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Abstract

We revisit Wschebor’s theorems on small increments for processes with scaling and
stationary properties and deduce large deviation principles.

Keywords: Brownian motion, stable processes, scaling properties, strong theorems, large devi-
ations
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1 Introduction : Wschebor’s theorem and beyond

In 1992, Mario Wschebor [22] proved the following remarkable property of the linear Brownian
motion (W (t), t ≥ 0;W (0) = 0). If λ is the Lebesgue measure on [0, 1], then, almost surely, for
every x ∈ R and every t ∈ [0, 1]:

lim
ε→0

λ{s ≤ t :
W (s+ ε)−W (s)√

ε
≤ x} = tΦ(x) ,(1)

where Φ(x) = N ((−∞, x]) and N is the standard normal distribution. It is a sort of law of large
numbers (LLN) for the random measure defined as

µε(A) = λ{s ∈ [0, 1] :
W (s+ ε)−W (s)√

ε
∈ A} ,

that a.s. weakly converges towards N .

This result was generalized shortly after by Wshebor [23] for Lévy processes and by Azäıs and
Wschebor [1] for random processes with stationary increments and other processes. Moreover,
also in [22] and [23], the result was shown for mollified processes as follows.
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For ψ ∈ BV (the set of bounded variation functions on R), let

ψε(t) =
1

ε
ψ

(
t

ε

)
denote the rescaled version of ψ and for X a measurable function, set Xε

ψ = X ? ψε, i.e.

Xε
ψ(t) :=

∫
ψε(t− s)X(s)ds ,(2)

and

Ẋε
ψ :=

∫
X(s)dψε(t− s) .(3)

The result reads, when X = W and ψ ∈ BV ∩ L2,

λ{s ≤ t : Wε
ψ(s) ≤ x} → tΦ(x/||ψ||2) (a.s.) ,(4)

with

Wε
ψ(s) :=

√
ε Ẇ ε

ψ(s) .(5)

Notice that when ψ = ψ1 := 1[−1,0],

Ẋε
ψ(t) = ε−1 (X(t+ ε)−X(t)) , Wε

ψ := ε−1/2(W (·+ ε)−W (·)) ,

and we recover (1).

In subsequent articles the a.s. result was extended to obtain a stable central limit theorem (CLT).
For instance, let us consider a real even function g such that E[g2(N)] <∞, for N ∼ N (a typical
example is g(x) = |x|p − E[|N |p]). Defining for a bounded and continuous function f the family

Zε =
1√
ε

∫ 1

0

f(W (s))
(
g
(
Wε

ψ(s)
)
− Eg(N)

)
ds,

we observe first that the convergence in (4) implies that

lim
ε

∫ 1

0

f(W (s))g
(
Wε

ψ(s)
)
ds = Eg(N/||ψ||2)

∫ 1

0

f(W (s))ds (a.s.) .

Moreover, for S the convergence stable of measures we have

lim
ε
Zε

S
= σ(g)

∫ 1

0

f(W (s))dB(s),(6)

where B(s) is another Brownian motion independent of W and σ is an explicit positive constant.
Let us point out that if we take f = 1 and by integrating on the interval [0, t] the above result
turns into a functional CLT:

lim
ε

(
1√
ε

∫ t

0

(
g
(
Wε

ψ(s)
)
− Eg(N)

)
ds, t ∈ [0, 1]

)
= (σ(g)B(t), t ∈ [0, 1]) ,(7)
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in distribution.

The result in (6) was obtained in [4]. Since then, such type of matters were generalized to:
diffusions, fractional Brownian motion (fBm), stationary increments Gaussian processes, Lévy
processes, etc. A very complete review with a large number of references can be found in [24].
More recently, in 2008, Marcus and Rosen in [18] have studied the convergence of the Lp norm
(this is g(x) = |x|p in (7)) of the increments of stationary Gaussian processes. In the cited article
the authors closed the problem in a somewhat definitive form. In another article ([19]) they said
that their proofs were initially based on Wschebor’s method, but afterwards they changed and
looking for a more general and broadly used procedure.

When we are faced with a LLN-type result (a.k.a. convergence of a family of random objects to
a deterministic one), it is nowadays natural to ask for a possible large deviation principle (LDP).

Let us give some notations. If Σ = R,R+×R or [0, 1]×R, we denote byM+(Σ) andMr(Σ) the
set of Borel measures on Σ positive and having total mass r, respectively.

If Z is a measurable function from R+ to R, let MZ ∈M+(R+ × R) be defined by

MZ(I × A) = λ{s ∈ I : Z(s) ∈ A} ,(8)

for every Borel subset I ×A of R+ ×R. The first marginal of MZ is λ. The second marginal µZ
is defined either by its action on a Borel set A

µZ(A) = MZ([0, 1]× A) = λ{s ∈ [0, 1] : Z ∈ A}(9)

or, by its action on a test function f ∈ Cb(R) (set of bounded continuous functions on R)∫
R
f(x)dµZ(x) =

∫ 1

0

f(Z(t)) dt ,

so that µZ is the occupation measure

µZ =

∫ 1

0

δZdt .

In this framework, we can consider (1) and (4) as laws of large numbers (LLN):

MWε
1
⇒ λ×N (a.s.)

where⇒ stands for the weak convergence. Since the Brownian motion W is self-similar (Property
P1) and has stationary increments (P2), it is possible to reduce the problem about µWε

1
(ε→ 0)

to a problem of an occupation measure in large time (T := ε−1 →∞) for a process Y independent
of ε. This new process is stationary and ergodic. Moreover the independence of increments of
W (P3) and its self-similarity induces a 1-dependence for Y , which allows to apply a criterion of
Chiyonobu and Kusuoka [8] to get an LDP.

Actually, as the crucial properties (P1, P2, P3) are shared by α-stable Lévy processes, we state
the LDP in this last framework. This is the content of Section 3 with an extension to random
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measures built with mollifyers. Previously a basic lemma on equalities in law is stated in Section
2.

The fBM with Hurst index H 6= 1/2 shares also properties (P1, P2) but not (P3) with the above
processes. Nevertheless, since it is Gaussian, with an explicit spectral density, we prove the LDP
for (µε) under specific conditions on the mollifier, thanks to a criterion of [6]. This is the content
of Section 4. In Section 5 we state an LDP for the space-time measure defined in (8) when Z is
one of the above processes and in Section 6, we state a result for some “process level” empirical
measure. At last, in Section 7 we study discrete versions of Wschebor’s theorem.

