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A mathematical model of anaerobic digestion with syntrophic relationship, substrate1

inhibition and distinct removal rates ∗2

Radhouane Fekih-Salem‡ † , Yessmine Daoud‡ , Nahla Abdellatif‡ § , and Tewfik Sari¶3

4

Abstract. Understanding and exploiting the syntrophic relationship between microbial species is a major challenge in5
the mathematical theory of the anaerobic digestion process. In this work, we focus on the acetogenesis6
and hydrogenotrophic methanogenesis phases and we include distinct removal rates for the species. Our7
study gives a quite comprehensive analysis of a syntrophic model by analyzing the joined effects of syntrophy8
relationship, mortality, substrate inhibition and input concentrations that were neglected in previous studies.9
The mathematical analysis of the model involving the mortality is a difficult problem since the model is not10
reduced to a planar system as in the case where the dilution rates of the substrates and the removal rates of11
microbial species are equal. Using general nonmonotonic growth rates, the necessary and sufficient conditions12
of existence and local stability of all steady states of the four-dimensional system are determined, according to13
the operating parameters. This general model exhibits a rich behavior with the coexistence of two microbial14
species, the bistability, the multiplicity of coexistence steady states, and the existence of two steady states of15
extinction of the first species. The operating diagram shows how the model behaves by varying the control16
parameters and illustrates the effect of the substrate inhibition and the new input substrate concentration17
(hydrogen) on the appearance or the disappearance of coexistence and bistability regions. Similarly to the18
classical chemostat model, including the substrate inhibition can destabilize a two-tiered microbial ‘food chain’,19
where the asymptotic behavior of the system depends on the initial condition.20
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AMS subject classifications. 34A34, 34D20, 37N25, 92B0522

1. Introduction. Anaerobic Digestion (AD) is a process used for the biological treatment of mu-23

nicipal, agricultural and industrial wastes with the additional benefit of producing energy in the form24

of biogas. During this process, the waste is first partially transformed into volatile fatty acids and then25

converted into methane and carbon dioxide, which can be used as a carbon source for microalgae [30].26

AD process is too complex with difficulty to collect informative experimental data which complicates27

the model validation and the parameter identification [15]. The generic AD Model No.1 (ADM1) of28

the IWA Task Group for Mathematical Modeling of AD Processes is characterized by its extreme29

complexity with 32 dynamic concentration state variables and a large number of parameters [3].30

Many mathematical models describing the whole process or some key steps have been considered31

in the last three decades; see [5, 7, 10, 17, 21, 25, 40, 41, 42, 49, 51, 52, 53]. A synthetic and unified32

vision of many models involving two or three cross-feeding species and various types of inhibition has33

been proposed in [14]. Using specific growth functions, the numerical simulations reveal the reduction34

in both productivity and stability due to inhibitions with the occurrence of stable periodic orbits35

owing to the presence of negative and positive feedback loops. In [25], a mathematical analysis of36

the protein-rich Microalgae AD model (the so-called MAD) shows the process behavior according to37

the control parameters where the operating diagram illustrates the ideal conditions to optimize biogas38

yield and ammonia toxicity. In fact, the MAD model has been proposed in [28] and was validated from39

experimental data of an AD process of Chlorella vulgaris microalgae involving four substrates and three40

microbial species with three reactions and two steps (hydrolysis-acetogenesis and methanogenesis).41

Recently, a complete mathematical analysis was provided in [31] of a two-step model (acidogenesis42

and methanogenesis) introduced in [9] where a fifth state variable (ammonia) is included. The decay43

and the inhibition caused by ammonia were taken into account by considering a general class of44

response functions. In [52, 53], an eight-dimensional mathematical model describing three of the45
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four main stages of AD (acidogenesis, acetogenesis, and methanogenesis) was analyzed by considering46

syntrophy and substrate inhibition effects. Following [51] and using general functional responses, a47

three-tiered microbial food-web model was studied in [41] discovering the emergence of the coexistence48

region in the operating diagram where a stable limit cycle is born via the Hopf bifurcation, which has49

not been reported by [51]. The work of [41] has been recently extended in [34, 35] by considering the50

effects of the phenol and hydrogen input concentrations, together with the effects of maintenance (or51

decay) terms.52

Using a step by step parameter identification procedure, Bernard et al. [7] have proposed and have53

validated a reduced two-step model (the so-called AM2) from experimental data of the AD process.54

This model has a cascade structure and has been widely applied for control and optimization of AD55

process [21, 42, 43, 44]. Using a maximum likelihood principal component analysis [27] and generated56

data built from ADM1 model, the appropriate number of reactions is determined by a systematic57

data driven-approach followed by a parameter identification procedure [22]. The resulting low-order58

model is the two-tiered microbial ‘food chain’ leading to perfectible direct and cross-validation results.59

The AM2 model was mathematically studied in [5, 38] and was extended in [4, 6], where a fifth state60

variable (SMP: Soluble Microbial Products), important for fouling of membranes, is included. For61

a review of mathematical modeling of anaerobic digestion with respect to theory, applications and62

technologies, the reader is refereed to [50].63

The two-tiered microbial model we consider here describes the next two biological reactions:64

(1.1) s0
µ0−−−−−→ x0 + s1, s1

µ1−−−−−→ x165

where a substrate s0 (Volatile Fatty Acid) is consumed by a biomass x0 (acetogenic bacteria) to produce66

a product s1 (hydrogen). The substrate s1 is consumed in the second reaction by another biomass67

x1 (hydrogenotrophic methanogenic bacteria). µ0 and µ1 are the bacterial growth rates, depending68

eventually on one or both substrates. The substrates s0 and s1 are introduced in the reactor with the69

inflowing concentrations sin0 and sin1 , respectively, and a dilution rate D. These reactions are described70

by the following system of differential equations71

(1.2)


ṡ0 = D

(
sin0 − s0

)
− µ0(·)x0,

ẋ0 = (µ0(·)−D0)x0,

ṡ1 = D
(
sin1 − s1

)
+ µ0(·)x0 − µ1(·)x1,

ẋ1 = (µ1(·)−D1)x1,

72

where D0 and D1 represent, respectively, the disappearance rates of acetogenic and methanogenic73

bacteria. In this study, the two-tiered model (1.2) is analyzed where Di can be modeled as in [29, 45]74

by75

(1.3) Di = αiD + ai, i = 0, 1,76

where the nonnegative death (or decay) rate parameters a0 and a1 are taken into consideration with77

units of the dilution rate (D has units 1/d). These decay terms included in model (1.2) are related78

to consumption of energy, other than growth; see for instance [23] or [33]. The coefficients α0 and α179

belong to [0, 1] and represent, respectively, the first and the second biomass proportion that leaves the80

reactor. For example, in [7] these coefficients are proposed to model a biomass reactor attached to the81

support or to decouple the residence time of solids and the hydraulic residence time (1/D). Thus, the82

study will not be restricted to the case αi = 1, i = 0, 1, as in most of the studies in the literature (see83

Tables 1 and 2 below), and the case 0 ≤ αi ≤ 1, which is of biological interest, will be investigated.84

If the growth rate µ0 depends only on substrate s0 and µ1 depends only on s1, that is,85

(1.4) µ0(·) = µ0(s0), µ1(·) = µ1(s1),86

then system (1.2) has a cascade structure and describes a commensalistic relationship where the87

commensal species x1 needs the first species x0 to grow, while x0 can grow without x1 and it is not88
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ANAEROBIC DIGESTION MODEL 3

affected by the growth of the commensal species x1. If µ0 depends on both substrates s0 and s1, and89

µ1 depends on substrate s1, that is,90

(1.5) µ0(·) = µ0(s0, s1), µ1(·) = µ1(s1),91

then system (1.2) describes a syntrophic relationship where two microbial species depend on each92

other for survival by the production of a required substrate s1. In this case, each species benefits from93

the presence of the other species. Tables 1 and 2 summarize the modeling assumptions made in the94

literature on two-tiered model (1.2) describing the commensalistic and the syntrophic relationships,95

respectively, according to the input concentration sin1 , the removal rates Di, and the choice of the96

growth functions.

Table 1
Literature examples of the commensalistic relationship of two-tiered model (1.2), the modeling assumptions and the

description of the growth rates (1.4).

References sin1 Di µ0(s0) µ1(s1)
Reilly [37], 0 D Monod Monod
Simeonov and Stoyanov [47] 0 D + ai Monod Monod
Stephanopoulos [48] 0 D Monotonic Monotonic or Nonmonotonic
Bernard et al. [7] ≥ 0 αD Monod Haldane
Simeonov and Diop [46] 0 D Monod or Contois Haldane
Sbarciog et al. [42] ≥ 0 D Monotonic Nonmonotonic
Benyahia et al. [5] ≥ 0 αD Monotonic Nonmonotonic

Table 2
Literature examples of the syntrophic relationship of two-tiered model (1.2), the modeling assumptions and the de-

scription of the growth rates (1.5).

References sin1 Di µ0(s0, s1) µ1(s1) or µ1(s0, s1)
Kreikenbohm and Bohl [26] 0 D Monod in s0, decreasing in s1 Monod
Burchard [10], El-Hajji et al. [16] 0 D Increasing in s0, decreasing in s1 Increasing
Xu et al. [54] 0 D + ai Increasing in s0, decreasing in s1 Monod

Sari et al. [39] ≥ 0 D Increasing in s0, decreasing in s1
Decreasing in s0,
increasing in s1

Harvey et al. [24] 0 D Increasing in s0, decreasing in s1 Nonmonotonic
Sari and Harmand [40] 0 D + ai Increasing in s0, decreasing in s1 Increasing
Fekih et al. [18] 0 D + ai Increasing in s0, decreasing in s1 Nonmonotonic
Daoud et al. [11] ≥ 0 D + ai Increasing in s0, decreasing in s1 Increasing

97

Harvey et al. [24] have studied model (1.2) in the particular case where sin1 = 0, Di = D, and98

the growth rate µ0(s0, s1) = f(s0).g(s1) with f is increasing in s0 and g is decreasing in s1. Our99

study provides an extension of the results in [24] to the case where D1 and D2 are distinct from100

D. Notice that most of the studies in the existing literature (see Table 2) consider the case of equal101

removal rates (D1 = D2 = D), where the model can be reduced to a two-dimensional system. In102

this paper, we generalize [10, 16, 24, 26], by allowing distinct removal rates. In this case, the study103

of the stability is much more delicate and requires the Liénard-Chipart stability criteria [20] for a104

four-dimensional system. Furthermore, it is reported in the literature [5, 7, 18, 24, 42, 46, 48] that at105

many times the second reaction of (1.1) is inhibited by large values of s1, which instigates to consider a106

Haldane-type growth function for µ1. The goal of the present work is to understand the joined effects107

of syntrophy, mortality of two microbial species, substrate inhibition on their growth and inflowing108

substrate concentration of the second species, which have not been studied in the literature. Moreover,109

here, we do not specify kinetics but we consider qualitative properties on the growth functions and we110

assume that the second species is inhibited when the concentration of substrate becomes significant.111

The particular case sin1 = 0 was considered in [18]. The case where µ1 does not present inhibition was112

considered in [11, 40, 54].113

On the other hand, our study provides an important tool for the experimentation which is the114

operating diagram showing the behavior of the syntrophic model (1.2) according to the control param-115

eters D, sin0 and sin1 , when all biological parameters are fixed. This operating diagram is often studied116
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numerically or theoretically both in the biological literature [36, 42, 51, 54] and the mathematical117

literature [1, 2, 11, 12, 13, 18, 19, 23, 25, 32, 38, 40, 41, 52, 53].118

This paper is organized as follows: in section 2, we present the assumptions made on the growth119

functions and give some preliminary results. Section 3 is devoted to the analysis of steady states and120

their local stability. In section 4, we present the operating diagrams which depict the different outcomes121

of the model according to control parameters. Finally, some conclusions are drawn in section 5. The122

definition domains of some auxiliary functions used for the description of the steady states with their123

conditions of existence and stability are given in Appendix A. The proofs of all results are reported in124

Appendix B. With specific growth rates satisfying the general assumptions, the maximal number of125

solutions of an equation which determines some definition domains are given in Appendix C. Finally,126

some tables are given in Appendix D.127

2. Mathematical model and assumptions. In what follows, we study model (1.2) where the128

removal rates Di and the growth rates µi, i = 0, 1 are given by (1.3) and (1.5), respectively. Thus, the129

syntrophic model can be written as follows130

(2.1)


ṡ0 = D

(
sin0 − s0

)
− µ0(s0, s1)x0,

ẋ0 = (µ0(s0, s1)−D0)x0,

ṡ1 = D
(
sin1 − s1

)
+ µ0(s0, s1)x0 − µ1(s1)x1,

ẋ1 = (µ1(s1)−D1)x1.

