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Abstract

In this work we develop a nonlinear decomposition, associated with nonlinear

eigenfunctions of the p-Laplacian for p ∈ (1, 2). With this decomposition we

can process signals of different degrees of smoothness.

We first analyze solutions of scale spaces, generated by γ-homogeneous op-

erators, γ ∈ R. An analytic solution is formulated when the scale space is

initialized with a nonlinear eigenfunction of the respective operator. We show

that the flow is extinct in finite time for γ ∈ [0, 1).

A main innovation in this study is concerned with operators of fractional

homogeneity, which require the mathematical framework of fractional calculus.

The proposed transform rigorously defines the notions of decomposition, re-

construction, filtering and spectrum. The theory is applied to the p-Laplacian

operator, where the tools developed in this framework are demonstrated.
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1. Introduction5

Data representation is commonly performed by transforming a signal into a

different domain, more convenient for analysis and processing. By the Fourier

transform, a signal can be represented as a sum of eigenfunctions of the Laplace

operator [1]. Recently, a new data representation with respect to the 1-Laplacian

operator was suggested in [2, 3], referred to as the TV-transform. These trans-

forms are based on operators which are particular cases of the p-Laplace oper-

ator,

∆p (u) = div
(
|∇u|p−2∇u

)
, p ∈ [1,∞), (1)

where u resides in some Hilbert space and ∇ is the gradient operator. The p-

Laplace operator is the negative variational derivative of the p-Dirichlet energy,

Jp(u) =
1

p
〈|∇u|p, 1〉. (2)

The Fourier and TV-transforms stem from the gradient descent of the p-Dirichlet

energy, ut(t) = ∆pu(t), with some initial condition. This flow becomes the heat

equation for p = 2 or the TV-flow for p = 1 [4]. The data representation,

achieved by means of these transforms, are related to the (non)-linear eigen-

functions, defined by

∆p(φ) = λ · φ, λ ∈ R, (3)

with the respective value of p. Eq. (3) should be complemented with suitable

boundary conditions, yielding different eigenfunctions. In this paper, we assume

Neumann boundary conditions. The existence of eigenfunctions in the form of

(3) was shown in [5] for p ∈ [1,∞). Analytic solutions of (3) are known only

for p = 1, 2, as far as we know. However, for 1 < p < 2 the eigenfunctions can10

be numerically computed, for instance using [6]. Eigenfunctions for different

value of p with Neumann boundary conditions are shown in Fig. 1. Note, the

eigenfunctions change in a continuous manner from a cosine function (p = 2) to

a step function (p=1). There are no general analytic solutions for the nonlinear

p-Laplacian flow. We remark that the weak solution of ut(t) = ∆p(u(t)), when15
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Figure 1: Examples of eigenfunctions with increasing homogeneity, p. The edges are empha-

sized when p→ 1.

it is initialized with a Dirac measure, is known as the Barenblatt solution [7] as

explained in [8]. For example, for p = 2, x ∈ RN we obtain a Gaussian kernel

with variance proportional to t.

The p-Laplacian scale space, for p ∈ [1, 2], has increasingly attracted atten-

tion in recent years [9, 10, 11, 12, 13, 14, 15, 16, 17]. In the studies [18, 19, 20]20

by Kuijper, this flow was analyzed in terms of gauge coordinates. Blomgren et

al. [21] suggested to design a flow with adaptive p, as p directly controls edge

preservation.

Other than image denoising and analysis, the p-Laplacian operator plays a

crucial role in semi-supervised learning. A generalizing function in this domain25

is essential when there is significantly fewer labeled data compered to unlabeled

[22, 23]. See recent advances on this topic in [24, 25].

Thus, signal representation based on p-Laplacian eigenfunctions for 1 <

p < 2 is called for. The suggested nonlinear decomposition, referred to as the

p-transform, is a generalization of the transforms in [2, 3, 26]. With the p-30

transform we can interpolate between different degrees of smoothness and unify

the transform formulation in one expression for p ∈ (1, 2).

The main contributions of this work are:

1. Analytic solutions for evolutions based on γ-homogeneous operators are

formulated for a certain class of initial conditions (nonlinear eigenfunc-35

tions).
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2. A signal decomposition related to the eigenfunctions of a γ-homogeneous

operator, where γ ∈ (0, 1), is formulated.

3. This facilitates signal decompositions with different degrees of smoothness.

4. The proposed framework rigorously defines novel nonlinear decomposition,40

reconstruction, spectrum and filtering.