Among the issues not addressed here, we may quote: increments for Gaussian random fields in
Rd and multi-parameter indexed processes.

Let us notice that except in a specific case in Section 4.3.2, we cannot give an explicit expression
for the rate function. Moreover if one would be able to prove that the rate function is strictly
convex and its minimum is reached at λ ×N , this would give an alternate proof of Wschebor’s
results.

2 General framework

Recall that a real-valued process {X(t), t ∈ R}

• has stationary increments if

{X(t+ h)−X(h), t ∈ R} (d)
= {X(t)−X(0), t ∈ R} ,

• is self-similar with index H > 0 if

∀a > 0 {X(at), t ∈ R} (d)
= {aHX(t), t ∈ R} .

If X is a self-similar process with index H we set, if ψ ∈ BV

X ε
ψ = ε1−HẊε

ψ(10)

where Ẋε
ψ is defined as in (3) by

Ẋε
ψ =

∫
X(s)dψε(t− s) =

1

ε

∫
X(t− εu)dψ(u) .(11)

In particular

X 1
ψ(t) =

∫
X(s)dψ(t− s) .(12)

The following lemma is the key for our study.
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Lemma 2.1. Assume that X is self-similar with index H. For fixed ε and ψ ∈ BV , we have(
X ε
ψ(t), t ∈ R

) (d)
=
(
X 1
ψ(tε−1), t ∈ R

)
(13)

µX εψ
(d)
= ε

∫ ε−1

0

δX 1
ψ(t)dt .(14)

Moreover, if X has stationary increments, then X 1
ψ is stationary.

Proof: It is straightforward. First,

Ẋε
ψ(t) = ε−1

∫
X(t− εu)dψ(u)

(d)
= εH−1

∫
X

(
t

ε
− u
)
dψ(u) ,(15)

where the last equality comes from self-similarity and holds as a process in t ∈ R. This yields
(13), and then

µX εψ =

∫ 1

0

δX εψ(t)dt = ε

∫ 1/ε

0

δX εψ(ετ)dτ
(d)
= ε

∫ 1/ε

0

δX 1
ψ(τ)dτ .(16)

We give now a definition which will set the framework for the processes studied in the sequel.
Recall that the τ -topology onM1(R) is the topology induced by the space of bounded measurable
functions on R. It is stronger than the weak topology which is induced by Cb(R).

Definition 2.2. Let F be a subset of the set BV of bounded variation function from R in
R. We say that a process X with stationary increments and self-similar with index H has the
(LDPw,F , H) (resp. (LDPτ ,F , H)) property if the process X 1

ψ is well defined and if for every
ψ ∈ F , the family (µX εψ) satisfies the LDP in M1(R) equipped with the weak topology (resp. the

τ -topology), in the scale ε−1, with good rate function

Λ∗ψ(µ) = sup
f∈Cb(R)

∫
fdµ− Λψ(f) ,(17)

(the Legendre dual of Λψ) where for f ∈ Cb(R),

Λψ(f) = lim
T→∞

T−1 logE exp

∫ T

0

f(X 1
ψ(t))dt ,(18)

in particular, the above limit exists.

Roughly speaking, this means that the probability of seeing µX εψ close to µ for a small ε is

asymptotically e−Λ∗ψ(µ)/ε.
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3 The α-stable Lévy process

Let α ∈ (0, 2] fixed. The α-stable Lévy process (S(t), t ≥ 0;S(0) = 0) has independent and
stationary increments and is 1/α-self-similar. If ψ ∈ BV is compactly supported, we set

Sεψ(t) := ε1−1/α

∫
S(s)dψε(t− s)

and as in (8-9), we may build the measures MSεψ and µSεψ . In [1], Theorem 3.1, it is proved that
a.s.

MSεψ ⇒ λ× Σα (a.s.)

where Σα is the law of ||ψ||αS(1).

Proposition 3.1. If F is the set of bounded variation functions with compact support, then the
α-stable Lévy process has the (LDPτ ,F , 1/α) property.

Proof: We apply Lemma 2.1 with X = S and H = 1/α.

Assume that the support of ψ is included in [a, b]. Since S has independent and stationary
increments, the process S1

ψ is stationary and (b − a)-dependent. This last property means that
σ(S1

ψ(u), u ∈ A) and σ(S1
ψ(u), u ∈ B) are independent as soon as the distance between A and B

is greater than 1. The process (S1
ψ) satisfies the condition (T) in [8] (see also condition (S) in [7]

p. 558). Then the family (µSεψ) satisfies the LDP and the other conclusions hold.

Remark 3.2. When α = 2 we recover the Brownian case. In particular, when ψ = ψ1

S1
ψ(u) = W (u+ 1)−W (u) , u ∈ R .(19)

This process is called often Slepian process; it is Gaussian, stationary and 1-dependent.

4 The fractional Brownian motion

4.1 General statement

We treat now the case of self-similar Gaussian processes with stationary increments, i.e. fractional
Brownian motion (fBm in short). The fBm with Hurst parameter H ∈ [0, 1) is the Gaussian
process (BH(t), t ∈ R) with covariance

EBH(t)BH(s) =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
,

It has a chaotic (or harmonizable) representation of BH (see [20] Prop. 7.2.8)

BH(t) =
1

CH

∫
R

(
eiλt − 1

)
|λ|−H−

1
2dW(λ)(20)
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where W is a complex Brownian motion and

C2
H =

2π

Γ(2H + 1) sin(πH)
.

This process has stationary increments and is self-similar of index H. When H = 1/2 we recover
the Brownian motion, and it is the only case where the increments are independent.

When ψ ∈ BV with compact support, the LLN can be formulated as :

MX εψ ⇒ λ×N (· σψ) (a.s.) ,(21)

where

σ2
ψ = −1

2

∫∫
|u− v|2Hdψ(u)dψ(v) ,

(see [1]).

Our result on large deviations is the following. In Fourier analysis we adopt the following notation:
when f, g ∈ L1(R)

f̂(θ) =

∫
eitθf(t)dt , ǧ(γ) =

1

2π

∫
e−iγxg(x)dx .

Proposition 4.1. Denote
G := {ψ ∈ BV ∩ L1}

GH = {ψ ∈ L1 : ∃ lim
λ→0
|ψ̂(λ)||λ|

1
2
−H} , (0 < H < 1) .