131

We first make the following general assumptions on the bacterial growth rates. The functions µ0 and132

µ1 belong to C1(R+,R+) and C1(R+), respectively and verify:133

Hypothesis 2.1. Growth of species x0 can take place if and only if the substrate s0 is present:134

µ0(0, s1) = 0, 0 < µ0(s0, s1) < +∞, for all s0 > 0 and s1 ≥ 0.135

Hypothesis 2.2. Growth of species x1 can take place if and only if the substrate s1 is present:136

µ1(0) = 0 and µ1(s1) > 0, for all s1 > 0.137

Hypothesis 2.3. Growth rate of species x0 is favored by s0 and is inhibited by the substrate s1:138
∂µ0
∂s0

(s0, s1) > 0 and ∂µ0
∂s1

(s0, s1) < 0, for all s0 > 0 and s1 > 0.139

Hypothesis 2.4. The nonmonotonic growth function µ1 takes into account the growth-limiting for140

low concentrations of substrate s1 and the growth-inhibiting for high concentrations: µ1(s1) reaches141

a maximum value µmax1 := µ1 (smax1 ) at s1 = smax1 and satisfies µ′1(s1) > 0, for all s1 ∈ [0, smax1 ),142

µ′1(s1) < 0, for all (smax1 ,+∞) and µ1(+∞) = 0.143

Hypothesis 2.5. The maximum growth rate of the species x0 decreases with the concentration of144

substrate s1: for all s1 > 0, µ̄′0(s1) < 0 where µ̄0(s1) := sups0≥0 µ0(s0, s1).145

The following result proves that syntrophic model (2.1) preserves the biological significance where all146

solutions of the system are nonnegative and bounded for any nonnegative initial condition.147

Proposition 2.6. For any nonnegative initial condition, the solution of system (2.1) exists for all
nonnegative times, remains nonnegative and is positively bounded. In addition, the set

Ω =
{

(s0, x0, s1, x1) ∈ R4
+ : 2s0 + x0 + s1 + x1 ≤ D

Dmin

(
2sin0 + sin1

)}
,

where Dmin = min(D,D0, D1), is positively invariant and a global attractor for (2.1).148

3. Analysis of the syntrophic model. A steady state exists if and only if all its components are149

nonnegative. Model (2.1) can have at most six steady states, which we denote as follows:150

• SS0 (x0 = x1 = 0): the washout of both species.151

• SS1 (x1 = 0, x0 > 0): species x1 is extinct while species x0 survives.152

• SSi2, i = 1, 2 (x0 > 0, x1 > 0): both species are maintained.153

• SSi3, i = 1, 2 (x0 = 0, x1 > 0): species x0 is extinct while species x1 survives.154

We show below that all steady states are unique, if they exist. However, bifurcations may occur155

(see Table 8) where two steady states collide, giving rise to a non hyperbolic steady state. First, we156
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introduce in Table 3 the auxiliary functions for determining the existence and stability conditions.157

Some comments and details on their definition domains are given in Appendix A. In the particular158

case of specific growth rates of Monod-type with hydrogen inhibition and of Haldane-type (C.1), the159

auxiliary functions defined in Table 3 can be calculated analytically and are given in Table 12.

Table 3
Auxiliary functions where dom(F0) and Ij, j = 1, 2 are given in Table 9.

Definition

s0 = M0(y, s1)
Let s1 > 0. s0 = M0(y, s1) is the unique solution of equation y = µ0(s0, s1).
It is defined for y ∈ [0, µ̄0(s1))

s1 = M1
1 (y)

s1 = M1
1 (y) is the unique solution in [0, smax1 ] of equation y = µ1(s1).

It is defined for y ∈ [0, µmax1 ].

s1 = M2
1 (y)

s1 = M2
1 (y) is the unique solution in [smax1 ,+∞) of equation y = µ1(s1).

It is defined for y ∈ (0, µmax1 ].

F0

(
D, sin1

)
F0

(
D, sin1

)
= M0

(
α0D + a0, s

in
1

)
defined for

(
D, sin1

)
∈ dom(F0)

F j1 (D) F j1 (D) = M0(α0D + a0,M
j
1 (α1D + a1)), D ∈ Ij

F j2 (D) F j2 (D) = M j
1 (α1D + a1) + F j1 (D), D ∈ Ij

160

The following result gives all the steady states of (2.1) and the necessary and sufficient condi-161

tions of their existence and stability. For convenience, we shall use the abbreviation LES for Locally162

Exponentially Stable.163

Proposition 3.1. Assume that Hypotheses 2.1 to 2.4 hold. Then, the six steady states of (2.1) are164

given in Table 4. The conditions of their existence and stability are given in Table 5.165

Table 4
Steady states of (2.1). All functions are defined in Table 3.

s0, s1 components x0, x1 components

SS0 s0 = sin0 , s1 = sin1 x0 = 0, x1 = 0

SS1

s0 is a solution of equation
µ0

(
s0, s

in
0 + sin1 − s0

)
= D0

s1 = sin0 + sin1 − s0

x0 = D
D0

(
sin0 − s0

)
x1 = 0

SSj
2

s0 = F j1 (D)

s1 = M j
1 (D1)

x0 = D
D0

(
sin0 − s0

)
x1 = D

D1

(
sin0 + sin1 − s0 − s1

)
SSj

3

s0 = sin0
s1 = M j

1 (D1)

x0 = 0

x1 = D
D1

(
sin1 −M

j
1 (D1)

)
Table 5

Necessary and sufficient conditions of existence and local stability of steady states of model (2.1).

Existence condition Stability condition

SS0 always exists sin0 < F0

(
D, sin1

)
and

(
sin1 < M1

1 (D1) or sin1 > M2
1 (D1)

)
SS1 sin0 > F0

(
D, sin1

)
sin0 + sin1 < F 1

2 (D) or sin0 + sin1 > F 2
2 (D)

SS1
2 sin0 > max

(
F 1
1 (D), F 1

2 (D)− sin1
)

LES whenever it exists
SS2

2 sin0 > max
(
F 2
1 (D), F 2

2 (D)− sin1
)

Always unstable
SS1

3 sin1 > M1
1 (D1), sin0 < F 1

1 (D)
SS2

3 sin1 > M2
1 (D1), Always unstable

Remark 3.2. Since the function F0

(
D, sin1

)
is defined for

(
D, sin1

)
∈ dom(F0) (see Proposition A.1),166

the condition sin0 > F0

(
D, sin1

)
means that

(
D, sin1

)
∈ dom(F0) and the inequality is satisfied. Con-167

versely, if
(
D, sin1

)
/∈ dom(F0), we let F0

(
D, sin1

)
= +∞. Thus, the condition sin0 < F0

(
D, sin1

)
means168

that
(
D, sin1

)
/∈ dom(F0) or the inequality is satisfied and

(
D, sin1

)
∈ dom(F0). Similarly, the condi-169

tion sin1 > M j
1 (D1) means that D ∈ Īj , j = 1, 2 and the inequality is satisfied, while the condition170

sin1 < M j
1 (D1) means D /∈ Īj or the inequality is satisfied and D ∈ Īj . The other conditions involving171

functions F ji (D), i, j = 1, 2, follow similarly.172

As we will see in Proposition 4.5, the limit case D = D̄1 corresponds to saddle-node bifurcations173

of SS1
2 with SS2

2 and SS1
3 with SS2

3 where these steady states are non hyperbolic. In the particular case174
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6 R. FEKIH-SALEM, Y. DAOUD, N. ABDELLATIF, AND T. SARI

sin1 = 0, we obtain the same result as in [18, 40] where SS1
3 and SS2

3 do not exist since the conditions175

of their existence in Table 5 are not satisfied. Compared to [40], a main change in the existence of176

steady states of our model (2.1) is the appearance of the second positive steady state SS2
2 and two177

steady states SS1
3 and SS2

3.178

4. Operating diagrams. The operating diagram is a very useful tool to determine the asymptotic179

behavior of the process with respect to the control parameters D, sin0 and sin1 which are the most easily180

parameters to manipulate in a chemostat. All other parameters are fixed since they have biological181

meaning and cannot be easily manipulated by the biologist. The biological parameter values used in182

all figures are provided in Table 13. To construct the operating diagram, we first define in Table 6 the183

set of surfaces Γ = {γ0, γ
j
i , γ4, i = 1, 2, 3, j = 1, 2} which are the boundaries of different regions of the184 (

D, sin0 , s
in
1

)
-space. We define also in Table 6 the curve Cj of the function y = M j

1 (D1)− sin1 , j = 1, 2185

to determine its sign according to sin1 and D. As we will see in Propositions 4.2 to 4.4, if D is fixed186

in Īj , then sin1 = sin∗1j = M j
1 (α1D + a1) and if sin1 is fixed, the equation M j

1 (α1D + a1) = sin1 can have187

a unique solution D = D∗j with j = 1, 2. As stated in the following result, the surfaces in the set Γ188

separate the operating space
(
D, sin0 , s

in
1

)
into twelve regions, denoted Jk, k = 1, . . . , 12, and defined189

in Table 7.

Table 6
The set of surfaces Γ, the curves C1 and C2, and the corresponding colors in Figures 1 and 3 to 6.

Γ, C1 and C2 Color

γ0 =
{(
D, sin0 , s

in
1

)
: sin0 = F0

(
D, sin1

)
,
(
D, sin1

)
∈ dom(F0)

}
Black

γ11 =
{(
D, sin0 , s

in
1

)
: sin0 = F 1

1 (D), D ∈ I1
}

Cyan
γ21 =

{(
D, sin0 , s

in
1

)
: sin0 = F 2

1 (D), D ∈ I2
}

Green
γ12 =

{(
D, sin0 , s

in
1

)
: sin0 = F 1

2 (D)− sin1 , D ∈ I1
}

Red
γ22 =

{(
D, sin0 , s

in
1

)
: sin0 = F 2

2 (D)− sin1 , D ∈ I2
}

Blue
γ13 =

{(
D, sin0 , s

in
1

)
: sin1 = M1

1 (D1), D ∈ Ī1
}

=
{(
D, sin0 , s

in
1

)
: D = D∗

1

}
=
{(
D, sin0 , s

in
1

)
: sin1 = sin∗11 , D ∈ Ī1

} Pink

γ23 =
{(
D, sin0 , s

in
1

)
: sin1 = M2

1 (D1), D ∈ Ī2
}

=
{(
D, sin0 , s

in
1

)
: D = D∗

2

}
=
{(
D, sin0 , s

in
1

)
: sin1 = sin∗12 , D ∈ Ī2

} Violet

γ4 =
{(
D, sin0 , s

in
1

)
: D = D̄1

}
Coral

C1: curve of the function y = M1
1 (D1)− sin1 , D ∈ Ī1 Magenta

C2: curve of the function y = M2
1 (D1)− sin1 , D ∈ Ī2 Brown

190

Proposition 4.1. Assume that Hypotheses 2.1 to 2.5 hold. The existence and the stability of the191

steady states of (2.1) in the twelve regions Jk, k = 1, . . . , 12 of the operating diagram are determined192

in Table 7.193

Table 7
Existence and stability of steady states in the regions of the operating diagram. The letter S (resp. U) means that

the corresponding steady state is LES (resp. unstable). No letter means that the steady state does not exist.