The plan of this paper is as follows. We begin by examining general scale

space flows. We put a special emphasize on flows, generated by homogeneous

operators (e.g. p-Laplace operator). We formulate necessary and sufficient

conditions for obtaining a solution with separated variables. This allows the45

formulation of an analytic solution of these flows, initialized with an eigenfunc-

tion (Sec. 3). Based on the analytic solution and the finite extinction time of

this solution, we propose a transform that represents an eigenfunction as a Dirac

delta in the transform domain (Sec. 4). A rigorous signal analysis framework is

formulated, including spectrum, filtering, and reconstruction. We demonstrate50

this framework, using the p-Laplacian operator for different values of p (Sec. 5).

Conclusions are discussed in Sec. 6. The detailed proofs are provided in Ap-

pendices (in order to improve the reading flow). We precede with preliminary

definitions and identities.

2. Preliminaries55

We recall some essential definitions that are used in the paper. Let H be an

infinite dimensional Hilbert space, which is equipped with an Euclidean inner

product, 〈·, ·〉, and norm ‖·‖ =
√
〈·, ·〉.

Definition 1 (Monotone operator). Let P be an operator on X in some Hilbert

space H. Then, P is a monotone operator if the following holds

〈P (u)− P (v), u− v〉 ≥ 0, ∀u, v ∈ X . (4)

Definition 2 (Maximally monotone operator). A monotone operator with set-

ting domain X is maximally monotone if there is no other monotone operator60

with a setting domain which properly contains X .

4



Definition 3 (Kernel). The kernel of the operator P is a set, K ⊂ X , defined

by

K = {e ∈ X : P (e) = 0} . (5)

Definition 4 (Orthogonal complement of the kernel). The orthogonal comple-

ment of the kernel, K, of the operator P , is defined by

K⊥ = {w ∈ X : 〈w, e〉 = 0, ∀e ∈ K} . (6)

Definition 5 (Kernel orthogonality). We say P is kernel orthogonal if Img{P} ⊆

K⊥, i.e.

〈P (u), e〉 = 0, ∀e ∈ K, ∀u ∈ X . (7)

Definition 6 (Nonlinear flow). We define a nonlinear flow by

ut(t) = P (u(t)), u(0) = f ∈ X , (Flow)

where −P (·) is a maximally monotone operator, P (0) = 0, and f is the initial

condition. The solution of (Flow) exists according to [27]. We assume the

solution is unique and differentiable, with respect to t ∈ (0, τ), τ ∈ R>0.

Definition 7 (Mass preserving flow). The nonlinear scale space (Flow) is mass

preserving if

〈u(t), e〉 = const, ∀e ∈ K,∀t ∈ R.

Mass conservation can be achieved if Img{P} ⊥ Ker{P}, i.e. if P meets65

Definition 5.

Definition 8 (Coercive operator). Let P be a γ-homogeneous operator. We

say P is a coercive operator if there is a positive constant C that

‖u‖γ+1 ≤ C〈−P (u), u〉, ∀u ∈ K⊥. (8)

Definition 9 (Homogeneity). We say that P is a γ-homogeneous operator (not

necessarily integer) if the following relation holds

P (cu) = c|c|γ−1 · P (u), ∀c ∈ R. (9)
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In the context of this paper, we formulate the gradient descent of (2) as

follows.

Definition 10 (p-Flow). The p-flow is the gradient flow with respect to the

p-Dirichlet energy, (2),

ut(t) =∆pu(t), u(0) = f ∈ K⊥, (pFlow)

with homogeneous Neumann boundary conditions, where ∆p is the p-Laplacian

operator, Eq. (1).70

In this paper we focus on nonlinear flows where P is a homogeneous operator.

Note, that the p-Laplacian is a p − 1 homogeneous operator. The p-Laplacian

operator is maximally monotone since it is a subgradient of a convex functional.

We will often omit the spatial index, x, or the temporal one, t, when the context

is clear.75

Definition 11 (Finite extinction time). Let u(t) be a solution of (Flow). If

there exists T ∈ R>0 such that

ut(t) = 0, ∀t ≥ T (10)

then we say that (Flow) has a finite extinction time T , where T is the minimal

value of t for which (10) holds.

Note, that if the flow is mass preserving and the initial condition f belongs

to K⊥ then (10) implies u(t) = 0 for all t > T .

