [START_REF] Csörgo | Strong approximations in probability and statistics[END_REF] Th. 2.1.1 p.88). When (X i ) is a sequence of independent (real) random variables such that EX 1 = 0 and EX 2 1 = 1, there exists a probability space supporting a Brownian motion (B(t); 0 ≤ t < ∞) and an increasing sequence (τ i ) of stopping times such that • (τ i+1 -τ i ) are i.i.d., with Eτ 1 = 1

• (B(τ i+1 ) -B(τ i )) are independent and distibuted as X 1 , Moreover, if EX 2q 1 < ∞, then Eτ q 1 < ∞. We have S j+r -S j 

4. 3

 3 Particular cases 4.3.1 Two basic mollifiers 1) As seen before, the function ψ 1 = 1 [-1,0] is the most popular. It allows to study the first order increments

2 1 . 1 0 1 0

 111 The (random) characteristic functional of the (random) probability measure L ε on [0, 1] with the Borel σ-field and the Lebesgue meausre is a function from the dual space of C([0, 1]), i.e. M([0, 1]) to C defined by Ĝε : ρ → exp{i ξ ε t (s)ρ(ds)}dt . Actually, Ĝε (ρ) = F (ξ ε t )dt with F (ξ) = exp{i ξ(u)ρ(du)}. This function fulfils the conditions of Lemma 6.3. We have then, for every ρ, a.s. lim Ĝε (ρ) = Ĝ(ρ) [u, 1]) 2 du . (53) Let fix d and t 1 , . . . , t d . For every a := (a 1 , . . . , a d ) ∈ R d , let us consider the measure ρ a = d 1 a k δ t k and the following event A(a) := lim ε→0 Ĝε (ρ a ) = Ĝ (ρ a ) . The above analysis tells us that P(A(a)) = 1 for every a. By a classical argument using Fubini's theorem we deduce that almost surely, for almost every a ∈ R d lim ε→0

1 2 .= 1 ,W εn 1 = 1 0δ ε - 1 / 2 n

 211112 Proof of Prop. 7.2:1) If X 1 ∼ N , then (V n k , k = 1, . . . , n) . . . , nand then it is natural to consider m n as a Riemann sum. We have now to compare m n with µ (W (t+εn)-W (t)) dt .

1 δ

 1 U n k with U n k := B(k + r n ) -B(k) √ r n ,(79)which fall into the regime of the above part of the proof. We will prove that the sequences ( mn ) and (π n ) are exponentially equivalent. Again by convexity of d BL , we haved BL ( mn , π n ) k+rn ) -B(k + r n )| + sup k≤n |B(τ k ) -B(k)|(80) Our proof will be complete if we show that for all δ > 0 lim n r n n log P max k≤n+rn |B(τ k ) -B(k)| > δ √ r n = -∞ . (81)

  2 sup |t-s|≤1/n |W (t) -W (s)| If lim n ε n n 1/2 = ∞ we conclude that lim n→∞ ε n log P(d BL (m n , µ W εn 1 ) > δ) = -∞ ,which means that (m n ) and (µ W εn 1

hence

P(d BL (m n , µ W εn 1 ) > δ) ≤ P sup |t-s|≤1/n |W (t) -W (s)| > δ(ε n ) 1/2 2 ≤ 2 exp -n δ 2 ε n 4 .

It is used there to prove that in Hilbert spaces, convergence in the Zolotarev metric implies weak convergence.

Discrete versions

For a possible discrete version of Wschebor's theorem and associated LDP, we can consider a continuous process observed at times (k/n) where k ≤ n with lag r. On this basis, there are two points of view. When r is fixed, there are already results on a.s. convergence of empirical measures of increments of fBm ( [START_REF] Berzin | Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion[END_REF]) and we explain which LDP holds. When r depends on n with r n → ∞ and r n /n → 0, we are actually changing t in k/n and ε in r n /n in the above sections. We state convergence (Prop. 7.1) and LDP (Prop. 7.2) under specific conditions. All the LDPs mentioned take place in M 1 (R) equipped with the weak convergence.