The process BH has the (LDPw,F , H) property if one of the following conditions are satisfied:

H ≤ 1/2 and F = G ,(22)

1/2 < H < 1 and F = G ∩ GH .(23)

Particular cases are examined in Section 4.3.

Remark 4.2. If we define

G0 = {ψ ∈ L1 :

∫
ψ(t)dt = 0 and

∫
|tψ(t)|dt <∞}

then it holds that

G0 ⊂ G1 ⊂ GH .(24)

Proof: We apply Lemma 2.1 with X = BH . But now, for lack of independence, we will work
with the spectral density. T Using (20), the process X 1

ψ may be written as

X 1
ψ(t) =

∫
BH(t− s)dψ(s) = C−1

H

∫∫ (
eiλ(t−s) − 1

)
|λ|−H−

1
2dW(λ)dψ(s) .(25)
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Now, when ψ ∈ G it holds that lim|t|→∞ |ψ(t)| = 0 and by integration by parts,∫
eiλsdψ(s) = −iλψ̂(λ)(26) ∫ (

eiλ(t−s)− 1
)
dψ(s) = iλeiλtψ̂(−λ)

so that

X 1
ψ(t) = iC−1

H

∫
eitλψ̂(−λ)

λ

|λ|H+ 1
2

dW(λ) .(27)

The spectral density of the stationary process X 1
ψ is then

`H(λ) = C−2
H

∣∣∣ψ̂(λ)
∣∣∣2 |λ|1−2H .(28)

From (26) it holds that |ψ̂(λ)| = 0(|λ|−1) and then, for all 0 < H < 1

lim
|λ|→∞

|`H(λ)| = 0 .(29)

If ψ ∈ L1, ψ̂ ∈ C0 (Riemann-Lebesgue) and `H is even and continuous on (0,∞).

For H ≤ 1/2, the continuity of `H at 0 is obvious.

For H > 1/2, this continuity is ensured by the assumption ψ ∈ GH .

To prove (24), note that G1 ⊂ GH is obvious and that, if ψ ∈ G0,

ψ̂(0) =

∫
ψ(x)dx = 0

|ψ̂(λ)| =

∣∣∣∣∫ (eiλx − 1)ψ(x)dx

∣∣∣∣ ≤ |λ|∫ |xψ(x)|dx ,

so that ψ ∈ G1.

4.2 Contraction

Since the mapping µ 7→
∫
|x|pdµ(x) is not continuous, we cannot obtain an LDP for the moments

of µX εψ by invoking the contraction principle (Th. 4.2.1 in [12])). Nevertheless, in the case of
the fBm, the Gaussian stationary character of the process allows to conclude . It is a direct
application of Corollary 2.1 in [6].

Proposition 4.3. If either H ≤ 1/2 and ψ ∈ G or H > 1/2 and ψ ∈ G ∩ GH , then the family(∫ 1

0
|X ε

ψ(t)|2dt
)

, where X = BH , satisfies the LDP, in the scale ε−1 with good rate function

Iψ(x) = sup
−∞<y<1/(4πM)

{xy − L(y)} ,
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where

L(y) = − 1

4π

∫
log(1− 4πy`H(s))ds

and
M = sup

λ
`H(λ) .

More generally, for 0 ≤ p ≤ 2, the family
(∫ 1

0
|X ε

ψ(t)|pdt
)

satisfies the LDP at scale ε with a

convex rate function.

4.3 Particular cases

4.3.1 Two basic mollifiers

1) As seen before, the function ψ1 = 1[−1,0] is the most popular. It allows to study the first order
increments X(t+ ε)−X(t). It belongs to G but since

|ψ̂1(λ)| = | sin(λ/2)|
|λ/2|

it does not belong to GH for H > 1/2.

For H = 1/2, we recover the Brownian motion and replace the notation X by W . The process
W1

1 is the Slepian process (19) with covariance

r(t) = (1− |t|)+ ,

and spectral density:

ř(λ) =
1

2π

(
sin λ

2
λ
2

)2

.

As it is said above since ř is C0, the occupation measure satisfies a LDP in the weak topology in
the scale ε−1. in the scale ε−1. This argument could have been used to prove the LDP, instead
of the argument in Section 2 (but for the weak topology and not theτ -topology). Notice that
although ř is differentiable, we could not apply Theorem 5.18 in Chiyonobu and Kusuoka [8],
since the condition (5.19) therein is violated in x ∈ 2πZ.

2) Another interesting function is

ψ2 =
1

2

(
1[−1,0] − 1[0,1]

)
which yields

Ẋε
ψ2

(t) =
X(t+ ε)− 2X(t) +X(t− ε)

2ε
.(30)

Since

ψ̂2(λ) =
sin2(λ/2)

λ/2
,
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we see that ψ2 ∈ G ∩ GH for every H ∈ (0, 1) and then (µX εψ2
) satisfies the LDP.

In (30) we are faced with second order increments of the process X. These increments are linked
with the behavior of the second derivative of Xε when it exists. Let us consider ψ smooth enough
so that Xε

ψ, defined in (2), has a second derivative. For instance, let ψ ∈ G and such that ψ′ ∈ G.
Then the function Xε

ψ is twice differentiable and

Ẍε
ψ(t) = ε−2

∫
X(t− εs)dψ′(s) = ε−1Ẋε

ψ′(t) .

Now, ψ′ ∈ GH since
|ψ̂′(λ)||λ|

1
2
−H = |ψ̂(λ)||λ|

3
2
−H → 0

as λ→ 0.

Since X ε
ψ′ = ε2−HẌε

ψ, we conclude that for every H ∈ (0, 1), the family (µε2−HẌε
ψ
) satisfies the

LDP in the scale ε−1 and good rate function Λ?
ψ′ . The choice

ψ(t) =
1

2
(1− |t|)+

allows to recover ψ′ = ψ2 and the second order increments.

4.3.2 Looking for an explicit rate function

It is not easy to find examples of explicit rate functions for the occupation measures of the
above stationary processes X 1

ψ, since in general the limiting cumulant generating function Λ is
not explicit. A particularly nice situation in the Gaussian case will occur if the process is also
Markovian, i.e. if X 1

ψ is the Ornstein-Uhlenbeck (OU) process. Indeed, for the OU, the rate
function for the LDP of the occupation measure is given by the Donsker-Varadhan theory ([21]
ex. 8.28) :

Λ∗(µ) =
1

2

∫
R
|g′(x)|2dN (x)

if dµ = g2dN . The goal is then to find a mollifier ψ such that X 1
ψ is distributed as OU.