Definition 12 (Shape preserving flow). We term a solution, u(t), of (Flow)

as a shape preserving flow if it has separated variables, i.e.

u(t) = a(t) · f. (SPF)

The spatial shape of u(t), f , is preserved over time whereas only the contrast80

changes. We term the contrast, a(t), as the decay profile.
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Definition 13 (Nonlinear eigenfunction). v ∈ X is a nonlinear eigenfunction

of the (nonlinear) operator P if there exists λ ∈ R such that

P (v) = λ · v. (EF)

Since −P is assumed to be a maximally monotone operator the eigenvalue is

non-positive. This can be easily verified by λ‖v‖2 = 〈P (v), v〉 = 〈P (v)−P (0), v−

0〉 ≤ 0 for any eigenfunction v.

We will often refer to a nonlinear eigenfunction simply as an eigenfunction.85

Fractional calculus background

There are several definitions of fractional derivatives and integrals [28]. We

write below the most established ones, which are used in this paper.

Definition 14 (Fractional integrals in the Riemman-Liouville sense [29]). Let

y be a real function y : [a, b]→ R in L1[a, b]. The left sided and the right sided

fractional integrals of order α ∈ R>0 are respectively defined as

Iαa+ {y} (t) =
1

Γ(α)

∫ t

a

(t− τ)α−1y(τ)dτ (11a)

Iαb− {y} (t) =
1

Γ(α)

∫ b

t

(τ − t)α−1y(τ)dτ, (11b)

where Γ(·) is the extension of the factorial function to the real axis, for a positive

integer n we have Γ(n) = (n− 1)!.90

Explanations on the origins of the left and right handed definitions are given

in [30] page 36. The left sided definition is valid for t > a and the right sided

for t < b. In principle, these are direct extensions of Cauchy’s formula. In this

work we mostly use the right sided definition (11b).

Definition 15 (Fractional derivatives in the Riemman-Liouville sense [29]).

Let y be a real function y : [a, b] → R in L1[a, b]. The right handed fractional

derivative of order α ∈ R≥0 of y is

Dα
b− {y} (t) = (−1)dαe

ddαe

dtdαe

{
I
dαe−α
b− {y(t)}

}
, (12)

where dαe is the least integer greater than α, and Ib− {y(t)} is defined in (11b).95
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Definition 16 (Space Iαb− (Lp) [29]). The space Iαb− (Lp) is defined, for any

α ∈ R>0 and p ≥ 1, by

Iαb− (Lp) := {y(t) : y(t) = Iαb− {x(t)} , x(t) ∈ Lp(a, b)} .

The theoretical basis of the FTFC [29] can be found in [31] Lemmas 2.4-2.7

and in [32] Theorem 2.4.

Definition 17 (Fundamental Theorem of Fractional Calculus). If y(t) ∈ Iαb−(L1)

then

Iαb− {D
α
b− {y}} (t) = y(t). (13)

The aforementioned definitions hold for α ∈ C with a positive real part.

However, in our work α is limited to the real numbers.

Assumption 1. In this paper we analyze the scale space, Eq. (Flow), where100

P is a γ-homogeneous operator and admits the Definitions 7 and 8.

If P is a subgradient of a convex homogeneous functional part of the Assump-

tion 1 can be proven [33]. We note that subgradients admit mass preservation.

Coercivity of the operator implies coercivity of the functional. For functionals

which are norms, coercivity is given, in finite dimensions, due to norm equiva-105

lence.

3. Towards the p-transform - shape preserving flows

The TV-transform [2, 3] is motivated by the analytic solution of (pFlow),

for p = 1, initialized with a nonlinear eigenfunction (EF). The analytic solution

is

u(x, t) = (1 + λ · t)+ · f(x), (14)

where q+ = max{0, q} [34]. We refer to three attributes of this solution as the

theoretical basis of the TV-transform: the solution is in the form of (SPF), its

decay profile is linear, and it extincts in finite time.110

These attributes are studied here for a homogeneous operator. In general,

the necessary condition of the solution to be in the form of (SPF) is that the

8



initial condition f is an eigenfunction. The following theorem asserts that if P

is a homogeneous operator this condition is also sufficient.