Condition 1 Condition 2 Region Color SS0 SS1 SS1
2 SS2

2 SS1
3 SS2

3

sin1 < M1
1 (D1)

sin0 < F0

(
D, sin1

)
J1 Cyan S

F0

(
D, sin1

)
< sin0 < F 1

2 (D)− sin1 J2 Green U S
F 1
2 (D)− sin1 < sin0 < F 2

2 (D)− sin1 J3 Red U U S
sin0 > F 2

2 (D)− sin1 J4 Yellow U S S U

M1
1 (D1) < sin1 < M2

1 (D1)

sin0 > F 2
2 (D)− sin1 J5 Yellow U S S U U

F0

(
D, sin1

)
< sin0 < F 2

2 (D)− sin1 J6 Red U U S U
F 1
1 (D) < sin0 < F0

(
D, sin1

)
J7 Red U S U

sin0 < F 1
1 (D) J8 Blue U S

M2
1 (D1) < sin1

sin0 < F 1
1 (D) J9 Deep pink S S U

F 1
1 (D) < sin0 < F 2

1 (D) J10 Gray S S U U
F 2
1 (D) < sin0 < F0

(
D, sin1

)
J11 Gray S S U U U

sin0 > F0

(
D, sin1

)
J12 Yellow U S S U U U

Since the definition domain of the function F ji is Ij where D ≤ D̄1 with Φj(D) > 0 (see Appen-194
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dix A), it’s necessary to distinguish the following two cases according to the sign of Φj(D̄1):195

(4.1) case 1: Φj

(
D̄1

)
> 0, case 2: Φj

(
D̄1

)
≤ 0.196

Note that, the condition of case 1 is equivalent to (µ̄0 (smax1 )− a0) /α0 > D̄1 while the opposite197

inequality holds in case 2.198

Since it is very difficult to observe the twelve regions of the operating diagram in three-dimensional199

space, it would be much better to illustrate cuts along two-dimensional planes by fixing one of the200

three operating parameters in order to have a better vision and understanding. In subsection 4.1, we201

study the operating diagrams in the
(
sin1 , s

in
0

)
plane where D is fixed. In subsection 4.2, we determine202

the operating diagrams in the
(
D, sin0

)
plane where sin1 is kept constant.203

4.1. Operating diagrams in the
(
sin1 , s

in
0

)
plane when D fixed. The intersection of the surface204

γ0 with the
(
sin1 , s

in
0

)
plane where D is kept constant is a curve of a function of sin1 . However, the205

intersections of the surfaces γji , i = 1, 2, 3, j = 1, 2 with this plane are straight lines (see Table 10).206

The various regions of the operating diagram are then very clear to visualize it. To study the operating207

diagram when D is fixed, we need the following result which determines the relative positions of the208

curve γ0 with the straight lines γji , i, j = 1, 2 according to the values of sin1 and sin∗1j .

(a)sin0
γ13 γ23 γ0

γ21
γ11

γ22
γ12

sin1

C2

C1

(b)sin0 γ13 γ23 γ0

γ22
γ21γ12 γ11

sin1

J1

J2
J3

J4

J8

J7J6

J5

J9

J10

J11

J12

Figure 1. (a) The curves C1, C2 and those of Γ in the case D ∈ I2 = [0, D̄1 ' 1.165) where D = 1.1 <
min

(
D̄1, D̄0(0) ' 2.556

)
, sin1 = sin∗11 ' 0.495 and sin1 = sin∗12 ' 0.961 and Case 1 of (4.1) holds. (b) The corresponding

operating diagram in the
(
sin1 , s

in
0

)
plane.

(a)
sin0 γ0

J1

J2

sin1

(b)
sin0 γ0 γ13 γ23

J1

J2

J8 J9

sin1

(c)
sin0 γ13 γ0 γ23

J1

J2

J3

J8

J7
J6

J9

J10

γ12 γ11

sin1

Figure 2. Operating diagrams in the
(
sin1 , s

in
0

)
plane with D constant where case 2 of (4.1) holds: (a) D̄1 ' 1.856 <

D = 1.857 < D̄0(0) ' 2.21, (b) D̂1 ' 1.829 < D = 1.83 < D̄1, (c) D̃1 ' 1.285 < D = 1.7 < D̂1.

209

Proposition 4.2. Let D ∈ Īj. We have sin∗1j := M j
1 (D1) ≥ 0, j = 1, 2 such that sin∗11 < sin∗12 . For all210

D ∈ I1, the three curves γ0, γ1
1 and γ1

2 intersect at the same point sin1 = sin∗11 (see Figures 1 and 2(c))211

such that sin∗11 < s̄in1 where s̄in1 is the unique solution of D̄0(sin1 ) = D. For all sin1 ∈
[
0, sin∗11

)
,212

(4.2) F0

(
D, sin1

)
< F 1

1 (D) < F 1
2 (D)− sin1 .213

and for all sin1 ∈
(
sin∗11 , s̄

in
1

)
,214

(4.3) F0

(
D, sin1

)
> F 1

1 (D) > F 1
2 (D)− sin1 .215
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For all D ∈ I2, the three curves γ0, γ2
1 and γ2

2 intersect at the same point sin1 = sin∗12 (see Figure 1)216

such that sin∗12 < s̄in1 . For all sin1 ∈
[
0, sin∗12

)
,217

(4.4) F0

(
D, sin1

)
< F 2

1 (D) < F 2
2 (D)− sin1 ,218

and for all sin1 ∈
(
sin∗12 , s̄

in
1

)
,219

(4.5) F0

(
D, sin1

)
> F 2

1 (D) > F 2
2 (D)− sin1 .220

According to the position of D relatively to the critical values D̃i, D̂1, D̄1 and D̄0(0) which are221

defined in Table 9, the regions of the operating diagram in the
(
sin1 , s

in
0

)
plane where D is kept constant222

are cataloged as follows:223

1. if D ∈ I2, then the twelve regions exist (see Figure 1);224

2. if D ∈ I1\I2, then eight regions exist where the four regions J4, J5, J11 and J12 are empty225

(see Figure 2(c));226

3. if D ∈ I0 ∩ Ī1\I1, or if D̂1 < D < min
(
D̄1, D̄0(0)

)
, then only the regions J1, J2, J8 and J9227

exist (see Figure 2(b));228

4. if D ∈ Ī1\{I1 ∪ I0}, or if D̄0(0) < D < D̄1, then only the regions J1, J8 and J9 exist (see229

Figure 2(b) where J2 is empty);230

5. if D ∈ I0\Ī1, or if D̄1 < D < D̄0(0), then only the regions J1 and J2 exist (see Figure 2(a));231

6. if D /∈ I0∪ Ī1, or if D > max
(
D̄1, D̄0(0)

)
, then only the region J1 exists (see Figure 2(a) where232

J2 is empty).233

4.2. Operating diagrams in the
(
D, sin0

)
plane when sin1 fixed. The intersection of the surfaces234

γ0 and γji , i, j = 1, 2 with the
(
D, sin0

)
plane where sin1 is kept constant is a curve of a function of D.235

However, the intersections of the surfaces γj3, j = 1, 2 with this plane are straight lines (see Table 11).236

To determine the operating diagram when sin1 is fixed, we show the following result which determines237

the relative positions of the curves γ0 and γji , i, j = 1, 2 according to the values of D and D∗1. We238

begin by considering the case sin1 ≤ smax1 .239

Proposition 4.3. Let sin1 ≤ smax1 . For all D ∈ I2,

F0

(
D, sin1

)
≤ F 2

1 (D) ≤ F 2
2 (D)− sin1 .

There exists a solution D = D∗1 ∈ Ī1 of equation sin1 = M1
1 (α1D + a1) if and only if240

(4.6) sin1 ≥M1
1 (a1).241

It is unique if it exists. If D∗1 ∈ I1, the three curves γ0, γ1
1 and γ1

2 intersect at the same point D = D∗1242

(see Figures 3 and 4(b)) such that for all D ∈ [0, D∗1), (4.3) holds and for all D ∈
(
D∗1, D̄1

)
∩ I0 ∩ I1,243

(4.2) holds. The curves γ0, γ1
1 and γ1

2 do not intersect if D∗1 ∈ Ī1\I1, where for all D ∈ I0, (4.3) holds244

(see Figure 4(c)) or if D∗1 does not exist, where for all D ∈ I1, (4.2) holds (see Figures 3 and 4(a)).245

According to the position of sin1 relatively to M1
1 (a1) and the two cases of (4.1) where sin1 ∈ [0, smax1 ]246

and is kept constant, the regions of the operating diagram in the
(
D, sin0

)
plane are cataloged as follows:247

1. If sin1 < M1
1 (a1), there exist at most four regions J1 to J4 (see Figure 3(a,c) in case 1 of (4.1)248

and Figure 4(a,d) in case 2).249

2. Let sin1 ≥M1
1 (a1). If D∗1 ∈ I1, there exist at most eight regions J1 to J8 (see Figure 3(b,d) in250

case 1 and Figure 4(b,e) in case 2). If case 2 holds and D∗1 ∈ Ī1\I1, there exist at most five251

regions J1 and J5 to J8 (see Figure 4(c,f)).252

The operating diagram of Figure 4(b,e) shows the existence of seven regions J1 to J8 where the region253

J4 is empty in the case 2 of (4.1) with M1
1 (a1) < sin1 ≤ smax1 and D∗1 ∈ I1. However, this region J4254

can be not empty for another set of parameters such that D∗1 < D̃1.255

By similar arguments to that in the proof of Proposition 4.3, we can prove the following result256

which determines the relative positions of the curves γ0 and γji , i, j = 1, 2 according to the values of257

D and D∗2 in the case sin1 > smax1 .258
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(a)sin0 , y γ4 γ0 D̄0

γ22

C2

γ21

γ12
γ11
C1

D

(b)sin0 , y γ13 γ4 γ0 D̄0

γ22

C2

γ21

γ11
γ12
C1

D

(c)sin0 γ4 γ0

γ22

γ12

J1

J2

J3

J4

D

(d)γ13sin0 γ4 γ0

γ22

γ11

J1

J2

J3

J4J5

J6

J7
?

J8

γ12

D

Figure 3. The curves C1, C2 and those of Γ in case 1 of (4.1) with sin1 < smax
1 ' 0.689: (a) sin1 = 0 < M1

1 (a1) ' 0.109,
(b) M1

1 (a1) < sin1 = 0.35. (c)-(d) The respective corresponding operating diagrams.

(a)sin0 , y

γ22

γ21

γ12

C2

C1

γ11

γ0

D̃1 D̂1 D̄0

D

(b)sin0 , y

γ22

γ21

γ13 γ
1
2 γ0

γ11-

C2

C1
D̃1 D

∗
1 D̂1

D̄0

D

@
@
@
@
@R

(c)sin0 , y

γ22

γ21

γ0 γ12 γ13

γ11-

C2

C1 D̃1 D̄0D̂1

D

(d)sin0 γ22 γ12 γ0

J1

J2
J3

J4

D

(e)sin0 γ22 γ13 γ
1
2γ0

γ0
γ11

J1

J2�J3
J5

J6

J7
?
J8

D

(f)sin0 γ22 γ11γ0 γ13

γ0
γ11

J1

J5

J6

J7

J8
D

Figure 4. The curves Cj, j = 1, 2 and those of Γ in case 2 of (4.1) with sin1 < smax
1 ' 0.689: (a) sin1 = 0 <

M1
1 (a1) ' 0.109, (b) M1

1 (a1) < sin1 = 0.35; D∗1 ' 1.503 ∈ I1, D̂1 ' 1.829 (c) M1
1 (a1) < sin1 = 0.65; D∗1 ' 1.853 /∈ I1, and

a magnification of Cj when D ∈ [1.85, D̄1], D̄1 ' 1.856. (d)-(e)-(f) The respective corresponding operating diagrams.

Proposition 4.4. Let sin1 > smax1 . For all D ∈ I0 ∩ I1, we have

F 1
2 (D)− sin1 < F 1

1 (D) < F0

(
D, sin1

)
.