To begin with, let us assume that the underlying process is Brownian, which implies that W1
ψ is

again Gaussian and stationary, with spectral density (cf. (28)):

ř(t) =
1

2π
|ψ̂(λ)|2 .

For OU, the covariance and spectral density are, respectively

r(t) = e−|t| , ř(λ) =
1

π(1 + λ2)
.

To solve the equation

X 1
ψ

(d)
= OU

10



turns out to solve

|ψ̂(λ)|2 =
2

1 + λ2
.(31)

We present two answers.

1) Let us choose

ψ̂(λ) =

√
2

1− iλ
, ψ(x) =

√
2e−x1[0,∞)(x) ,

and then, the formula (5) becomes

W1
ψ(t) =

√
2

∫ t

−∞
e−(t−s)dWs

which is the classical representation of the stationary OU as a stochastic integral ([20] p.138).

2) Let us choose ψ such that

ψ̂(λ) =

√
2√

1 + λ2

This is equivalent to say

ψ(x) =
1

2π

∫
e−ixλ

√
2√

1 + λ2
dλ

i.e.

ψ(x) =

√
2

π

∫ ∞
0

cos(xλ)√
1 + λ2

dλ =

√
2

π
K0(x),

where K0 is the MacDonald (or modified Bessel) function (see [10] p.369 or [13] formula 17 p.9).
This function can be expressed also as

K0(x) =
√
πe−xΨ(1/2, 1; 2x) ,

where Ψ is the confluent hypergeometric function (see [14] p. 265).

Let us now extend the study to the fBm. Looking for a kernel ψ leading to the OU process, (28)
leads to the equation ∣∣∣ψ̂(λ)

∣∣∣2 = C2
H

|λ|2H−1

π(1 + λ2)
,

hence, for instance if ψ is even,

ψ̂(λ) = CH
|λ|H− 1

2√
π(1 + λ2)

.
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For H < 1/2, we did not find a closed expression for the kernel

ψ(x) =
CH
π

∫ ∞
0

cos(λx)
|λ|H− 1

2√
π(1 + λ2)

dλ(32)

in the literature.

For H > 1/2, this function is not continuous in 0, so it cannot be the Fourier transform of an
integrable kernel. We have proved

Proposition 4.4. When H ≤ 1/2 and ψ is given by (32), the family (µHεψ) satisfies the LDP, in

the scale ε−1 with good rate function

Λ∗(µ) =
1

2

∫
R
|g′(x)|2dN (x)

if dµ = g2dN .

Remark 4.5. In this case, Λ∗ has a unique minimum at µ = N which allows to recover Wsche-
bor’s result on a.s. convergence.

5 A space-time LDP

We will state a complete LDP for some of our models, i.e. an LDP for (MX εψ), whenever (µX εψ)

satisfies the LDP. Following the notations of Dembo and Zajic in [11] we denote by AC0 the set
of maps ν : [0, 1]→M+(R) such that

• ν is absolutely continuous with respect to the variation norm,

• ν(0) = 0 and ν(t)− ν(s) ∈Mt−s(R) for all t > s ≥ 0,

• for almost everty t ∈ [0, 1], ν(t) possesses a weak derivative.

(This last point means that ν(t+ η)− ν(t)/η has a limit as η → 0 - denoted by ν̇(t)- in M+(R)
equipped with the topology of weak convergence).

Let F

M+([0, 1]× R) → D
(
[0, 1];M+(R)

)
M 7→ (t 7→ F (M)(t) = M([0, t], ·))(33)

or in other words F (M)(t) is the positive measure on R defined by its action on ϕ ∈ Cb:

〈F (M)(t), ϕ〉 = 〈M, 1[0,t] × ϕ〉 .

Here D([0, 1]; ·) is the set of càd-làg functions, equipped with the supremum norm topology. At
last, let E be the image of F .
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Theorem 5.1. When the process X is the α-stable Lévy process and ψ ∈ BV has a compact

support, the family
(
MX εψ

)
satisfies the LDP in M1([0, 1]× R) equipped with the weak topology,

in the scale ε−1 with the good rate function

M 7→
∫ 1

0

Λ∗ψ(γ̇(t))dt(34)

when γ := F (M) ∈ AC0 , and Λ∗(M) =∞ otherwise.

Proof: As in the above sections, it is actually a problem of large deviations in large time. For
the sake of simplicity, set

Y = X 1
ψ

and T = ε−1. Using Lemma 2.1, the problem reduces to the study of the family (MY (·T )). First,
we study the corresponding distribution functions.

Actually, we have

F (MY (·T ))(t) =

∫ t

0

δY (sT )ds = T−1

∫ tT

0

δY (s)ds =: HT (t) .(35)

In a first step we will prove that the family (HT ) satisfies the LDP, then it a second step we will
transfer this property to MY (·T ).

First step : We follow the method of Dembo-Zajic [11]. We begin with a reduction to their
“discrete time” method by introducing

ξk =

∫ k

k−1

δYsds, (k ≥ 1) and ST (t) =

btT c∑
1

ξk .

It holds that

T−1

∫ tT

0

δY (s)ds− T−1ST (t) = T−1

∫ tT

btT c
δY (s)ds(36)

and this difference has a total variation norm less than T−1, so that the families (T−1ST ) and
(HT ) are exponentially equivalent (Def. 4.2.10 in [12]).

The sequence ξk is 1-dependent, hence satisfies condition (S) in [11] p.22 which implies, by Th. 4
in the same paper that (T−1ST ) satisfies the LDP in D([0, 1];M+(R)) provided with the uniform
norm topology, with the convex good rate function

I(ν) =

∫ 1

0

Λ?
ψ(ν̇(t))dt(37)

when ν ∈ AC0 and ∞ otherwise.

We conclude, owing to Th. 4.2.13 in [12], that (HT ) satisfies the same LDP.

13



Second step : We have now to carry this LDP to (MY (·T )) (see (35)). For every T > 0, HT ∈ E ⊂
D([0, 1);M+(R). We saw that the effective domain of I is included in E . So, by Lemma 4.1.5
in Dembo-Zeitouni [12], (HT ) satisfies the same LDP in E equipped with the (uniform) induced
topology. Now, F is bijective fromM1([0, 1]×R) to E . Let us prove that F−1 is continuous from
E (equipped with the uniform topology) to M1([0, 1]× R) equipped with the weak topology.