Fixed lag

In [START_REF] Berzin | Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion[END_REF], beyond the Wschbebor's theorem, there are results of a.s. convergence of empirical statistics on the increments of fBm. The authors defined p. 39 the second order increments as

and claimed that as n → ∞

(Th. 3.1 p.44 in [START_REF] Berzin | Inference on the Hurst parameter and the variance of diffusions driven by fractional Brownian motion[END_REF]). Moreover, in a space-time extension, they proved that

(Th. 4.1 in [START_REF] Berzin | Variance estimator for fractional diffusions with variance and drift depending on time[END_REF]). Let us restrict for the moment to the case H = 1/2. The empirical distribution of (68) has the same distribution as

where the X i are independent and N distributed. We can deduce the LDP (in the scale n) from the LDP for the 2-empirical measure by contraction. If i is the mapping

the rate function is

where I 2 is the rate function of the 2-empirical distribution (see [START_REF] Dembo | Large deviations techniques and applications[END_REF] Th. 6.5.12).

In the same vein, we could study the LDP for the empirical measure

When this lag r is fixed, the scale is n and the rate function is obtained also by contraction (r = 1 is just Sanov's theorem). This point of view could be developed also for the fBm using stationarity instead of independence.

Unbounded lag

Let (X i ) be a sequence of i.i.d. random variables and (S i ) the process of partial sums. Let (r n ) be a sequence of positive integers such that lim n r n = ∞, and assume that

The next propositions state some extensions of Wschebor's theorem and give the associated LDPs. The a.s. convergence is obtained only in the Gaussian case under an additional condition. It seems difficult to find a general method. Proposition 7.1.

it holds that

n with rate function given in [START_REF] March | Large deviations from the almost everywhere central limit theorem[END_REF][START_REF] Marcus | CLT for L p moduli of continuity of Gaussian processes[END_REF] where ψ = Ψ 1 .

2. Assume that X 1 has all its moments finite and satisfies EX 1 = 0, EX 2 1 = 1 and that

Then (m n ) satisfies the LDP in the scale ε -1 n with rate function given in [START_REF] March | Large deviations from the almost everywhere central limit theorem[END_REF][START_REF] Marcus | CLT for L p moduli of continuity of Gaussian processes[END_REF] where ψ = Ψ 1 .

We will apply three times the following known result. If (ξ i ) are i.i.d. centered with E(ξ 1 ) 2p ) < ∞ for some p ≥ 1, then there exists a universal constant C > 0 such that for all integers n ≥ 1

(cf. [START_REF] March | Large deviations from the almost everywhere central limit theorem[END_REF] Lemma 8 or [START_REF] Heck | The principle of large deviations for the almost everywhere central limit theorem[END_REF] Lemma 2.9). Actually, for α ∈ (0, 1) and k ≤ r α n , with Markov inequality and (82)

and for the same reasons

Now, for k ≥ r α n , and

Besides,

which, for k ≤ n + r n < 2n, yields

Gathering (83-84-85), we obtain, by the union bound,

where the constant C p > 0 depends on p and on the distribution of X 1 . Choosing β > 1/2 and r n such that

we will ensure that for every p > 0 lim

where C is a constant independent of p, which will prove (81). Now, the set of sufficient conditions (87) is equivalent to the condition:

which is exactly (77).

Appendix

The extension of Lévy's continuity theorem, already invoked in [START_REF] Azaïs | Almost sure oscillation of certain random processes[END_REF] is the following. It is probably well known, but since we do not know any reference, we give its proof for the convenience of the reader.

Lemma 8.1. Let ν n , ν be probability measures on R d with characateristic functionsϕ n , ϕ. A sufficient condition for ν n ⇒ ν is that ϕ n (a) → ϕ(a) for almost every a ∈ R d .

We follow the classical proof as given for instance in Billingsley for n ≥ n 0 . Ending is routine.