There exists a solution D = D∗2 ∈ Ī2 of equation sin1 = M2
1 (α1D + a1) if and only if259

(4.7) sin1 ≤M2
1 (a1).260

It is unique if it exists. If D∗2 ∈ I2, the three curves γ0, γ2
1 and γ2

2 intersect at the same point261

D = D∗2 (see Figure 5(a) and Figure 6(b)) such that for all D ∈ [0, D∗2) ∩ I2, (4.4) holds and for all262

D ∈
(
D∗2, D̄1

)
∩ I0 ∩ I2, (4.5) holds. The curves γ0, γ2

1 and γ2
2 do not intersect if D∗2 ∈ Ī2\I2, where263

for all D ∈ I2, (4.4) holds (see Figure 6(a)) or if D∗2 does not exist, where for all D ∈ I2, (4.5) holds264

(see Figure 5(b) and Figure 6(c)).265
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(a)sin0 , y γ23 γ4 γ0

γ22

γ21
C2

γ11

γ12 C1 D̄0

D

(b)sin0 , y γ0 γ4

γ21
γ22

γ11

C2
γ12
C1

D̄0

D

(c)sin0 γ23 γ4 γ0

γ22

γ11

J5

J6
J7

J8

J12

J11

J10

J9

J2

J1
γ21���9

D

(d)sin0 γ0 γ4

γ21

γ11

J12

J11

J10
J9

J1

D

Figure 5. The curves C1, C2 and those of Γ in case 1 of (4.1) with sin1 > smax
1 ' 0.689: (a) sin1 = 1.5 < M2

1 (a1) '
4.37, (b) sin1 = 5 > max

(
smax
1 ,M2

1 (a1)
)
. (c)-(d) The respective corresponding operating diagrams.

(a)sin0 , y γ0 γ23 γ4

γ22
γ21

C2

C1

γ12

γ11

D̃1 D∗2 D̄1

D

(b)sin0 , y γ23 γ0 γ4

γ22

γ21

C2

C1

γ12

γ11

D

(c)sin0 , y

γ0

γ21 γ22

γ4

C2
C1

γ12

γ11

D

(d)sin0 γ22 γ0 γ11
J10�

J1

J9

J5

J6 J7

J8
D∗2D̄1

D

(e)sin0

γ22

γ23 γ0 γ21 γ11 γ4

J1

J9

J10

J11
J12

J5

J6
J7
J8

D∗2 D̄1

D

(f)sin0 γ0 γ21 γ11γ4

J1

J9

J10

J11

J12

D̄1

D

Figure 6. The curves C1, C2 and those of Γ in case 2 of (4.1) with sin1 > smax
1 ' 0.689: (a) sin1 = 1 < M2

1 (a1) ' 5.615;
D∗2 ' 1.742 /∈ I2 = [0, 1.285), (b) sin1 = 3.2 < M2

1 (a1); D∗2 ∈ I2, (c) sin1 = 6 > M2
1 (a1). (d)-(e)-(f) The respective

corresponding operating diagrams.

According to the position of sin1 relatively to M2
1 (a1) and the two cases of (4.1) where sin1 > smax1266

and is kept constant, the regions of the operating diagram in the
(
D, sin0

)
plane are cataloged as267

follows:268

1. Let sin1 ≤ M2
1 (a1). If D∗2 ∈ I2, in case 1 of (4.1), J3 and J4 are empty and the other ten269

regions can exist (see Figure 5(a,c)), while in case 2, J2 to J4 are empty and we can have270

up to nine regions in the operating diagram (see Figure 6(b,e) in case 2). If case 2 holds and271

D∗2 ∈ Ī2\I2, there exist at most seven regions J1 and J5 to J10 (see Figure 6(a,d)).272

2. If sin1 > M2
1 (a1), at most the five regions J1 and J9 to J12 can exist (see Figure 5(b,d) in case273

1 and Figure 6(c,f) in case 2).274

With the same set of parameters of the operating diagram of Figure 3(a) that we redraw in Figure 7(a),275

the equation Φ2(D) = 0 has no solution. In Appendix C, with the specific growth rates defined in (C.1),276
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we show that this equation has at most three solutions D̃j , j = 1, 2, 3 such that lim
D→D̃−j

F 2
i (D) = +∞,277

i = 1, 2 (see Proposition A.4). The operating diagrams of Figure 7(b-c) show that in the case of two278

or three solutions of the equation Φ2(D) = 0, we have the same number of regions but there is a279

change in the shape and the connectivity of the regions. This property is the same for the various280

cases studied above even when the equation Φ2(D) = 0 has several roots with general growth rates281

satisfying Hypotheses 2.1 to 2.4.

(a)sin0

γ22

γ12

γ0D̄1

J1

J2

J3

J4

D

(b)sin0

γ22

γ12

γ0?
J4
D̄1

J1

J2
J3

J4

D

(c)sin0 γ22

γ12

γ0?
J4
D̄1

J1

J2
J3

J4

D

Figure 7. Operating diagrams of (2.1) when sin1 = 0 and case 1 of (4.1) holds: equation Φ2(D) = 0 (a) has no
solution, (b) has two solutions (c) has three solutions. The operating diagram (a) is the same in Figure 3(c).

282

The following result determines the nature of bifurcations of system (2.1) that might happen by283

crossing the various regions of the operating parameters space
(
D, sin0 , s

in
1

)
through the surfaces of Γ284

where the steady states coalesce and can change stability.285

Proposition 4.5. The bifurcation analysis of the steady states of (2.1) by crossing the surfaces of Γ286

according to the operating parameters D, sin0 and sin1 is summarized in Table 8.287

Table 8
Bifurcations according to surfaces of Γ. The letter TB (resp. SNB) means a transcritical bifurcation (resp. saddle-

node bifurcation). Note that k = 2, 3.

Γ Conditions Transition Bifurcation

γ0

sin1 < M1
1 (D1) J1 to J2

TB: SS0=SS1M1
1 (D1) < sin1 < M2

1 (D1) J6 to J7

M2
1 (D1) > sin1 J11 to J12

γ11
M1

1 (D1) < sin1 < M2
1 (D1) J7 to J8 TB: SS1

2=SS1
3sin1 > M2

1 (D1) J9 to J10

γ21 sin1 > M2
1 (D1) J10 to J11 TB: SS2

2=SS2
3

γ12 sin1 < M1
1 (D1) J2 to J3 TB: SS1=SS1

2

γ22
sin1 < M1

1 (D1) J3 to J4 TB: SS1=SS2
2M1

1 (D1) < sin1 < M2
1 (D1) J5 to J6

γ13

sin0 > F 2
2 − sin1 J4 to J5

TB: SS0=SS1
3F 1

2 − sin1 < sin0 < F 2
2 − sin1 if D < D∗

1 , if not F0 < sin0 < F 2
2 − sin1 J3 to J6

sin0 < F0 if D < D∗
1 , if not sin0 < F 1

1 J1 to J8

γ23

sin0 > F 2
2 − sin1 if D < D∗

2 , if not sin0 > F0 J5 to J12

TB: SS0=SS2
3F 1

1 < sin0 < F0 if D < D∗
2 , if not F 1

1 < sin0 < F 2
1 J7 to J10

sin0 < F 1
1 J8 to J9

γ4 sin1 < smax1 J2 to J4 SNB: SS1
2=SS2

2

γ4 sin1 > smax1

J2 to J12 SNB: SS1
k=SS2

kJ1 to J11

J1 to J9 SNB: SS1
3=SS2

3

We have only studied the bifurcations that occur by transitions through surfaces in two-dimensional288

planes and not through the points given by the intersections of curves and lines. However, the study289

of such bifurcations can be determined in the same way.290

5. Discussion and conclusion. In this paper, we have generalized the mathematical analysis of291

the simplified model (2.1) of anaerobic digestion in the form of a two-tiered microbial food chain292

describing a syntrophic relationship between two microbial species in a chemostat. To this end, we293

allow a large class of growth functions with distinct disappearance rates. The main contribution of this294
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study is to bring out the mutual effects of the syntrophy relationship, the decay of the two microbial295

species, the substrate inhibition on the growth of the second species and a new inflowing concentration296

(hydrogen) which are not studied together in the existing literature. First, we have determined the297

necessary and sufficient conditions of existence and local stability of all steady states of syntrophic298

model (2.1) according to the operating parameters D, sin0 and sin1 . Second, we have analyzed the299

operating diagrams to determine the behavior of the system according to the control parameters and300

to choose the appropriate inputs and the initial states to achieve a good operation of the process. The301

operating diagrams show that the system can have a unique stable steady state: either of coexistence302

(Ji, i = 3, 6, 7) or washout (J1) or exclusion of one of two microbial species (Ji, i = 2, 8). It can303

also exhibit a bistability between coexistence and washout (Ji, i = 10, 11) or exclusion of the second304

species (Ji, i = 4, 5, 12) or between washout and exclusion of the first species (J9). If required, to305

ensure (or to avoid) the coexistence of two microbial species in the process, the operating parameter306

values can be chosen in (out) the regions Ji, i = 3, 6, 7, where there exists a unique stable steady state307

of coexistence and the other steady states are unstable. The study of the nature of bifurcations of the308

steady states shows that all the coalesces and the change of stability can be either by a transcritical or309

a saddle-node bifurcation by crossing the boundary of the regions of the operating parameters space.310

In [40], where sin1 = 0 and µ1 is increasing, the analysis of the operating diagram of (2.1) shows311

the existence only of the three regions J1 to J3 where the bistability cannot occur and the two steady312

states of extinction of the first species SS1
3 and SS2

3 do not exist. In [18], where only sin1 = 0, that is, µ1313

is nonmonotonic, SS1
3 and SS2

3 do not exist and the operating diagram has at most four regions J1 to314

J4 where the system can exhibit a bistability between the steady state SS1 of exclusion of the second315

species and the coexistence steady state SS1
2. It is shown, when the substrate inhibition increases, that316

there is an emergence of the bistability region J4 first and then its disappearance with the coexistence317

region J3 for a sufficiently large substrate inhibition rate.318

Conversely in [11], where sin1 ≥ 0 and µ1 is increasing, it is shown that the steady states of319

coexistence SS2 and of extinction of the first species SS3 are unique. Moreover, the bistability cannot320

occur where at most six regions exist such that all bistability regions J4, J5 and J9 to J12 do not exist.321

Thus, our mathematical study of the operating diagrams of model (2.1) shows the significant impact of322

substrate inhibition on the behavior of the process and the emergence of the bistability regions which323

are empty when the growth rate µ1 is increasing [11, 40]. Our findings on the destabilization of a two-324

tiered microbial ‘food chain’ by substrate inhibition are similar to those in [18, 24] where the behavior325

of system depends on the initial condition. Furthermore, a low, as well as a high concentration of326

input substrate, can cause destabilization by the extinction of the highest trophic level of a tri-trophic327

food chain model in the chemostat [8].328

Recently in [38], an extension of the study of the two-tiered model (1.2) in [5] with a commensalistic329

relationship (µ0(·) = µ0(s0)) provides a complete analysis of the operating diagram. It is shown that330

our six steady states exist and at most nine regions exist where only the regions J7, J10 and J11 are331

empty. Hence, the main change of the behavior of the process by considering the effect of syntrophic332

relationship compared to [38] is that the system can exhibit a bistability between the washout SS0333

and the coexistence SS1
2.334

These theoretical messages explain the joined effect of syntrophy, mortality, substrate inhibition,335

and input substrates on the maintenance of coexistence and the protection of microbial ecosystems.336

Finally, the results in this contribution may also serve for optimal experimental design by studying337

the biogas production and the process performance with respect to operating parameters. This is an338

important question that deserves further attention and will be the object of future work.339

Appendix A. Definition domains and properties of auxiliary functions. First, we introduce in340

Table 9 some notations and the definition domains of the auxiliary functions defined in Table 3 that341

we will show in this section. The following proposition determines the domain and some properties of342

the function F0

(
D, sin1

)
.343

Proposition A.1. The function F0

(
D, sin1

)
is defined for

(
D, sin1

)
∈ dom(F0). Moreover, one has344
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Table 9
Notations and intervals of auxiliary functions.