For f : [0, 1]→ R, let

‖f‖BL = sup
x
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
|x− y|

(38)

dBL(µ, ν) = sup
f :|f‖BL≤1

∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣(39)

The spaceM+(R) is a Polish space when equipped with the topology induced by dBL, compatible
with the weak topology.

It is known that Mn →M ∈M1([0, 1]× R) weakly as soon as

Mn(1[0,t] ⊗ f)→M(1[0,t] ⊗ f)(40)

for every t ∈ [0, 1] and every f such that ‖f‖BL <∞. But, for such t, f we have

sup
t
|Mn(1[0,t] ⊗ f)−M(1[0,t] ⊗ f)| ≤ dBL(F (Mn), F (M))(41)

which implies that F−1 is continuous from E to M1([0, 1]× R).

By the contraction principle (Th. 4.2.1 in [12]) we deduce that MY (·T ) satisfies the LDP in
M1([0, 1]× R) with good rate function J(M) = I(F (M)), wherer I is given by (37).

6 “Level process” study

In the study of strong convergence problems such as the a.s. CLT (see [16] and [17]), an interesting
problem is the LDP of empirical measures at the level of processes. If we restrict us to the
Brownian case to simplify, the corresponding problem could be the behavior of∫ 1

0

δ{W (s+ε)−W (s)√
ε

, s≥t
}dt .

Here we do not see clearly the interest of such a study for the Wschebor’s theorem. Nevertheless,
it seems natural to consider the family (ξεt , t ≥ 0) of shifted processes

ξεt : s 7→ W (t+ εs)−W (t)√
ε

∈ C([0, 1]) ,(42)

and the following empirical measure

Lε :=

∫ 1

0

δξεt dt .(43)
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By the scaling invariance, for every ε > 0,

(ξεεt, t ≥ 0)
(d)
= (ξ1

t , t ≥ 0) ,(44)

and then

Lε =

∫ 1

0

δξεt dt
(d)
= L̃ε := ε

∫ ε−1

0

δξ1t dt .(45)

Since we have

ξ1
t = (W (t+ s)−W (t), s ∈ [0, 1]),(46)

the process (ξεεt, t ≥ 0) will be called the the meta-Slepian process in the sequel. For every t, the
distribution of ξ1

t is the Wiener measure W on C([0, 1]).

The meta-Slepian process is clearly stationary and 1-dependent. Since it is ergodic, the Birkhoff
theorem tells us that, almost surely when ε → 0, L̃ε converges weakly to W. From the equality
in distribution (45) we deduce that (Lε) converges in distribution to the same limit. But this
limit is deterministic, hence the convergence of (Lε) holds in probability. We just proved:

Theorem 6.1. When ε→ 0, the family of random probability measures (Lε) on C([0, 1]) converges
in probability weakly to the Wiener measure W on C([0, 1]).

The problem of almost sure convergence raises some difficulties. We have obtained on the one
hand a partial almost sure fidi convergence (which is no more that a multimiensional extension
of Wschebor theorem) and on the other hand an almost sure convergence when we plug C([0, 1])
into the Hilbert space L2([0, 1]), equipped with its norm.

To this last purpose, if µ is a measure on C([0, 1]), we will denote by µL its extension to L2([0, 1)],
i.e. that for every B Borel set of L2([0, 1]),

µL(B) = µ(B ∩ C([0, 1]) .

Theorem 6.2. 1. For every integer d and every t1, . . . , td ∈ [0, 1], almost surely when ε→ 0,
the family (Lεπ−1

t1,...,td
) of random probability measures on Rd converges weakly to Wπ−1

t1,...,td

on C([0, 1]), where πt1,...,td be the projection : f ∈ C([0, 1]) 7→ f(t1), . . . , f(td).

2. When ε→ 0, the family of random probability measures (LLε ) on L2([0, 1]) converges weakly
almost surely to the Wiener measure WL on L2([0, 1]).

We failed to prove a (full) almost sure fidi convergence, i.e. in 1. to state that “almost surely,
for every t1, . . . , td ...”. Moreover we do not know if an almost sure convergenge at the level of
processes is true.

For the proof, we need the following lemma, which is straightforward owing to the properties of
stationarity and 1-dependence.
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Lemma 6.3. If F is a bounded differentiable function with bounded derivative from C([0, 1])
(resp. L2([0, 1])) to R. Then

a.s. lim
ε→0

∫ 1

0

F (ξεt ) dt =

∫
C([0,1])

F (ξ)W(dξ) .(47)

Proof of Lemma 6.3:

It is along the lines of [1]. We first claim a quadratic convergence as follows. By Fubini and
stationarity

E
(∫ 1

0

F (ξεt )dt

)
=

∫ 1

0

EF (ξεt )dt =

∫
C([0,1])

F (ξ)W(dξ) ,

and by Fubini and 1-dependence,

Var

(∫ 1

0

F (ξεt )dt

)
=

∫ ∫
|t−s|<2ε

Cov (F (ξεt ), F (ξεs)) dtds ≤ 4ε||F ||∞ .(48)

The Borel-Cantelli lemma implies a.s. convergence of
∫ 1

0
F (ξεt )dt along any sequence (εn) such

that
∑

n εn <∞.

To go on, take εn+1 < ε < εn and notice that∣∣∣∣∫ 1

0

F (ξεt )− F (ξεnt )

∣∣∣∣ dt ≤ ||F ′||∞ sup
t,u
|ξεt (u)− ξεnt (u)| .(49)

Now we use the properties of Brownian paths. On the interval [0, 2] the Brownian motion satisfies
a.s. a Holder condition with exponent β < 1/2, so that we can define the a.s. finite random
variable

M := 2 sup
u,v∈[0,2]

|W (u)−W (v)|
|v − u|β

.(50)

So,

sup
s∈[0,1]

|ξεt (s)− ξεnt (s)| ≤ M

2

(εn − ε)β

ε1/2
+
M

2
(εn)β

(
ε−1/2 − (εn)−1/2

)
=
M

2

(εn)β

ε1/2

[(
1− ε

εn

)β
+

(
1−

√
ε

εn

)]

≤M
εβn − εβ

ε1/2
≤M

εβn − ε
β
n+1

ε
1/2
n+1

.(51)

The choice of εn = n−a with a > 1 and β ∈
(

a
2(a+1)

, 1
2

)
ensures that the right hand side of (51),

hence of (49) tends to 0 a.s., which ends the proof.
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Proof of Theorem 6.2

1. The (random) characteristic functional of the (random) probability measure Lε on [0, 1]
equipped with the Borel σ-field and the Lebesgue meausre is a function from the dual space
of C([0, 1]), i.e. M([0, 1]) to C defined by

Ĝε : ρ 7→
∫ 1

0

exp{i
∫
ξεt (s)ρ(ds)}dt .