Shape preserving flows for homogeneous operators115

Theorem 1. Let the solution of (Flow) exist and P be a γ-homogeneous op-

erator. The solution is shape preserving iff the initial condition u(t = 0) = f is

an eigenfunction with eigenvalue λ, i.e. admits (EF). In that case, the decay

profile is

a(t) =
[
((1− γ)λt+ 1)

+
] 1

1−γ
. (15)

The corresponding proof can be found in Appendix A. Applying this theorem

to the p-Laplacian operator, we can conclude the following.

Corollary 1. If (pFlow) is initiated with an eigenfunction, f , then

u(t) = a(t) · f =
[
((2− p)λt+ 1)

+
] 1

2−p · f. (16)

It is simply shown by setting γ = p − 1 in Theorem 1. In addition, for

1 ≤ p < 2 and λ < 0 the p-flow has finite extinction time T

T =
1

(p− 2)λ
. (17)

For p > 2 the p-flow does not vanish. For p→ 2 the solution (16) becomes

u(t) = eλtf.

This can be shown by using the limit
(
1 + 1

n

)n −→
n→∞

e. This result is expected

from the heat equation. Eq. (16) coincides with (14) for p = 1.

Extinction time for arbitrary initial conditions.120

Proposition 1 (Finite extinction for a coercive γ-homogeneous operator). Let

P a γ-homogeneous and coercive operator in the sense of (8). Let u(t) be the

solution of mass preserving flow (Flow) where f ∈ K⊥. Then there exists C > 0

such that u(t) = 0 ∀t ≥ T = ‖f‖1−γ
(1−γ)C > 0.

The corresponding proof can be found in [33] (Theorem 2.13).125
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4. The p-Framework

We now formulate a framework, which includes decomposition (transform),

reconstruction (inverse-transform), spectrum, and filtering. In this section, we

limit ourselves to a finite dimensional Hilbert space, i.e. f ∈ X ⊂ H where H

is a finite dimensional Hilbert space. Moreover, we limit ourselves to the flow130

and the operator P that admit the conditions of Proposition 1. Note that the

scale (time) parameter is continuous. We first define the fundamentals of this

transform, then we discuss its attributes.

4.1. Definitions

Let us denote

β =
1

1− γ
. (18)

Definition 18 (p-Transform). The p-transform is defined by,

φ(x, t) =
tβ

Γ(β + 1)
Dβ+1
b− {u(x, t)}, (19)

where u(t) is the solution of (Flow), generated by γ-homogeneous operator,135

where γ ∈ (0, 1), β is defined in (18) and Dβ+1
b− is defined in (12) and is with

respect to t. In addition, b is greater than the extinction time of u(t).

Definition 19 (Inverse p-transform). The inverse p-transform is defined by

f̂(x) =

∫ ∞
0

φ(x, t)dt. (20)

Definition 20 (Filtering). Let h(t) be a real function (a filter). The filtering

of f by the filter h(t) is

fh(x) =

∫ ∞
0

φ(x, t) · h(t)dt. (21)

The filtering in the transform domain, t, is a simple amplification (or atten-

uation) of φ(x, t) at every scale t.

Definition 21 (p-Spectrum). The spectrum of f at any scale t is defined by,

S(t) = 〈f, φ(t)〉. (22)
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4.2. Attributes140

4.2.1. The “frequency” representation of an eigenfunction

Theorem 2 (The p-transform of an eigenfunction). The p-transform, (19), of

an eigenfunction f with eigenvalue λ is:

φ(x, t) = f(x) · tβ [(γ − 1)λ]
β+1 · δ(1− (γ − 1)λ · t), (23)

where δ(·) is the Dirac delta function.

The proof can be found in Appendix B.

4.2.2. Reconstruction

Proposition 2 (Reconstruction). Let u(t) be the solution of (Flow) and belong145

to Iβ+1
b−

(
L1
)
. Then f = u(0) can be reconstructed by the inverse transform, Def.

19, f = f̂ .

Proof. Let us examine expression (20). From the finite extinction, there exists

T > 0 which admits (10). Moreover, the solution is zero from that time as

f ∈ K⊥. Then, φ(t) has a finite support in time. Reminding b > T , we can

rewrite (20) as

f̂ =

∫ ∞
0

φ(τ)dτ =

∫ b−

0

τβ

Γ(β + 1)
Dβ+1
b− {u}(τ)dτ

=︸︷︷︸
Eq. (11b)

Iβ+1
b−

{
Dβ+1
b− {u}

}
(t)

∣∣∣∣
t=0

=︸︷︷︸
Eq. (13)

u(0) = f.

