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Understanding and exploiting the syntrophic relationship between microbial species is a major challenge in the mathematical theory of the anaerobic digestion process. In this work, we focus on the acetogenesis and hydrogenotrophic methanogenesis phases and we include distinct removal rates for the species. Our study gives a quite comprehensive analysis of a syntrophic model by analyzing the joined effects of syntrophy relationship, mortality, substrate inhibition and input concentrations that were neglected in previous studies. The mathematical analysis of the model involving the mortality is a difficult problem since the model is not reduced to a planar system as in the case where the dilution rates of the substrates and the removal rates of microbial species are equal. Using general nonmonotonic growth rates, the necessary and sufficient conditions of existence and local stability of all steady states of the four-dimensional system are determined, according to the operating parameters. This general model exhibits a rich behavior with the coexistence of two microbial species, the bistability, the multiplicity of coexistence steady states, and the existence of two steady states of extinction of the first species. The operating diagram shows how the model behaves by varying the control parameters and illustrates the effect of the substrate inhibition and the new input substrate concentration (hydrogen) on the appearance or the disappearance of coexistence and bistability regions. Similarly to the classical chemostat model, including the substrate inhibition can destabilize a two-tiered microbial 'food chain', where the asymptotic behavior of the system depends on the initial condition.

1. Introduction. Anaerobic Digestion (AD) is a process used for the biological treatment of municipal, agricultural and industrial wastes with the additional benefit of producing energy in the form of biogas. During this process, the waste is first partially transformed into volatile fatty acids and then converted into methane and carbon dioxide, which can be used as a carbon source for microalgae [START_REF] Martinez | Modeling and analysis of an absorption column connected to a microalgae culture[END_REF].

AD process is too complex with difficulty to collect informative experimental data which complicates the model validation and the parameter identification [START_REF] Donoso-Bravo | Model selection, identification and validation in anaerobic digestion: A review[END_REF]. The generic AD Model No.1 (ADM1) of the IWA Task Group for Mathematical Modeling of AD Processes is characterized by its extreme complexity with 32 dynamic concentration state variables and a large number of parameters [START_REF] Batstone | The IWA Anaerobic Digestion Model No 1 (ADM1)[END_REF].

Many mathematical models describing the whole process or some key steps have been considered in the last three decades; see [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] Fekih-Salem | Analyse mathématique d'un modèle de digestion anaérobie à trois étapes[END_REF][START_REF] Ghouali | Maximizing biogas production from the anaerobic digestion[END_REF][START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Volcke | Steady state multiplicity of two-step biological conversion systems with general kinetics[END_REF][START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF][START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF]. A synthetic and unified vision of many models involving two or three cross-feeding species and various types of inhibition has been proposed in [START_REF] Di | Analysis of productivity and stability of synthetic microbial communities[END_REF]. Using specific growth functions, the numerical simulations reveal the reduction in both productivity and stability due to inhibitions with the occurrence of stable periodic orbits owing to the presence of negative and positive feedback loops. In [START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF], a mathematical analysis of the protein-rich Microalgae AD model (the so-called MAD) shows the process behavior according to the control parameters where the operating diagram illustrates the ideal conditions to optimize biogas yield and ammonia toxicity. In fact, the MAD model has been proposed in [START_REF] Mairet | Three-reaction model for the anaerobic digestion of microalgae[END_REF] and was validated from experimental data of an AD process of Chlorella vulgaris microalgae involving four substrates and three microbial species with three reactions and two steps (hydrolysis-acetogenesis and methanogenesis).

Recently, a complete mathematical analysis was provided in [START_REF] Meadows | Global analysis of a simplified model of anaerobic digestion and a new result for the chemostat[END_REF] of a two-step model (acidogenesis and methanogenesis) introduced in [START_REF] Bornhöft | Steady-state analysis of the anaerobic digestion model No[END_REF] where a fifth state variable (ammonia) is included. The decay and the inhibition caused by ammonia were taken into account by considering a general class of response functions. In [START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF], an eight-dimensional mathematical model describing three of the four main stages of AD (acidogenesis, acetogenesis, and methanogenesis) was analyzed by considering syntrophy and substrate inhibition effects. Following [START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF] and using general functional responses, a three-tiered microbial food-web model was studied in [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] discovering the emergence of the coexistence region in the operating diagram where a stable limit cycle is born via the Hopf bifurcation, which has not been reported by [START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF]. The work of [START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF] has been recently extended in [START_REF] Nouaoura | Mathematical analysis of a three-tiered model of anaerobic digestion[END_REF][START_REF] Nouaoura | Mathematical analysis of a three-tiered food-web in the chemostat[END_REF] by considering the effects of the phenol and hydrogen input concentrations, together with the effects of maintenance (or decay) terms.