Definition

D̄0

(
sin1
)

D̄0

(
sin1
)

=
(
µ̄0

(
sin1
)
− a0

)
/α0

D̄1 D̄1 = (µmax1 − a1) /α1

Φj(D) Φj(D) = µ̄0

(
M j

1 (D1)
)
−D0, for D ∈ Īj , j = 1, 2

D̂1 D̂1 is the solution of Φ1(D) = 0

D̃i D̃i are the solutions of Φ2(D) = 0, i = 1, . . . , n

I0
Let sin1 > 0. I0 =

[
0, D̄0

(
sin1
))

if α0 ∈ (0, 1]
I0 = [0,+∞) if α0 = 0 and a0 < µ̄0

(
sin1
)
, otherwise I0 = ∅.

J0

Let D > 0. J0 =
[
0, s̄in1

)
, if D̄0(+∞) < D < D̄0(0),

where s̄in1 is the unique solution of D̄0(sin1 ) = D.
J0 = [0,+∞), if D ≤ D̄0(+∞) and J0 = ∅ if D ≥ D̄0(0).

dom(F0) dom(F0) =
{(
D, sin1

)
:
(
D ∈ I0 and sin1 ≥ 0

)
or
(
sin1 ∈ J0 and D ≥ 0

)}
Ī1

Ī1 =
[
0, D̄1

]
if α1 ∈ (0, 1]

Ī1 = [0,+∞) if α1 = 0 and a1 ≤ µmax1 , otherwise Ī1 = ∅.
Ī2 Ī2 = Ī1 if a1 > 0 and Ī2 = Ī1\{0} if a1 = 0

Ij , Ij = {D ∈ Īj/ Φj(D) > 0}, j = 1, 2

D̄1 < D̄0(0) in case 1 of (4.1), D̂1 < D̄0(0) in case 2 of (4.1) and345

lim
sin1 →s̄

in−
1

F0

(
D, sin1

)
= +∞.346

Proof. Let sin1 be fixed. From Table 3, the function F0

(
D, sin1

)
is defined if and only if347

(A.1) D0 < µ̄0

(
sin1
)
⇐⇒ D < D̄0

(
sin1
)

=
µ̄0(sin1 )−a0

α0
,348

where D̄0

(
sin1
)

is defined and positive if and only if α0 6= 0 and µ̄0

(
sin1
)
> a0. In the particular case

α0 = 0, the condition D0 < µ̄0

(
sin1
)

is equivalent to a0 < µ̄0

(
sin1
)
. Thus, the function F0

(
·, sin1

)
is

defined on I0. Let D be fixed. From Hypothesis 2.5, the function sin1 7→ D̄0

(
sin1
)

is decreasing from
D̄0(0) to D̄0(+∞). If D ≤ D̄0(+∞), then (A.1) holds for all sin1 ≥ 0. If D̄0(+∞) < D < D̄0(0), then
there exists a unique solution s̄in1 of equation D = D̄0

(
sin1
)

such that (A.1) holds for all sin1 ∈
[
0, s̄in1

)
.

If D ≥ D̄0(0), (A.1) does not hold for all sin1 ≥ 0. Hence, the function F0(D, ·) is defined on J0.
Consequently, F0

(
D, sin1

)
is defined for

(
D, sin1

)
∈ dom(F0). Since s̄in1 satisfies D0 = µ0

(
+∞, s̄in1

)
, it

follows that
F0

(
D, s̄in1

)
= M0

(
µ0

(
+∞, s̄in1

)
, s̄in1

)
= +∞.

When case 1 of (4.1) holds, we have

α0D̄1 + a0 < µ̄0

(
M1

1

(
α1D̄1 + a1

))
< µ̄0(0),

because the function µ̄0(·) is decreasing (see Hypothesis 2.5). Thus, D̄1 < D̄0(0). Moreover, when349

case 2 of (4.1) holds, we conclude that D̂1 < D̄0(0) where D̂1 is a solution of Φ1(D) = 0 because350

α0D̂1 + a0 = µ̄0

(
M1

1 (α1D̂1 + a1)
)
< µ̄0(0).351

The following result determines the definition domain I1 of the function F 1
i (·), i = 1, 2, according to352

the coefficients α0 and α1.353

Proposition A.2. Let sin1 ≥ 0 be fixed. The function F 1
i (D), i = 1, 2, is defined on354

(A.2) I1 =



[0,+∞), if α0 = α1 = 0, a1 < µmax1 , µ̄0

(
M1

1 (a1)
)
> a0

∅, if α0 = α1 = 0 and a1 ≥ µmax1 or µ̄0

(
M1

1 (a1)
)
≤ a0[

0,
(
µ̄0

(
M1

1 (a1)
)
− a0

)
/α0

)
, if α0 > 0, α1 = 0, a1 < µmax1 , µ̄0

(
M1

1 (a1)
)
> a0[

0, D̄1

]
, if α0 ≥ 0, α1 > 0, and case 1 of (4.1) holds[

0, D̂1

)
, if α0 ≥ 0, α1 > 0, and case 2 of (4.1) holds.

355
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Proof. The function F 1
i , i = 1, 2, is defined if and only if356

(A.3) D1 < µmax1 and D0 < µ̄0

(
M1

1 (D1)
)
.357

If α0 = α1 = 0, (A.3) is equivalent to a1 < µmax1 and a0 < µ̄0

(
M1

1 (a1)
)
. Thus, I1 = [0,+∞) if358

this last condition holds, else I1 = ∅. If α0 > 0 and α1 = 0, (A.3) is equivalent to a1 < µmax1359

and α0D + a0 < µ̄0

(
M1

1 (a1)
)
, that is, I1 =

[
0,
(
µ̄0

(
M1

1 (a1)
)
− a0

)
/α0

)
. If α0 ≥ 0 and α1 > 0,360

straightforward calculation shows that361

(A.4) Φ′j(D) = α1µ̄
′
0

(
M j

1 (D1)
)
M j′

1 (D1)− α0.362

Recall that the function M1
1 is increasing. From Hypothesis 2.5, one has Φ′1(D) < 0 for all D ∈ Ī1.363

Therefore, Φ1(D) > 0 for all D ∈
[
0, D̄1

]
since Φ1(D̄1) > 0 when case 1 of (4.1) holds and Φ1(D) > 0364

for all D ∈
[
0, D̂1

)
since Φ1(D̄1) ≤ 0 when case 2 of (4.1) holds (see Figures 8 and 9).365

When the growth functions are given by (C.1) (as we will show in Proposition C.1), the equation366

Φ2(D) = 0 has at most three solutions in the case 1 of (4.1) and two solutions in the case 2 of (4.1).367

For simplicity, we determine in this particular case the definition domain I2 of the function F 2
i , i = 1, 2.368

The general case can be treated similarly, without added difficulty.369

Proposition A.3. The function F 2
i is defined on370

(A.5) I2 =


[0,+∞) , if α0 = 0, α1 = 0, µ̄0

(
M2

1 (a1)
)
> a0,[

0,
(
µ̄0

(
M2

1 (a1)
)
− a0

)
/α0

)
, if α0 > 0, α1 = 0, µ̄0

(
M2

1 (a1)
)
> a0,[

0, D̄1

]
, if α0 = 0, α1 > 0,Φ2

(
D̄1

)
> 0, µ̄0

(
M2

1 (a1)
)
> a0,(

D̃1, D̄1

]
, if α0 = 0, α1 > 0,Φ2

(
D̄1

)
> 0, µ̄0

(
M2

1 (a1)
)
≤ a0,

371

otherwise, when α0 > 0 and α1 > 0,372

(A.6) I2 =



[
0, D̄1

]
, if case 1 of (4.1) holds and n = 0,(

D̃1, D̄1

]
, if case 1 of (4.1) holds and n = 1,[

0, D̃2

)⋃(
D̃1, D̄1

]
, if case 1 of (4.1) holds and n = 2,(

D̃3, D̃2

)⋃(
D̃1, D̄1

]
, if case 1 of (4.1) holds and n = 3,[

0, D̃1

)
, if case 2 of (4.1) holds and n = 1,(

D̃2, D̃1

)
if case 2 of (4.1) holds and n = 2,

373

where D̃i, i = 1, . . . , n, are the solutions of the equation Φ2(D) = 0 and n denotes the number of374

solutions such that D̃i > D̃j, for all i < j. Note that the function F 2
i is not defined for D = 0 in the375

particular case a1 = 0.376

Proof. The function F 2
i , i = 1, 2, is defined if and only if377

(A.7) 0 < D1 < µmax1 and Φ2(D) > 0.378

If α1 = 0, similar arguments as the proof of I1 imply that of I2. If α0 = 0 and α1 > 0, then Φ′2(D)379

is positive for all D ∈ Ī2, using (A.4), Hypothesis 2.5 and the function M2
1 is decreasing. Hence,380

Φ2(D) > 0 is positive if and only if Φ2

(
D̄1

)
> 0. In this case, Φ2(D) > 0 for all D ∈

[
0, D̄1

]
if381

Φ2(0) > 0, that is, µ̄0

(
M2

1 (a1)
)
> a0. Otherwise, Φ2(D) > 0 for all D ∈

(
D̃1, D̄1

]
where D̃1 is the382

unique solution of Φ2(D) = 0.383

Let α0 > 0 and α1 > 0. From (A.4), the sign of Φ′2(D) can change at D ∈ Ī2, that is, the384

function Φ2 can be nonmonotonic on Ī2 (see Figures 8 and 9(b-d)). When case 1 holds and n = 0,385

we have Φ2

(
D̄1

)
> 0 and the equation Φ2(D) = 0 has no solution. Consequently, Φ2(D) > 0 for386

all D ∈
[
0, D̄1

]
. Hence, the function F 2

i is defined on I2 = Ī2 where Ī2 =
[
0, D̄1

]
when a1 > 0 and387

Ī2 =
(
0, D̄1

]
when a1 = 0. When case 1 holds and n = 1, the equation Φ2(D) = 0 has a unique solution388

D̃1 ∈
[
0, D̄1

]
. Thus, the function F 2

i is defined on
(
D̃1, D̄1

]
since Φ2(D) > 0 for all D ∈

(
D̃1, D̄1

]
.389

The other cases can be treated similarly (see Figure 8(b-d)).390
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The following result describes the properties of the functions F0 and F ji , i, j = 1, 2, when sin1 is fixed.391

Proposition A.4. Let sin1 ≥ 0. We have I2 ⊂ I1, F 1
i (D) ≤ F 2

i (D), i = 1, 2, for all D ∈ I2 and

lim
D→D̄−0

F0

(
D, sin1

)
= lim

D→D̂−1
F 1
i (D) = lim

D→D̃−j
F 2
i (D) = +∞, j = 1, . . . , n.

When case 1 of (4.1) holds, we have F 1
i

(
D̄1

)
= F 2

i

(
D̄1

)
, i = 1, 2.392

Proof. Using Hypothesis 2.5, given that M1
1 (D1) ≤M2

1 (D1), for all D ∈ Ī2, we can write393

(A.8) Φ1(D) = µ̄0

(
M1

1 (D1)
)
−D0 ≥ µ̄0

(
M2

1 (D1)
)
−D0 = Φ2(D).394

If D ∈ I2, that is, D ∈ Ī2 such that Φ2(D) > 0, then D ∈ Ī1 and Φ1(D) ≥ Φ2(D) > 0, that is, D ∈ I1.395

Thus, I2 ⊂ I1. Under Hypothesis 2.3 and the definition of M0 in Table 3, we have for all y ∈ [0, µ̄0(s1))396

and s1 ≥ 0,397

(A.9) ∂M0
∂s1

(y, s1) = −
[
∂µ0
∂s1

(M0(y, s1), s1)
] [

∂µ0
∂s0

(M0(y, s1), s1)
]−1

> 0.398

From the definition of F j1 in Table 3, it follows that

F 1
1 (D) = M0

(
D0,M

1
1 (D1)

)
≤M0

(
D0,M

2
1 (D1)

)
= F 2

1 (D), for all D ∈ I2.