Remark 1. The assumption on the solution, u, might be relaxed by assuming

that u(t) ∈ L1(0, b) and using the relevant formulation of the Fundamental150

Theorem of Fractional Calculus (Theorem 2 in [29]).

4.2.3. Filtering

As shown in (17), the extinction time is inverse proportional to the absolute

eigenvalue for all γ ∈ [0, 1). It is well known that in linear decomposition (such

as the Fourier transform) every eigenfunction is represented as a delta function
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in the transform domain. We follow the definitions of ideal filters in TV-spectral

decomposition (see [3]) and formulate an ideal low pass filter with a cutoff at t1

by

hLPF,t1(t) =

0 t < t1

1 t ≥ t1
. (24)

The ideal high pass, band pass, and band stop filters can be defined in a similar

manner (see [3]). Another special case of low pass filter (not ideal) is

h(t) =

0 t < t1[
t−t1
t

]β
t ≥ t1

. (25)

Substituting (25) and (19) in (21) yields the FTFC, Eq. (13), at t = t1, which

immediately gives us

fh(x) =

∫ ∞
0

φ(x, t)h(t)dt = u(x, t1), (26)

where u(x, t1) is the solution of (Flow) at time t1. Thus, the scale space can

be interpreted as a specific type of LPF.

4.2.4. Parseval-type identity155

Based on Def. 21, the following Parseval-type identity holds,∫ ∞
0

S(t)dt =

∫ ∞
0

〈f, φ(t)〉dt = 〈f,
∫ ∞

0

φ(t)dt〉 = 〈f, f〉 = ‖f‖2.

Relation to the TV-transform. The methodology we use to formulate the p-

transform is inspired by the TV-transform [2, 3] and by its extension to one-

homogeneous functional decomposition [26, 35, 36]. It was found useful in sev-

eral image-processing applications, e.g. for denoising [37], segmentation [38] and

image fusion [39]. The regularity properties of the time derivative for spectral-160

TV are addressed in [35] . It can be seen that the p-transform is a generalization

of the previous studies and the TV-transform is obtained by assigning γ = 0

(β = 1).
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(a) Eigenfunction (1D), λ = −0.0059 (b) The 1D eigenfunction decay (theoretical and

numerical results) vs. time

(c) Eigenfunction (2D), λ = −0.0269 (d) The 2D eigenfunction decay (theoretical and

numerical results) vs. time

Figure 2: Decay profile of an eigenfunction. On the left, eigenfunctions of the p-Laplacian

are shown for p = 1.5 in one and two dimensions. On the right, the experimental and

theoretical values of u(t, x0) vs. time are shown.

5. Experiments

In this section we numerically illustrate the theory presented above. We165

choose the operator P to be the p-Laplacian operator where p ∈ (1, 2). We as-

sume finite dimensions and Neumann boundary conditions. This setting admits

Assumption 1 and therefore all Theorems and Propositions shown earlier are

valid.

We use the implementation of the gradient and divergence operator as de-170

fined by Chambolle in [40]. We implement our transform in Matlab and some of

our experiments can be found here (https://github.com/IdoCohen5743/pLaplaceFramework.git).

The aims of the following experiments are:

1. To validate Theorem 1 by examining the decay profile of the p−flow ini-

tiated with an eigenfunction (Fig. 2).175
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(a) p = 1.3,

λ = −0.0531

(b) p = 1.5,

λ = −0.0269

X 26.896

Y 436477.0484

(c) The spectrum |S| vs. time

X 74.1512

Y 656590.5154

(d) The spectrum |S| vs. time

Figure 3: p-Spectrum of a two dimensional eigenfunction. In the first row we show two

eigenfunctions of the p-Laplace operator for different values of p. In the second row we show

the absolute value of their p-spectra (Eq. (22)). The extinction time of the p-flow is T = 26.9

when p = 1.3 and T = 74.3 when p = 1.5. The delta functions are obtained at the expected

time according to Eq. (17).

2. To illustrate Theorem 2 by applying the p-transform on a single eigen-

function (Fig. 3).

3. To numerically demonstrate the framework of the p-transform by filtering

and decomposing images with different values of p (Figs. 4, 7, 9, 8, 10).

The p-flow was implemented by an explicit scheme [41] with a fixed time180

step (dt = 10−4). We used the fractional derivative implementation of Euler-

Grünwald-Letnikov type, as shown in [42]. The eigenfunctions were generated

numerically by the algorithm of [6].