Actually, Ĝε(ρ) =
∫
F (ξεt )dt with F (ξ) = exp{i

∫
ξ(u)ρ(du)}. This function fulfils the conditions

of Lemma 6.3.

We have then, for every ρ,

a.s. lim Ĝε(ρ) = Ĝ(ρ) :=

∫
C([0,1])

exp{i
∫ 1

0

ξ(s)ρ(ds)}W(dξ)(52)

= exp

(
−1

2

∫ 1

0

(ρ([u, 1])2du

)
.(53)

Let fix d and t1, . . . , td. For every a := (a1, . . . , ad) ∈ Rd, let us consider the measure ρa =
∑d

1 akδtk
and the following event

A(a) :=
{

lim
ε→0

Ĝε(ρa) = Ĝ (ρa)
}
.

The above analysis tells us that P(A(a)) = 1 for every a. By a classical argument using Fubini’s
theorem we deduce that almost surely, for almost every a ∈ Rd

lim
ε→0

∫ 1

0

exp

(
i

d∑
1

akξ
ε
t (tk)

)
dt = Ĝ

(
d∑
1

akδtk

)
.(54)

By a slight adaptation of the Lévy’s continuity theorem (which is detailed in Appendix), we
conclude that (Lεπ−1

t1,...,td
) converges weakly to the good limit.

2. We will use a method coming from [15] p. 461 . It consists in checking Billingsley’s criterion
on intersection of balls ([5] p.18) and approximating indicators by smooth functions. Let us give
details for only one ball to shorten the proof.

For δ ∈ (0, 1), define

φδ(t) = 1(−∞,1](t) + 1[1,(1+δ)2](t)
1

C

∫ ((1+δ)2−t)
(2δ+δ2)

0

e−
1

s(1−s)ds ,(55)

where

C =

∫ 1

0

e−
1

s(1−s)ds .

1It is used there to prove that in Hilbert spaces, convergence in the Zolotarev metric implies weak convergence.
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The function φδ has a bounded support and it is continuous and ||φδ||∞ = 1. Now we consider
ψδ : L2([0, 1]→ R defined by

ψδ(ξ) = φδ(||ξ||2).

This function is C∞ and has all its derivatives bounded. For every ξc ∈ L2([0, 1]), r > 0, δ ∈ (0, r)
we have the nesting

1B(ξc;r−δ)(ξ) ≤ ψ δ
r−δ

(
ξ − ξc
r − δ

)
≤ 1B(ξc;r)(ξ) ≤ ψ δ

r

(
ξ − ξc
r

)
≤ 1B(ξc;r+δ)(ξ) .

(56)

Take a sequence δn → 0.

Let us remind that the measure LLε is random. We did not write explicitly the item W for
simplicity, although it is present in (42).

For every test function F as in Lemma 6.3, we have a null set NF such that for W /∈ NF∫
L2([0,1])

F (ξ)LLε (dξ)→
∫
C([0,1])

F (ξ)W(dξ) .(57)

Let (gk)k≥1 be a countable dense set in L2([0, 1]), and for q ∈ Q,

F−n,k,q(ξ) = ψδn/(q−δn)

(
ξ − gk
q − δn

)
, F+

n,k,q(ξ) = ψδn/q

(
ξ − gk
q

)
and

N =
⋃
n,k,q

(
NF−n,k,q

∪NF+
n,k,q

)
.

Take W /∈ N . Assume that the ball B(ξc; r) is given. Take γ > 0, then by density one can find
k ≥ 1 and q ∈ Q+ such that

||ξc − gk|| ≤ γ , |r − q| ≤ γ .(58)

By (56) we have

LLε (B(ξc; r)) ≤
∫
ψδn/r

(
ξ − ξc
r

)
LLε (dξ) .(59)

Besides, by (58) and by differentiability, there exists Cn > 0 such that

ψδn/r

(
ξ − ξc
r

)
≤ F+

n,k,q(ξ) + Cnγ .(60)

Now, by (57),

lim
ε

∫
L2([0,1])

F+
n,k,q(ξ)L

L
ε (dξ) =

∫
C([0,1])

F+
n,k,q(ξ)W(dξ)(61)

18



By (56) again ∫
C([0,1])

F+
n,k,q(ξ)W(dξ) ≤W(B(gk, q + δn)) .(62)

So far, we have obtained

lim sup
ε
LLε (B(ξc; r)) ≤W(B(gk, q + δn)) + Cnγ .(63)

It remains, in the right hand side, to let γ → 0 (hence gk → ξc and q → r) , and then n→∞ to
get

lim sup
ε
LLε (B(ξc; r)) ≤W(B(ξc, r))(64)

With the same line of reasoning, using the other part of (56) we can obtain

lim inf
ε
LLε (B(ξc; r)) ≥W(B(ξc, r)) ,(65)

which ends the proof for one ball.

A similar proof can be made for functions approximating intersection of balls as in Theorem 2.2
of [15] and as a consequence the a.s. weak convergence follows.

Eventually, we have the LDP as in Proposition 3.1. Recall that (ξ1
t ) is the meta-Slepian process

defined in (46). We omit the proof since it is the same as in the scalar case.

Proposition 6.4. The family (Lε) satisfies the LDP in M1(C([0, 1])) equipped with the weak
topology, in the scale ε−1 with good rate function

Λ∗(L) = sup
F∈Cb(C([0,1]))

∫
C([0,1])

F (ξ)L(dξ)−Λ(F ),(66)

(the Legendre dual of Λ) where for every F ∈ Cb(C([0, 1])),

Λ(F ) = lim
T→∞

T−1 logE
∫ T

0

F (ξ1
t )dt .(67)

7 Discrete versions

For a possible discrete version of Wschebor’s theorem and associated LDP, we can consider a
continuous process observed at times (k/n) where k ≤ n with lag r. On this basis, there are
two points of view. When r is fixed, there are already results on a.s. convergence of empirical
measures of increments of fBm ([2]) and we explain which LDP holds. When r depends on n with
rn → ∞ and rn/n → 0, we are actually changing t in k/n and ε in rn/n in the above sections.
We state convergence (Prop. 7.1) and LDP (Prop. 7.2) under specific conditions.