Similarly, F 1
2 (D) ≤ F 2

2 (D), for all D ∈ I2. From the definitions of F0 and D̄0

(
sin1
)

in Tables 3 and 9,
we then obtain

F0

(
D̄0

(
sin1
)
, sin1

)
= M0

(
α0D̄0

(
sin1
)

+ a0, s
in
1

)
= M0

(
µ̄0

(
sin1
)
, sin1

)
= +∞.

When case 1 of (4.1) holds, the function F ji , i, j = 1, 2, is defined for D = D̄1. Using Hypothesis 2.4399

and the definition of D̄1 in Table 9, it follows that400

(A.10) M1
1

(
α1D̄1 + a1

)
= M1

1 (µmax1 ) = M2
1 (µmax1 ) = smax1 .401

Consequently,

F 1
1

(
D̄1

)
=M0

(
α0D̄1 + a0, s

max
1

)
=F 2

1

(
D̄1

)
, F 1

2

(
D̄1

)
=M0

(
α0D̄1 + a0, s

max
1

)
+ smax1 =F 2

2

(
D̄1

)
.

From the definitions Φ1 and D̂1 in Table 9, we have µ̄0

(
M1

1

(
α1D̂1 + a1

))
= α0D̂1 + a0. Therefore,402

F 1
1

(
D̂1

)
= M0

(
µ̄0

(
M1

1

(
α1D̂1 + a1

))
,M1

1

(
α1D̂1 + a1

))
= +∞,

F 1
2

(
D̂1

)
= F 1

1

(
D̂1

)
+M1

1

(
α1D̂1 + a1

)
= +∞.

403

404

The last limit follows similarly.405

Appendix B. Proofs.406

Proof of Proposition 2.6. Since the vector field defined by system (2.1) is C1, the uniqueness
of solution to initial value problems holds. From (2.1), xi(t0) = 0, for any t0 > 0 implies ẋi(t0) = 0,
i = 0, 1. If xi(0) = 0, then xi(t) = 0 for all t as the boundary face xi ≡ 0 is invariant in the vector
field C1 by (2.1). If xi(0) > 0, then xi(t) > 0 for all t as xi ≡ 0 cannot be reached in finite time by
trajectories for which xi(0) > 0 by the uniqueness of solutions. On the other hand, we have

s0(t0) = 0 for any t0 > 0 ⇒ ṡ0(t0) = Dsin0 .

If ṡ0(t0) = 0, then s0(t) > 0 for all t, using arguments similar to case xi. However, if ṡ0(t0) > 0, then
s0(t) > 0 for all t. In fact, assume that s0(0) ≥ 0 and that it exists t0 > 0, such that s0(t0) = 0 and
s0(t) > 0, for t ∈ (0, t0). Then ṡ0(t0) ≤ 0 which contradicts ṡ0(t0) > 0. Finally, we have

s1(t0) = 0 for any t0 > 0 ⇒ ṡ1(t0) = Dsin1 + µ0 (s0(t0), 0)x0(t0).
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Similarly to case s0, no trajectory can leave the positive octant R4
+ by crossing the boundary face s1 = 0

since s0 ≥ 0 and x0 ≥ 0. Therefore, all solutions of (2.1) remain nonnegative. Let z = 2s0+x0+s1+x1.
From (2.1), it follows that

ż = D
(
2sin0 + sin1 − 2s0 − s1

)
−D0x0 −D1x1 ≤ Dmin

(
D

Dmin

(
2sin0 + sin1

)
− z
)
.

By applying Gronwall’s lemma, we obtain407

(B.1) z(t) ≤ D
Dmin

(
2sin0 + sin1

)
+
(
z(0)− D

Dmin

(
2sin0 + sin1

))
e−Dmint, for all t ≥ 0.408

We deduce that

z(t) ≤ max
(
z(0), D

Dmin

(
2sin0 + sin1

))
, for all t ≥ 0.

Consequently, the solutions of (2.1) are bounded for all t ≥ 0. Inequality (B.1) implies that the set Ω409

is positively invariant and is a global attractor for (2.1).410

Proof of Proposition 3.1. The steady states of (2.1) are the solutions of the following set of411

equation412

D
(
sin0 − s0

)
− µ0(s0, s1)x0 = 0(B.2)413

(µ0(s0, s1)−D0)x0 = 0(B.3)414

D
(
sin1 − s1

)
+ µ0(s0, s1)x0 − µ1(s1)x1 = 0(B.4)415

(µ1(s1)−D1)x1 = 0.(B.5)416417

Using (B.2)+(B.3) and (B.4)-(B.3)+(B.5), we obtain the set of equations418

(B.6)

{
D
(
sin0 − s0

)
−D0x0 = 0

D
(
sin1 − s1

)
+D0x0 −D1x1 = 0.

419

By solving (B.6), we obtain x0 and x1 with respect to s0 and s1:420

x0 = D
D0

(
sin0 − s0

)
,(B.7)421

x1 = D
D1

(
sin0 − s0 + sin1 − s1

)
.(B.8)422

423

We can also solve (B.6) and obtain s0 and s1 with respect to x0 and x1:424

s0 = sin0 − D0
D x0,(B.9)425

s1 = sin1 + D0
D x0 − D1

D x1.(B.10)426427

For SS0, one has x0 = x1 = 0. Hence, (B.9) and (B.10) result in s0 = sin0 and s1 = sin1 . Thus, SS0428

always exists.429

For SS1, one has x0 > 0, x1 = 0. Hence, (B.7) results in

x0 = D
D0

(
sin0 − s0

)
.

Using (B.8) and x1 = 0, it follows that

s1 = sin1 + sin0 − s0.

Since x0 > 0, (B.3) results in430

(B.11) ψ(s0) := µ0

(
s0, s

in
1 + sin0 − s0

)
= D0.431

Thus, SS1 exists if and only if equation (B.11) has a nonnegative solution and the s1 and x0-components432

are positive. This condition is equivalent to say that 0 ≤ s0 < sin0 . From Hypotheses 2.1 and 2.3, we433

This manuscript is for review purposes only.



ANAEROBIC DIGESTION MODEL 17

see that the function s0 7→ ψ(s0) is strictly increasing from 0 for s0 = 0 to µ0

(
sin0 , s

in
1

)
for s0 = sin0 .434

Therefore, there exists a solution of equation (B.11) in
[
0, sin0

)
if and only if435

(B.12) µ0

(
sin0 , s

in
1

)
> D0.436

If such a solution exists, then it is unique. Under Hypothesis 2.3 and the definition of M0 in Table 3,437

we have for all y ∈ [0, µ̄0(s1)) and s1 ≥ 0,438

(B.13) ∂M0
∂y (y, s1) =

[
∂µ0
∂s0

(M0(y, s1), s1)
]−1

> 0.439

Using (B.13), condition (B.12) is equivalent to the existence condition of SS1 in Table 5.440

For SSj2, j = 1, 2, one has x0 > 0 and x1 > 0. Hence, (B.7) and (B.8) result in

x0 = D
D0

(
sin0 − s0

)
, x1 = D

D1

(
sin0 + sin1 − s0 − s1

)
.

Moreover, (B.3) and (B.5) result in µ0 (s0, s1) = D0 and µ1(s1) = D1. Using the definitions of M0 and
M j

1 in Table 3, we obtain

s0 = M0(D0, s1), s1 = M j
1 (D1),

where the function M j
1 (D1) is defined for all D ∈ Īj . From Hypotheses 2.1, 2.3, and 2.5, the function

s0 7→ µ0

(
s0,M

j
1 (D1)

)
is strictly increasing from 0 for s0 = 0 to µ̄0

(
M j

1 (D1)
)

when s0 tends towards

infinity. Using the definitions of Φj(D) and Ij in Table 9, equation µ0

(
s0,M

j
1 (D1)

)
= D0 has a

solution s0 ≥ 0 if and only if

Φj(D) := µ̄0

(
M j

1 (D1)
)
−D0 > 0, with D ∈ Īj ,

or equivalently D ∈ Ij . Thus, SSj2 exists if and only if sin0 + sin1 > s0 + s1 and sin0 > s0, that is, the441

existence condition in Table 5 is satisfied with D ∈ Ij .442

For SSj3, j = 1, 2, one has x0 = 0 and x1 > 0. Hence, (B.8) and (B.9) result in

s0 = sin0 , x1 = D
D1

(
sin1 − s1

)
.

Since x1 > 0, (B.5) results in µ1(s1) = D1. Using the definitions of M j
1 in Table 3, we obtain

s1 = M j
1 (D1), where D ∈ Īj .

Thus, we conclude that SSj3 exists if and only if sin1 > M j
1 (D1).443

In what follows, we determine the local asymptotic stability of each steady state of (2.1). Let J444

be the Jacobian matrix of (2.1) at a steady state (s0, x0, s1, x1), that is given by445

(B.14) J =


−D − Ex0 −µ0 Fx0 0

Ex0 µ0 −D0 −Fx0 0
Ex0 µ0 −D − Fx0 − µ′1x1 −µ1

0 0 µ′1x1 µ1 −D1

 ,446

where

E =
∂µ0

∂s0
(s0, s1) > 0, F = −∂µ0

∂s1
(s0, s1) > 0.

For SS0, the characteristic polynomial is P0(λ) = (λ− λ1)(λ− λ2)(λ+D)2, where

λ1 = µ0

(
sin0 , s

in
1

)
−D0, λ2 = µ1

(
sin1
)
−D1.

Thus, SS0 is LES if and only if447

(B.15) µ0

(
sin0 , s

in
1

)
< D0 and µ1

(
sin1
)
< D1.448
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If D0 ≥ µ̄0

(
sin1
)
, that is, D /∈ I0, then the first condition of (B.15) is satisfied. If D ∈ I0, using (B.13)

and the definition of M0 in Table 3, it follows that the first condition of (B.15) is equivalent to

sin0 < M0

(
D0, s

in
1

)
= F0

(
D, sin1

)
.

If D1 > µmax1 , that is, D /∈ Ī1, then the second condition of (B.15) is satisfied. If D ∈ Īj , j = 1, 2,449

using the definition of M j
1 in Table 3, it follows that the second condition of (B.15) is equivalent to450

(B.16) sin1 < M1
1 (D1) with D ∈ Ī1 or sin1 > M2

1 (D1) with D ∈ Ī2.451

At SS1, the Jacobian matrix is given by452

J =


−D − Ex0 −D0 Fx0 0

Ex0 0 −Fx0 0
Ex0 D0 −D − Fx0 −µ1

0 0 0 µ1 −D1

 .453

Denote Ci and Li the columns and lines of the matrix J − λI. The replacements of L1 by L1 + L3

and then C3 by C3 −C1 preserve the determinant and lead to the following characteristic polynomial

P1(λ) = (λ− λ1)(λ− λ1)
(
λ2 + c1λ+ c2

)
,

where λ1 = µ1

(
sin0 + sin1 − s0

)
− D1, λ2 = −D, c1 = D + (E + F )x0 and c2 = D0(E + F )x0. Since454

c1 > 0 and c2 > 0, the real parts of the roots of the quadratic factor are negative. Therefore, SS1 is455

LES if and only if λ1 < 0, that is,456

(B.17) µ1

(
sin0 + sin1 − s0

)
< D1.457

If D1 > µmax1 , that is, D /∈ Ī1, then condition (B.17) is satisfied. If D1 ≤ µmax1 , that is, D ∈ Ī1, then458

condition (B.17) is equivalent to459

(B.18) s0 > sin0 + sin1 −M1
1 (D1) or s0 < sin0 + sin1 −M2

1 (D1).460

Since the function s0 7→ ψ(s0) = µ0

(
s0, s

in
0 + sin1 − s0

)
is increasing, (B.18) is equivalent to

ψ(s0) > ψ
(
sin0 + sin1 −M1

1 (D1)
)

or ψ(s0) < ψ
(
sin0 + sin1 −M2

1 (D1)
)
.