Decay profile (Theorem 1). The analytic solution of the decay profile,

Eq. (16), was numerically validated. The analytic solution was computed for185

a certain spatial coordinate, x0. We show the solutions for x0 = 0 (in 1D),

x0 = (0, 0) (in 2D). A similar behaviour was exhibited for all other points (Fig.

14



(a) Noise (b) p = 1.5,

λ = −0.0269

(c) =(a)+(b) The

initial condition f

X 73.8464

Y 1191422.1747

(d) The spectrum |S| vs. time

(e) The filtered out

noise

(f) Recovered e.f.

Figure 4: Filtering. Fig. 4a is noise image uniformly distributed noise between [0, 1]. Fig.

4b a p-Laplacian eigenfunction. Fig. 4c is the initial condition in Eq. (pFlow). Fig. 4d is

the spectrum of the initial condition where the filtered parts, blue and red, are Figs. 4e and

4f respectively.

Figure 5: A zebra Figure 6: A PET image.
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(a) The p-spectrum S vs. time

(b) 0%− 1.5% (c) 1.5%− 7.5% (d) 7.5%− 20% (e) 20%− 100%

Figure 7: Zebra image decomposition with p = 1.01

2). It can be observed that the analytic solution and the experimental one well

agree. In addition, the extinction time was accurately predicted (Eq. (17)).

Spectral behaviour of an eigenfunction (Theorem 2). Here we illus-190

trate the p-spectrum of eigenfunctions with different values of p (Fig. 3). On the

top two eigenfunctions are shown (p = 1.3, left, and p = 1.5, right) for which the

p-transform is applied to. On the bottom row the magnitude of the spectrum

(Def. 21) is presented. One can observe the spectrum has a single dominant

scale t. Thus, the transform approaches a numerical delta, as predicted by195

Theorem 2. The theoretical extinction time, Eq. (17), of the eigenfunctions

is 26.913 and 74.298 for p = 1.3 and p = 1.5, respectively. The experimental

results show high spectral density around 26.896 and 74.151, which agrees well

with the theory.

Filtering. Filtering of noise is demonstrated in Fig. 4. Ideal LPF (Eq.200

(24)), t1 = 40, is applied to an image containing an eigenfunction with additive
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(a) The p-spectrum S vs. time

(b) 0%− 1.5% (c) 1.5%− 7.5% (d) 7.5%− 20% (e) 20%− 100%

Figure 8: Zebra Decomposition with p = 1.5

(a) The p-spectrum S

(b) 0%− 1.5% (c) 1.5%− 7.5% (d) 7.5%− 20% (e) 20%− 100%

Figure 9: A PET image decomposition with p = 1.01
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(a) The p-spectrum S vs. time

(b) 0%− 1.5% (c) 1.5%− 7.5% (d) 7.5%− 20% (e) 20%− 100%

Figure 10: A PET image decomposition p = 1.5

(a) The zero homogeneous spectrum S ”Normalized” vs. time

(b) 0%− 5.89% (c) 5.89%− 20.32% (d) 20.32%− 44.16% (e) 44.16%− 100%

Figure 11: A PET image decomposition p = 1.5 with normalized Laplacian operator

18



(a) The TV-spectrum vs. time

(b) 0%− 1.5% (c) 1.5%− 7.5% (d) 7.5%− 20% (e) 20%− 100%

Figure 12: Zebra image TV-decomposition

white uniform noise. As can be viewed in the spectral plot, bottom left, the

noise corresponds to low values of t (high eigenvalues - blue part) and the

spectral part corresponding to the eigenfunction is concentrated at higher scales

t (red part). Note, that the peak of the spectrum at high scale (corresponding205

to the eigenfunction) appears approximately at the same scale as the clean

eigenfunction (Fig 3b).

p-Decomposition. One of the benefits of our framework is the ability

to decompose a signal into components with different degree of smoothness,

depending on the value of p. In this context, a decomposition is a partition of210

the spectrum into non-overlapping intervals such that the sum of all parts covers

the entire spectrum. This is, the sum of all parts is the original image. Here,

we decompose two images (Figs. 5 and 6) by the p-transform with two values

of p (p = 1.01, 1.5). We decompose the spectrum into four parts. As most of

the details are concentrated at lower scales t, the filters’ width is growing with215
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scale. We arbitrarily chose the filters cut offs at 1.5%, 7.5%, 20%, where 100%

is the width of the entire spectrum. The p-decompositions of a zebra image

(Fig. 5) with p = 1.01 and p = 1.5 are shown in Figs. 7 and 8, respectively.