All the LDPs mentioned take place in M1(R) equipped with the weak convergence.
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7.1 Fixed lag

In [2], beyond the Wschbebor’s theorem, there are results of a.s. convergence of empirical statistics
on the increments of fBm. The authors defined p. 39 the second order increments as

∆nBH(i) =
nH

σ2H

[
BH

(
i+ 2

n

)
− 2BH

(
i

n

)
+BH

(
i

n

)]
.

and claimed that as n→∞

1

n− 1

n−2∑
0

δ∆nBH(i) ⇒ N (a.s.) ,(68)

(Th. 3.1 p.44 in [2]). Moreover, in a space-time extension, they proved that

1

n− 1

n−2∑
0

δ i
n
,∆nBH(i) ⇒ λ⊗N (a.s.) ,(69)

(Th. 4.1 in [3]).

Let us restrict for the moment to the case H = 1/2. The empirical distribution of (68) has the
same distribution as

1

n− 1

n−2∑
0

δ2−1/2(Xi+2−Xi+1)

where the Xi are independent and N distributed. We can deduce the LDP (in the scale n) from
the LDP for the 2-empirical measure by contraction. If i is the mapping

R2 → R
(x1, x2) 7→ (x2 − x1)/

√
2(70)

the rate function is

I(ν) = inf{I2(µ);µ ◦ i−1 = ν} ,(71)

where I2 is the rate function of the 2-empirical distribution (see [12] Th. 6.5.12).

In the same vein, we could study the LDP for the empirical measure

1

n− r

n−r−1∑
0

δW (k+r)−W (k)√
r

which looks like Wr
1 . When this lag r is fixed, the scale is n and the rate function is obtained

also by contraction (r = 1 is just Sanov’s theorem).

This point of view could be developed also for the fBm using stationarity instead of independence.
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7.2 Unbounded lag

Let (Xi) be a sequence of i.i.d. random variables and (Si) the process of partial sums. Let (rn)
be a sequence of positive integers such that limn rn =∞, and assume that

εn :=
rn
n
↘ 0 .(72)

Set

V n
k :=

Sk+rn − Sk√
rn

, mn =
1

n

n∑
1

δV nk .(73)

The next propositions state some extensions of Wschebor’s theorem and give the associated LDPs.
The a.s. convergence is obtained only in the Gaussian case under an additional condition. It
seems difficult to find a general method.

Proposition 7.1. 1. If EX1 = 0,EX2
1 = 1, then

mn ⇒ N (in probability) .(74)

2. If X1 ∼ N and if (εn) is such that there exists δ ∈ (0, 1/2) and a subsequence (nk) satisfying∑
k

εnk <∞ and εnk = εnk+1
+ o(ε1+δ

nk+1
) ,(75)

it holds that

mn ⇒ N (a.s.) .(76)

Proposition 7.2. 1. Assume that X1 ∼ N . If limn εnn
1/2 =∞, then (mn) satisfies the LDP

in the scale ε−1
n with rate function given in (17-18).

2. Assume that X1 has all its moments finite and satisfies EX1 = 0, EX2
1 = 1 and that

0 < lim inf
n

εn log n ≤ lim sup
n

εn log n <∞ .(77)

Then (mn) satisfies the LDP in the scale ε−1
n with rate function given in (17-18).

Remark 7.3. Two examples of (rn) satisfying the aassumptions of Prop. 7.1 2. are of interest,
particularly in relation to the LDP of Prop. 7.2. The first one is rn = bnγc with γ ∈ (0, 1) (hence
εn ∼ nγ−1), for which we can choose nk = bka(1−γ)c with a > 1. The second one is rn = bn/ log nc
(hence εn ∼ (log n)−1), for which we can choose nk = bek2c.

Proof of Prop. 7.1: We use the method of the above Lemma 6.3 inspired by [1]. For a bounded
continuous test function f

E
∫
fdmn = Ef

(
Srn√
rn

)
→
∫
fdN
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thanks to the CLT. Moreover

Var

(∫
fdmn

)
=

1

n2

∑
|j−k|≤rn

Cov

(
F

(
Sj+rn − Sj√

rn

)
, F

(
Sk+rn − Sk√

rn

))
≤ 2rn

n
||f ||∞ .

This gives the convergence in probability.

In the Gaussian case, it is possible to repeat the end of the proof of Lemma 6.3. Under our
assumption, we see that for any β ∈ (0, 1/2)

εβnk − ε
β
nk+1

ε
1/2
nk+1

= o
(
ε
δ+β− 1

2
nk+1

)
,

which implies that it is enough to choose β ∈
(

1
2
− δ, 1

2

)
.

Proof of Prop. 7.2: 1) If X1 ∼ N , then

(V n
k , k = 1, . . . , n)

(d)
=

(
(εn)−1/2

(
W

(
k

n
+ εn

)
−W

(
k

n

))
, k = 1, . . . , n

)
and then it is natural to consider mn as a Riemann sum. We have now to compare mn with

µWεn
1

=

∫ 1

0

δε−1/2(W (t+εn)−W (t))dt .

It is known that dBL(µ, ν) given by (39) is a convex function of (µ, ν) so that :

dBL(mn, µWεn
1

) ≤
∫ 1

0

dBL(δε−1/2(W (t+εn)−W (t)), δV nbntc)dt

≤ ε−1/2

∫ 1

0

∣∣∣∣W (t+ εn)−W (t)−W
(
bntc
n

+ εn

)
+W

(
bntc
n

)∣∣∣∣ dt
≤ 2(εn)−1/2 sup|t−s|≤1/n |W (t)−W (s)|

hence

P(dBL(mn, µWεn
1

) > δ) ≤ P

(
sup

|t−s|≤1/n

|W (t)−W (s)| > δ(εn)1/2

2

)
≤ 2 exp−nδ

2εn
4

.