At SS1, one has ψ (s0) = D0. Thus, condition (B.18) is equivalent to461

(B.19) D0 > µ0

(
sin0 + sin1 −M1

1 (D1),M1
1 (D1)

)
or D0 < µ0

(
sin0 + sin1 −M2

1 (D1),M2
1 (D1)

)
.462

If D ∈ Ī1\I1, that is, Φ1(D) < 0 (or equivalently µ̄0

(
M1

1 (D1)
)
< D0) then the first condition of

(B.19) is satisfied. If D ∈ Ī1\I2, that is, µ̄0

(
M2

1 (D1)
)
< D0, then the second condition of (B.19) is

not satisfied. If D ∈ Ij , j = 1, 2, then condition (B.19) is equivalent to

sin0 + sin1 < M0

(
D0,M

1
1 (D1)

)
+M1

1 (D1) or sin0 + sin1 > M0

(
D0,M

2
1 (D1)

)
+M2

1 (D1)

because the function M0

(
·,M1

1 (D1)
)

is increasing. These conditions are the same as those in Table 5.463

For SSj2, j = 1, 2, the characteristic polynomial is P2(λ) = λ4 + c1λ
3 + c2λ

2 + c3λ+ c4, where464

c1 = Gjx1 +Hx0 + 2D, c2 = EGjx0x1 + (D +D0)Hx0 + (D +D1)Gjx1 +D2,465

c3 = (D0 +D1)EGjx0x1 +DD0Hx0 +DD1Gjx1, c4 = D0D1EGjx0x1,466467

with H = E+F and G1 := µ′1
(
M1

1 (D1)
)
> 0 since M1

1 (D1) < smax1 and G2 := µ′1
(
M2

1 (D1)
)
< 0 since468

M j
1 (D1) > smax1 . Note that G1 = G2 = 0, when D = D̄1 where SS1

2 = SS2
2. Using the Liénard-Chipart469

stability criteria (see Gantmacher [20], Theorem 11), SSj2 is LES if and only if470

(B.20) ci > 0, i = 1, 3, 4, and c1c2c3 − c2
1c4 − c2

3 > 0.471
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Hence, SS2
2 is unstable as long as it exists with D 6= D̄1 because the condition c4 > 0 in (B.20) is

unfulfilled as G2 < 0. For SS1
2, ci > 0, for all i = 1, 3, 4, as E, F , H and G1 are positive. Following

[40], where the particular case α0 = α1 = 1 was considered, we obtain

c1c2c3 − c2
1c4 − c2

3 = γ5D
5 + γ4D

4 + γ3D
3 + γ2D

2 + γ1D + γ0,

where the coefficients γj , j = 0, . . . , 5, can be written as follows:472

γ5 =2(α0Hx0 + α1G1x1),

γ4 =2[α0(1− α1) + α1(1− α0)]EG1x0x1 + ((3 + α0)Hx0 + (3 + α1)G1x1)(α0Hx0 + α1G1x1)

+ 2a0Hx0 + 2a1G1x1,

γ3 =[2(α1a0 + α0a1)H + (a0(5− 4α1) + a1(5− 4α0))E + 3(a0 + a1)F )]G1x0x1

+
[
α1(α0 + 1)H +

(
(7− 3α1)α0 + 3α1 + α2

0

)
E + α0(α0 + α1 + 2)F

]
HG1x

2
0x1

+
[
α0(α1 + 1)H +

(
(7− 3α0)α1 + 3α0 + α2

1

)
E + α1(α0 + α1 + 2)F

]
G2

1x0x
2
1

+ (3 + 2α0)a0H
2x2

0 + (3 + 2α1)a1G
2
1x

2
1 + α0(α0 + 1)H3x3

0 + α1 (α1 + 1)G3
1x

3
1,

γ2 =[a0((2α0 + α1 + 2)H + (5− 3α1)E + α1F ) + a1((α0 + 1)H + 3(1− α0)E + α0F )]HG1x
2
0x1

+ [a0((α1 + 1)H + 3(1− α1)E + α1F ) + a1(2(α0 + α1 + 1)H + (5− 4α0)E)]G2
1x0x

2
1

+
[
((3− 2α1)α0 + α1)H + 2(α0 + 2α1)E +

(
(α0 + α1)2 + 2α1

)
F
]
EG2

1x
2
0x

2
1

+
(
α2

0 + 2α0 + α1

)
EH2G1x

3
0x1 +

(
α2

1 + 2α1 + α0

)
EG3

1x0x
3
1 + (1 + 2α0)a0H

3x3
0

+ (1 + 2α1)a1G
3
1x

3
1 + (a0Hx0 − a1G1x1)2 + 4a0a1FG1x0x1,

γ1 =(Hx0 +G1x1)(a0Hx0 − a1G1x1)2 + 4a0a1FHG1x
2
0x1 + 4a0a1FG

2
1x0x

2
1

+ [a0((5− 2α1)E + (2α0 + 3)F ) + a1((5− 2α0)E + (2α1 + 3)F )]EG2
1x

2
0x

2
1

+ (2(α0 + 1)a0 + a1)EH2G1x
3
0x1 + (a0 + 2(α1 + 1)a1)EG3

1x0x
3
1

+ (α0 + α1)(Hx0 +G1x1)E2G2
1x

2
0x

2
1,

γ0 =(a0 + a1)(Hx0 +G1x1)E2G2
1x

2
0x

2
1 + (a0 + a1)2EFG2

1x
2
0x

2
1 + (a0Hx0 − a1G1x1)2EG1x0x1.

473

Since α0 and α1 are in [0, 1], then γj > 0 for j = 0, . . . , 5. Thus, the conditions of Liénard-Chipart474

stability criteria (B.20) are satisfied for SS1
2 which is LES as long as it exists with D 6= D̄1.475

For SSj3, j = 1, 2, the characteristic polynomial is

P3(λ) = (λ− λ1)(λ− λ2)
(
λ2 + c1λ+ c2

)
,

where λ1 = −D, λ2 = µ0

(
sin0 ,M

j
1 (D1)

)
−D0, c1 = D+Gjx1 and c2 = D1Gjx1. For SS2

3, c2 < 0 since476

G2 < 0. Therefore, the roots of the quadratic factor are real and have opposite signs. Consequently,477

if SS2
3 exists, it is unstable. For SS1

3, the real parts of the roots of the quadratic factor are negative as478

G1 > 0 so that c1 > 0 and c2 > 0. Therefore, SS1
3 is LES if and only if479

(B.21) µ0

(
sin0 ,M

1
1 (D1)

)
< D0 ⇐⇒ sin0 < M0

(
D0,M

1
1 (D1)

)
,480

since the function M0

(
·,M1

1 (D1)
)

is increasing.481

Proof of Proposition 4.1. Assume that sin1 < M1
1 (D1). Using Table 5, SSj3, j = 1, 2 does not

exist. In this case, we have F j1 (D) < F j2 (D)− sin1 . If
(
D, sin0 , s

in
1

)
∈ J1, then sin0 < F0

(
D, sin1

)
. From

Table 5, SS0 is LES and SS1 does not exist. If D /∈ Ij , then the existence condition of SSj2 does not

hold since F j1 (D) = F j2 (D) = +∞. Let D ∈ Ij . Assume that the existence condition of SSj2 holds.
Then,

M0

(
D0,M

j
1 (D1)

)
= F j1 (D) < sin0 < F0

(
D, sin1

)
= M0

(
D0, s

in
1

)
.

Using (A.9), we obtain M j
1 (D1) < sin1 which is the desired contradiction. If

(
D, sin0 , s

in
1

)
∈ J2, then

F0

(
D, sin1

)
< sin0 < F 1

2 (D)− sin1 . From Table 5, SS0 is unstable and SS1 exists and is LES. If D /∈ Ij ,
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the existence condition of SSj2 does not hold. Let D ∈ Ij . If SSj2 exists, that is, sin0 > F j2 (D) − sin1 .
This is a contradiction for j = 1. However, for j = 2, one has F 1

2 (D)− sin1 < F 2
2 (D)− sin1 < sin0 which

is a contradiction. If
(
D, sin0 , s

in
1

)
∈ J3, then F 1

2 (D) − sin1 < sin0 < F 2
2 (D) − sin1 . From Table 5, SS1

2

exists and is LES while SS2
2 does not exist. Assume that sin0 ≤ F0

(
D, sin1

)
. Hence,

F 1
1 (D) < F 1

2 (D)− sin1 < F0

(
D, sin1

)
, or (equivalently) M1

1 (D1) < sin1 ,

which is a contradiction, that is, sin0 > F0

(
D, sin1

)
. Therefore, SS0 exists and is unstable while SS1

exists and is LES, using Table 5. If
(
D, sin0 , s

in
1

)
∈ J4, then sin0 > F 2

2 (D)−sin1 > F 1
2 (D)−sin1 > F 1

1 (D).
From Table 5, SS1

2 exists and is LES while SS2
2 exists and is unstable. Assume that sin0 ≤ F0

(
D, sin1

)
.

Hence,

F 1
1 (D) < F0

(
D, sin1

)
, or (equivalently) M1

1 (D1) < sin1 ,

which is a contradiction. Thus, sin0 > F0

(
D, sin1

)
. Therefore, SS0 is unstable while SS1 is LES, using482

Table 5.483

Assume that M1
1 (D1) < sin1 < M2

1 (D1). Using Table 5, SS0 is unstable, SS1
3 exists and SS2

3 does
not exist. In this cas, we have F 1

1 (D) > F 1
2 (D)− sin1 and F 2

1 (D) < F 2
2 (D)− sin1 . If

(
D, sin0 , s

in
1

)
∈ J5,

then sin0 > F 2
2 (D)− sin1 > F 2

1 (D) > F 1
1 (D). Assume that sin0 ≤ F0

(
D, sin1

)
. Hence,

F 2
1 (D) < F0

(
D, sin1

)
, or (equivalently) M2

1 (D1) < sin1

which is a contradiction. Thus, sin0 > F0

(
D, sin1

)
. From Table 5, SS1 and SS1

2 exist and are LES while
SS2

2 exists and is unstable. If
(
D, sin0 , s

in
1

)
∈ J6, then

F 1
2 (D)− sin1 < F 1

1 (D) < F0

(
D, sin1

)
< sin0 < F 2

2 (D)− sin1

because M1
1 (D1) < sin1 . Using Table 5, SS1 and SS1

3 exist and are unstable, SS1
2 exists and is LES, SS2

2

does not exist. If
(
D, sin0 , s

in
1

)
∈ J7, then

F 1
1 (D) < sin0 < F0

(
D, sin1

)
< F 2

1 (D) < F 2
2 (D)− sin1 ,

as sin1 < M2
1 (D1). From Table 5, SS1 and SS2

2 do not exist, and SS1
2 exists and is LES, and SS1

3 exists
and is unstable. If

(
D, sin0 , s

in
1

)
∈ J8, then

sin0 < F 1
1 (D) < F0

(
D, sin1

)
< F 2

1 (D) < F 2
2 (D)− sin1 .

From Table 5, SS1, SS1
2 and SS2

2 do not exist and SS1
3 exists and is LES.484

Assume that M2
1 (D1) < sin1 . Using Table 5, SS1

3 and SS2
3 exist. In this case, we have F 1

1 (D) >
F 1

2 (D)− sin1 and F 2
1 (D) > F 2

2 (D)− sin1 . If
(
D, sin0 , s

in
1

)
∈ J9, then

sin0 < F 1
1 (D) < F 2

1 (D) < F0

(
D, sin1

)
.

From Table 5, SS1, SS1
2 and SS2

2 do not exist, SS0 and SS1
3 are LES and SS2

3 is unstable. If
(
D, sin0 , s

in
1

)
∈

J10, then

F 1
1 (D) < sin0 < F 2

1 (D) < F0

(
D, sin1

)
.

From Table 5, SS1 and SS2
2 do not exist, SS0 and SS1

2 are LES, and SS1
3 and SS2

3 are unstable. If(
D, sin0 , s

in
1

)
∈ J11, then

F 1
1 (D) < F 2

1 (D) < sin0 < F0

(
D, sin1

)
.

From Table 5, SS1 does not exist, SS0 and SS1
2 are LES, and SS2

2, SS1
3 and SS2

3 are unstable. If(
D, sin0 , s

in
1

)
∈ J12, then

F 1
2 (D)− sin1 < F 1

1 (D) < F 2
1 (D) < F0

(
D, sin1

)
< sin0 .