The p-decompositions of a PET image (Fig. 6) with p = 1.01 and p = 1.5 are

shown in Figs. 9 and 10, respectively.220

It can be observed that low scale t is related to fine details in the image when

p = 1.01 and also to edges when p = 1.5; high scale t is related to the coarser

parts of the image. Whereas the p-decomposition with p = 1.5 resembles linear

diffusion, the decomposition with p = 1.01 can be seen as an approximation of

the TV-transform.225

Comparison to TV. As it well studied, the TV-flow is implemented with

the dual problem (see [40]), which is computationally expensive. However, the

p-flow can be evaluate explicitly [41]. We can approximate the TV-transform

with the p-transform when p is close to one. Theoretically, there is no constrain

on the step size of the TV-flow in a semi-implicit setting. However, to compare230

between the image spectrum of an image the step size should be similar. The

TV-spectrum, shown in Fig. 12a, is characterized with group of peaks which

are similar to the decomposition with p = 1.01 Figs. 7a and 9a.

Normalized flow. The last issue we would like to examine is a comparison

between the p-transform and the one-homogeneous setting from [26]. More

specifically, we examine the following normalized flow

ut(t) = ∆pu(t)/‖∇u(t)‖p−1
p .

This is a flow based on a zero-homogeneous operator, stemming from an abso-

lutely one-homogeneous functional. Theoretically, the p-Laplacian flow and the235

normalized flow are shape preserving flows for the same class of eigenfunctions.

The difference is in the decay profiles, where the normalized flow decays linearly.

We apply a decomposition with the normalized flow for p = 1.5. In order to

compare between the normalized flow and the original one we should rescale the

time axes. The normalized p-decomposition (Fig. 11) and the decomposition240

with p = 1.5 (Fig. 10) are very similar but not identical. It is a still an open
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problem whether it is only a numerical issue. Although this operator is one ho-

mogeneous, this decomposition is not similar to TV decomposition. This kind

of decomposition should be further investigated. We know an eigenfunction de-

cays linearly as expected. We would like to thank the anonymous reviewer for245

raising this issue.

6. Conclusion

The Fourier transform is highly instrumental in processing smooth, band-

limited signals. However, filtering signals with inherent discontinuities is known

to produce artifacts. The TV-transform is well adapted for such signals. This250

work aims to bridge the gap between these two type of transforms, allowing

partially smooth signals to be well represented and processed.

Definitions for decomposition, reconstruction, filtering, and spectrum are

proposed within a rigorous mathematical framework. In contrast to [43] where

the decay profile might be similar to those we study, our decompositions are255

associated with a much broader class of eigenfunctions, not based only on zero-

homogeneous operators. This framework is valid for any functional of homo-

geneity in the range of (1, 2). Thus, it generalizes the one-homogeneous spectral

representation of [26].
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Appendix A. A proof of Theorem 1

Proof. ⇐ (We assume the solution is shape preserving and prove f is an eigen-

function)

If the solution is shape preserving, since a(t = 0) = 1, we can write

ut(t = 0) = P (a(t = 0) · f) = P (f).
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On the other hand

ut(t = 0) = a′(t = 0)f.

By comparing these expressions, we get that f is an eigenfunction with the

eigenvalue λ = a′(t = 0).

⇒ (We assume f is an eigenfunction and we prove the solution is shape pre-

serving)

Let us examine the flow u(t) = a(t)f , where a(t) is defined by the following

ODE,

a′(t) = a(t)|a(t)|γ−1
λ, a(0) = 1.

When f is an eigenfunction with eigenvalue λ, one can observe this flow solves

(Flow). Existence and uniqueness yield this is the only solution. Eq. (15) is265

the solution for the above ODE.