If limn εnn
1/2 =∞ we conclude that

lim
n→∞

εn logP(dBL(mn, µWεn
1

) > δ) = −∞ ,

which means that (mn) and (µWεn
1

) are exponentially equivalent in the scale ε−1
n (Def. 4.2.10 in

[12]).

Now, from our Prop. 3.1 or 4.1, (µWεn
1

) satisfies the LDP in the scale ε−1
n . Consequently, from Th.

4.2.13 of [12], the family (mn) satisfies the LDP at the same scale with the same rate function.
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2) Let us go to the case when X1 is not normal. We use the Skorokhod representation, as in [16]
or in [17] (see also [9] Th. 2.1.1 p.88).

When (Xi) is a sequence of independent (real) random variables such that EX1 = 0 and EX2
1 =

1, there exists a probability space supporting a Brownian motion (B(t); 0 ≤ t < ∞) and an
increasing sequence (τi) of stopping times such that

• (τi+1 − τi) are i.i.d., with Eτ1 = 1

• (B(τi+1)−B(τi)) are independent and distibuted as X1 ,

Moreover, if EX2q
1 <∞, then Eτ q1 <∞.

We have

Sj+r − Sj
(d)
= B(τj+r)−B(τj)

so that

mn
(d)
= m̃n :=

1

n

n∑
1

δṼ nk
with Ṽ n

k =
B(τk+rn)−B(τk)√

rn
.(78)

We will compare these quantities with

πn =
1

n

n∑
1

δUnk with Un
k :=

B(k + rn)−B(k)
√
rn

,(79)

which fall into the regime of the above part of the proof. We will prove that the sequences (m̃n)
and (πn) are exponentially equivalent.

Again by convexity of dBL, we have

dBL(m̃n, πn) ≤
n∑
1

1

n
dBL

(
δṼ nk

, δUnk

)
≤ 1
√
rn

(
sup
k≤n
|B(τk+rn)−B(k + rn)|+ sup

k≤n
|B(τk)−B(k)|

)
(80)

Our proof will be complete if we show that for all δ > 0

lim
n

rn
n

logP
(

max
k≤n+rn

|B(τk)−B(k)| > δ
√
rn

)
= −∞ .(81)

We will apply three times the following known result.

If (ξi) are i.i.d. centered with E(ξ1)2p) <∞ for some p ≥ 1, then there exists a universal constant
C > 0 such that for all integers n ≥ 1

E(ξ1 + · · ·+ ξn)2p ≤ C(2p)!E(ξ2p
1 )np ,(82)

(cf. [17] Lemma 8 or [16] Lemma 2.9).
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Actually, for α ∈ (0, 1) and k ≤ rαn , with Markov inequality and (82)

P(|B(τk)| > δ
√
rn) ≤ C(2p)!δ−2pr−pn E((X ′1)2p)kp ≤ C(2p)!δ−2pE((X ′1)2p)r(α−1)p

n ,(83)

and for the same reasons

P(B(k)| > δ
√
rn) ≤ C(2p)!E(N2p)δ2pr(α−1)p

n .(84)

Now, for k ≥ rαn , and β > 1/2

P(|τk − k| ≥ kβ) ≤ C(2p)!E((τ1 − 1)2p)kp(1−2β) ≤ C(2p)!E((τ1 − 1)2p)rαp(1−2β)
n .

Besides,

P
(
|B(τk)−B(k)| ≥ 2δ

√
rn , |τk − k| ≤ kβ

)
≤ P

(
sup

|t−k|≤kβ
|B(t)−B(k)| > 2δ

√
rn

)

≤ 2P

(
sup

t∈(0,kβ)

|B(t)−B(k)| > 2δ
√
rn

)
≤ 4e−2δ2rnk−β ,

which, for k ≤ n+ rn < 2n, yields

P
(
|Bτk −Bk| ≥ 2δ

√
rn, |τk − k| ≤ kβ

)
≤ 4e−21−βδ2rnn−β .(85)

Gathering (83-84-85), we obtain, by the union bound,

P
(

max
k≤n+rn

|B(τk)−B(k)| > 2δ
√
rn

)
≤ Cp

(
δ2pr

1+(α−1)p
n + nr

α(1−2β)p
n

)
+8ne−21−βδ2rnn−β(86)

where the constant Cp > 0 depends on p and on the distribution of X ′1.

Choosing β > 1/2 and rn such that

lim inf
n

rn
n

log rn > 0 , lim sup
n

rn
n

log n <∞ , lim inf
n

r2
n

n1+β
> 0 ,(87)

we will ensure that for every p > 0

lim
rn
n

logP
(

max
k≤n+rn

|B(τk)−B(k)| > δ
√
rn

)
≤ −Cp(88)

where C is a constant independent of p, which will prove (81).

Now, the set of sufficient conditions (87) is equivalent to the condition:

0 < lim inf
n

rn
n

log n ≤ lim sup
n

rn
n

log n <∞ ,

which is exactly (77).
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8 Appendix

The extension of Lévy’s continuity theorem, already invoked in [1] is the following. It is probably
well known, but since we do not know any reference, we give its proof for the convenience of the
reader.

Lemma 8.1. Let νn, ν be probability measures on Rd with characateristic functionsϕn, ϕ. A
sufficient condition for νn ⇒ ν is that ϕn(a)→ ϕ(a) for almost every a ∈ Rd.

We follow the classical proof as given for instance in Billingsley [5] Theorem 26.3. Since the
limiting point is determined, we have just to prove the tightness. Considering the compact set
(−M,M ]d ⊂ Rd, we have by the union bound

νn(Kc) ≤ νkn(|x| > M)

where νkn, k = 1, . . . , d are the marginals of νn. So the problem can be reduced to d = 1. The
basic inequality

νkn(|x] > M) ≤ M

2

∫ 2/M

−2/M

(1− νkn(a))da .

Since ϕ is continuous at 0 with ϕ(0) = 1, there is for positive η some M such that

M

2

∫ 2/M

−2/M

(1− νk(a))da < η

Since ϕn converges to ϕ almost everywhere, ans since the integrand is bounded by 2, the domi-
nated convergence theorem gives

lim
n

∫ 2/M

−2/M

(1− νkn(a))da =

∫ 2/M

−2/M

(1− νk(a))da ,

so that there exists n0 such that

M

2

∫ 2/M

−2/M

(1− νkn(a))da <
η

2

for n ≥ n0. Ending is routine.
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