From Table 5, SS1 and SS1
2 are LES, and SS0, SS2

2, SS1
3 and SS2

3 are unstable.485
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Proof of Proposition 4.2. Let D ∈ Īj . We have sin∗1j = M j
1 (D1) ≥ 0, j = 1, 2 such that

sin∗11 < sin∗12 because M1
1 (D1) ≤M2

1 (D1), for all D ∈ Ī2. For all D ∈ I1, one has

F0

(
D, sin∗11

)
= M0

(
D0,M

1
1 (D1)

)
= F 1

1 (D) < +∞ = F0

(
D, s̄in1

)
.

As the function F0(D, ·) is increasing, we obtain sin∗11 < s̄in1 . For all D ∈ I1, we have

F 1
1 (D) = F 1

1 (D) +M1
1 (D1)− sin∗11 = F 1

2 (D)− sin∗11 ,

that is, the curves γ0, γ1
1 and γ1

2 intersect at sin∗11 . For all sin1 ∈
[
0, sin∗11

)
, one has M j

1 (D1) > sin1 and
therefore

M0

(
D0, s

in
1

)
< M0

(
D0,M

1
1 (D1)

)
< M0

(
D0,M

1
1 (D1)

)
+M1

1 (D1)− sin1 ,

that is, (4.2) holds. Inversely, for all sin1 ∈
(
sin∗11 , s̄

in
1

)
, (4.3) holds. The second assertion is proved in a486

similar manner.487

Proof of Proposition 4.3. Let sin1 ≤ smax1 . The functionD 7→M2
1 (α1D+a1)−sin1 is nonnegative

for all D ∈ Ī2 since it is decreasing from M2
1 (a1)− sin1 for D = 0 to smax1 − sin1 ≥ 0 for D = D̄1. Thus,

for all D ∈ I2,

F 2
1 (D) = M0

(
D0,M

2
1 (D1)

)
≤M0

(
D0,M

2
1 (D1)

)
+M2

1 (D1)− sin1 = F 2
2 (D)− sin1 .

Since M0 is increasing with respect to the second variable (see formula (A.9)), we have for all D ∈ I2,

F0

(
D, sin1

)
= M0

(
D0, s

in
1

)
≤M0

(
D0,M

2
1 (D1)

)
= F 2

1 (D).

Since the function D 7→M1
1 (α1D + a1)− sin1 is increasing from M1

1 (a1)− sin1 for D = 0 to smax1 − sin1
for D = D̄1, there exists a solution D∗1 ∈ Ī1 of equation M1

1 (α1D+ a1) = sin1 if and only if (4.6) holds.
If such D∗1 exists then it is unique. If D∗1 ∈ I1, the function F 1

i is defined for D = D∗1 where

F 1
2 (D∗1)− sin1 =M0

(
α0D

∗
1 + a0,M

1
1 (α1D

∗
1 + a1)

)
=F 1

1 (D∗1)=M0

(
α0D

∗
1 + a0, s

in
1

)
=F0

(
D∗1, s

in
1

)
.

Since M1
1 (D1) < sin1 if D < D∗1, one has

F 1
2 (D)− sin1 = M0

(
D0,M

1
1 (D1)

)
+M1

1 (D1)− sin1 < M0

(
D0,M

1
1 (D1)

)
= F 1

1 (D) < M0

(
D0, s

in
1

)
,

that is, (4.3) holds. Inversely, if D > D∗1, then (4.2) holds. If D∗1 ∈ Ī1\I1, that is, D∗1 ∈
[
D̂1, D̄1

]
, then488

M1
1 (α1D + a1) < sin1 for all D ∈

[
0, D̂1

)
. Therefore, (4.3) holds where D̄0

(
sin1
)
< D̂1. If D∗1 does not489

exist, then M1
1 (α1D + a1) > sin1 for all D ∈ I1 and consequently (4.2) holds.490

Proof of Proposition 4.5. From Table 6, the surface γ0 is defined by sin0 = F0

(
D, sin1

)
. Using491

Tables 4 and 5 and Proposition 3.1, we can see that SS0 and SS1 coalesce and are nonhyperbolic steady492

states on the surface γ0. Using Table 5, if sin1 < M1
1 (D1), we have a transition from J1 to J2 where493

SS0 becomes unstable and SS1 emerges stable in the positive octant R4
+. All other cases are left to494

the reader since they can be treated similarly.495

Appendix C. The particular case for growth functions (C.1). The Hypotheses 2.1 to 2.5 are496

satisfied by the following growth rates of Monod-type with hydrogen inhibition and of Haldane-type,497

respectively,498

(C.1) µ0 (s0, s1) =
m0s0

K0 + s0

1

1 + s1/Ki
, µ1(s1) =

m1s1

K1 + s1 + s2
1/KI

,499

wheremj andKj , j = 0, 1, denote the maximum growth rates (units are 1/d) and the Michaelis-Menten500

constants with units of concentration
(
kg COD/m3

)
; Ki and KI represent the inhibition factor due501

to s1 for the growth of the species x0 and x1, respectively, with units of concentration. The following502

result determines the maximal number of solutions of the equation Φ2(D) = 0 in the particular case503

of growth functions (C.1) when α0 > 0 and α1 > 0.504
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(a)
Γ0

Γ1

s1

(b)
Φ1(D)

Φ2(D)

D̃3 D̃2 D̃1D̄1

D

(c)
Γ0

Γ1

s1

(d)
Φ1(D)

Φ2(D)

D̃2 D̃1

D̂1D

Figure 8. Case (C.3): (a,c) number of intersections of the curves Γ0 and Γ1 and (b,d) the corresponding number of
solutions of equation Φj(D) = 0. (a-b) In case 1 of (4.1), the equation Φ2(D) = 0 has three solutions on

[
0, D̄1

]
. (c-d)

In case 2 of (4.1), the equation Φ2(D) = 0 has two solutions on
[
0, D̄1

]
.

(a)
Γ0

Γ1

s1

(b)

Φ1(D)

Φ2(D)

D̃2D̃1D̄1

D

(c)

Γ0

Γ1

s1

(d)

Φ1(D)

Φ2(D)

D̃1

D̂1D

Figure 9. Case (C.4), in particular without decay: (a,c) number of intersections of the curves Γ0 and Γ1 of the
functions µ̃0 and µ1, respectively, and (b,d) the corresponding number of solutions of equation Φj(D) = 0. (a-b) In case
1 of (4.1), the equation Φ2(D) = 0 has two solutions on

[
0, D̄1

]
. (c-d) In case 2 of (4.1), the equation Φ2(D) = 0 has

one solution on
[
0, D̄1

]
.

Proposition C.1. Let α0 > 0 and α1 > 0. The equations Φ1(D) = 0 and Φ2(D) = 0 are equivalent505

to506

(C.2) µ1(y) = µ̃0(y) := α1
α0
µ̄0(y) + a1 − α1

α0
a0, with y = µ̄−1

0 (D0).507

When the growth functions µ0 and µ1 are of type (C.1), the equation Φ2(D) = 0 has at most three508

solutions in the case 1 of (4.1) when509

(C.3) a1/α1 6= a0/α0,510

and at most two solutions in the case 2 of (4.1) (see Figure 8(b-d)). It has at most two solutions in511

the case 1 of (4.1) when512

(C.4) a1/α1 = a0/α0,513

and at most one solution in the case 2 of (4.1), (see Figure 9(b-d)).514

Proof. From definition of the function Φj in Table 9 and Hypothesis 2.5, we have, for j = 1, 2,

Φj(D) = 0 ⇐⇒ M j
1 (D1) = µ̄−1

0 (D0) ⇐⇒ µ1

(
µ̄−1

0 (D0)
)

= D1.

Let y = µ̄−1
0 (D0). Thus, D0 = µ̄0(y) and D1 = µ1(y). From definition (1.3) of Di, i = 0, 1, we have

D1 = α1(D0 − a0)/α0 + a1. Consequently, equation (C.2) holds. When the growth functions µ0 and
µ1 are of type (C.1), we obtain

m1y

K1 + y + y2/KI
=
Kim0α1/α0 + (Ki + y) (a1 − a0α1/α0)

Ki + y
.

When condition (C.3) holds, we obtain an algebraic equation of degree three in y and consequently515

the equation (C.2) has at most three solutions. Hence, if case 1 of (4.1) holds, that is, the equation516

Φ1(D) = 0 has no solution, then the equation Φ2(D) = 0 has at most three solutions. However, if case517

2 of (4.1) holds, that is, the equation Φ1(D) = 0 has one solution, then the equation Φ2(D) = 0 has518

at most two solutions. When condition (C.4) holds, we obtain an algebraic equation of degree two in519

y. Thus, the rest of the results follows similarly.520
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When the growth functions are given by (C.1), we succeeded in finding a set of parameters such521

that we show the maximum number of intersections of the curves Γ0 and Γ1 and the corresponding522

number of solutions of the equation Φj(D) = 0 (see Figures 8 and 9).523

Appendix D. Tables. In this section, we give some tables used in the paper. Tables 10 and 11524

describe the intersections of the surfaces of Γ with a two-dimensional operating plane where D or sin1525

is constant, respectively. Table 12 presents the auxiliary functions defined in Table 3 in the particular526

case of the Monod-type with hydrogen inhibition and of the Haldane-type given by (C.1). Table 13527

provides the biological parameter values used in all the figures.

Table 10
Intersections of the surfaces of Γ with a

(
sin1 , s

in
0

)
plane where D is constant.

Γ Condition Γ ∩ {D = constant}

γ0
D < D̄0(0) Curve of the function sin0 = F0

(
D, sin1

)
D ≥ D̄0(0) Empty

γj1
D ∈ Ij Horizontal line sin0 = F j1 (D)
D /∈ Ij Empty

γj2
D ∈ Ij Oblique line sin0 = F j2 (D)− sin1
D /∈ Ij Empty

γj3
D ∈ Īj Vertical line sin1 = sin∗1j = M j

1 (D1)
D /∈ Īj Empty

γ4
D = D̄1 Whole plane

(
sin1 , s

in
0

)
D 6= D̄1 Empty

Table 11
Intersections of the surfaces of Γ with a

(
D, sin0

)
plane where sin1 is constant.

Γ Condition Γ ∩
{
sin1 = constant

}
γ0

D < D̄0

(
sin1
)

Curve of the function sin0 = F0

(
D, sin1

)
D ≥ D̄0

(
sin1
)

Empty

γj1
D ∈ Ij Curve of the function sin0 = F j1 (D)
D /∈ Ij Empty

γj2
D ∈ Ij and sin1 < F j2 (D) Curve of the function sin0 = F j2 (D)− sin1
D /∈ Ij or sin1 > F j2 (D) Empty

γ13
sin1 ∈ (M1

1 (a1), smax1 ] Vertical line D = D∗
1

sin1 /∈ (M1
1 (a1), smax1 ] Empty

γ23
sin1 ∈ [smax1 ,M2

1 (a1)) Vertical line D = D∗
2

sin1 /∈ [smax1 ,M2
1 (a1)) Empty

γ4 sin0 ≥ max(0, smax1 − sin1 ) Vertical line D = D̄1

Table 12
Auxiliary functions with the specific growth functions (C.1) where Ij, j = 1, 2 are defined by (A.2), (A.5), and (A.6).

Auxiliary function Definition domain

M0(y, s1) = K0y(1+s1/Ki)
m0−y(1+s1/Ki)

0 ≤ y < m0

1+s1/Ki

M j
1 (y) =

(m1−y)KI±
√

(KI(m1−y))2−4K1KIy2

2y 0 < y < m1

1+2
√
K1/KI

F0

(
D, sin1

)
=

K0(α0D+a0)(1+sin1 /Ki)
m0−(α0D+a0)(1+sin1 /Ki)

0 ≤ α0D + a0 <
m0

1+sin1 /Ki

F j1 (D) =
K0(α0D+a0)(1+Mj

1 (α1D+a1)/Ki)
m0−(α0D+a0)(1+Mj

1 (α1D+a1)/Ki)
D ∈ Ij

F j2 (D) = M j
1 (α1D + a1) + F j1 (D) D ∈ Ij

528
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