Appendix B. A proof of Theorem 2

Proof. Let us discuss the monomial y(x) = xβ where x ∈ [0, 1] and 0 else. Based

on Euler [28, 44], we can assert (see proof in Appendix C)

Idβe−β0+

{
xβ
}

=
Γ(β + 1)

Γ(dβe+ 1)
xdβe. (B.1)

On the other hand, we can say

Γ(β + 1)

Γ(dβe+ 1)
xdβe =

1

Γ(dβe − β)

∫ x

0

τβ(x− τ)dβe−β−1dτ

=︸︷︷︸
τ=1−(γ−1)λ·s

1

Γ(dβe − β)

∫ 1−x
(γ−1)λ

1
(γ−1)λ

[1− (γ − 1)λ · s]β

{x− [1− (γ − 1)λ · s]}dβe−β−1 · [−(γ − 1)λ] · ds

=
(γ − 1)λ

Γ(dβe − β)

∫ 1
(γ−1)λ

1−x
(γ−1)λ

(1− (γ − 1)λ · s)β

[
(γ − 1)λ

(
x− 1

(γ − 1)λ
+ s

)]dβe−β−1

ds

=
[(γ − 1)λ]

dβe−β

Γ(dβe − β)

∫ 1
(γ−1)λ

1−x
(γ−1)λ

(1− (γ − 1)λ · s)β
[

x− 1

(γ − 1)λ
+ s

]dβe−β−1

ds.

(B.2)
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Let us denote t = 1−x
(γ−1)λ and we have

Γ(β + 1)

Γ(dβe+ 1)

{
[1 + (1− γ)λt]

+
}dβe

=

=
[(γ − 1)λ]

dβe−β

Γ(dβe − β)

∫ 1
(γ−1)λ

t

[1− (γ − 1)λ · s]β [s− t]dβe−β−1
ds

= [(γ − 1)λ]
dβe−β

I
dβe−β

1
(γ−1)λ

−

{[
(1 + (1− γ)λ · t)+

]β}
.

(B.3)

Then

Γ(β + 1)

Γ(dβe+ 1)

[
(1 + (1− γ)λt)

+
]dβe

= [(γ − 1)λ]
dβe−β

I
dβe−β

1
(γ−1)λ

−

{[
(1 + (1− γ)λ · t)+

]β}
(B.4)

Now, we apply the operator ddβe+1/dtdβe+1. For convenience we separate the

discussion to the right and the left hand side of (B.4). Applying the derivative

operator on the right hand side gives:

ddβe+1

dtdβe+1

{
Γ(β + 1)

Γ(dβe+ 1)

[
(1 + (1− γ)λt)

+
]dβe}

=

= Γ(β + 1) [(1− γ)λ]
dβe+1

δ(1 + (1− γ)λt).

Applying the derivative operator on the right hand side and using (12) gives:

ddβe+1

dtdβe+1

{
[(γ − 1)λ]

dβe−β
I
dβe−β

1
(γ−1)λ

−

{[
(1 + (1− γ)λt)

+
]β}}

=

= [(γ − 1)λ]
dβe−β

(−1)dβe+1Dβ+1
1

(γ−1)λ
−

{[
(1 + (1− γ)λ · t)+

]β}
.

Comparing these expressions yields

Dβ+1
1

(γ−1)λ
−

{[
(1 + (1− γ)λ · t)+

]β}
=Γ(β + 1) [(γ − 1)λ]

β+1
δ(1 + (1− γ)λt).

Substituting it in (19) we reach (23).

Note, we could choose any value greater than 1
(γ−1)λ (the extinction time of

the flow) since u(t) = 0, ∀t > T .270
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Appendix C. Fractional integration of a monomial function

Let the function f be

f(x) =

x
β x ∈ [0, 1]

0 else

where β ∈ R>0. The dβe − β order fractional integral of f is

I
dβe−β
0+ f(x) =


0 x < 0

1
Γ(dβe−β)

∫ x
0

(x− τ)dβe−β−1τβdτ x ∈ [0, 1]

1
Γ(dβe−β)

∫ 1

0
(x− τ)dβe−β−1τβdτ x > 1

Let us simplify the following expression∫ x

0

(x− τ)dβe−β−1τβdτ =xdβe−β−1

∫ x

0

(
1− τ

x

)dβe−β−1

τβdτ

=xdβe−1

∫ x

0

(
1− τ

x

)dβe−β−1 (τ
x

)β
dτ

=︸︷︷︸
s= τ

x

xdβe
∫ 1

0

(1− s)dβe−β−1
sβds︸ ︷︷ ︸

beta function

=xdβe
Γ(dβe − β)Γ(β + 1)

Γ(dβe+ 1)
.

And we get

I
dβe−β
0+ f(x) =


0 x < 0

Γ(β+1)
Γ(dβe+1)x

dβe x ∈ [0, 1]

Γ(β+1)
Γ(dβe+1) x > 1

We recall here the Euler generalization of integer derivative of monomial

[28, 44]
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