Using a step by step parameter identification procedure, Bernard et al. [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] have proposed and have validated a reduced two-step model (the so-called AM2) from experimental data of the AD process. This model has a cascade structure and has been widely applied for control and optimization of AD process [START_REF] Ghouali | Maximizing biogas production from the anaerobic digestion[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Sbarciog | An optimizing start-up strategy for a bio-methanator[END_REF][START_REF] Sbarciog | A biogas-based switching control policy for anaerobic digestion systems[END_REF]. Using a maximum likelihood principal component analysis [START_REF] Mailier | Stoichiometric identification with maximum likelihood principal component analysis[END_REF] and generated data built from ADM1 model, the appropriate number of reactions is determined by a systematic data driven-approach followed by a parameter identification procedure [START_REF] Giovannini | On the derivation of a simple dynamic model of anaerobic digestion including the evolution of hydrogen[END_REF]. The resulting low-order model is the two-tiered microbial 'food chain' leading to perfectible direct and cross-validation results.

The AM2 model was mathematically studied in [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Sari | The operating diagram for a two-step anaerobic digestion model[END_REF] and was extended in [START_REF] Benyahia | Effect of a new variable integration on steady states of a two-step anaerobic digestion model[END_REF][START_REF] Benyahia | Anaerobic membrane bioreactor modeling in the presence of Soluble Microbial Products (SMP) -the Anaerobic Model AM2b[END_REF], where a fifth state variable (SMP: Soluble Microbial Products), important for fouling of membranes, is included. For a review of mathematical modeling of anaerobic digestion with respect to theory, applications and technologies, the reader is refereed to [START_REF] Wade | Not just numbers: Mathematical modelling and its contribution to anaerobic digestion processes[END_REF].

The two-tiered microbial model we consider here describes the next two biological reactions:

(1.1)

s 0 µ 0 -----→ x 0 + s 1 , s 1 µ 1 -----→ x 1
where a substrate s 0 (Volatile Fatty Acid) is consumed by a biomass x 0 (acetogenic bacteria) to produce a product s 1 (hydrogen). The substrate s 1 is consumed in the second reaction by another biomass

x 1 (hydrogenotrophic methanogenic bacteria). µ 0 and µ 1 are the bacterial growth rates, depending eventually on one or both substrates. The substrates s 0 and s 1 are introduced in the reactor with the inflowing concentrations s in 0 and s in 1 , respectively, and a dilution rate D. These reactions are described by the following system of differential equations

(1.2)          ṡ0 = D s in 0 -s 0 -µ 0 (•)x 0 , ẋ0 = (µ 0 (•) -D 0 ) x 0 , ṡ1 = D s in 1 -s 1 + µ 0 (•)x 0 -µ 1 (•)x 1 , ẋ1 = (µ 1 (•) -D 1 ) x 1 ,
where D 0 and D 1 represent, respectively, the disappearance rates of acetogenic and methanogenic bacteria. In this study, the two-tiered model (1.2) is analyzed where D i can be modeled as in [START_REF] Marsili-Libelli | Shock load modelling in the anaerobic digestion process[END_REF][START_REF] Shen | Bifurcation and stability analysis of an anaerobic digestion model[END_REF] by

(1.3) D i = α i D + a i , i = 0, 1,
where the nonnegative death (or decay) rate parameters a 0 and a 1 are taken into consideration with units of the dilution rate (D has units 1/d). These decay terms included in model (1.2) are related to consumption of energy, other than growth; see for instance [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF] or [START_REF] Ni | Model-based characterization of endogenous maintenance, cell death and predation processes of activated sludge in sequencing batch reactors[END_REF]. The coefficients α 0 and α 1 belong to [0, 1] and represent, respectively, the first and the second biomass proportion that leaves the reactor. For example, in [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] these coefficients are proposed to model a biomass reactor attached to the support or to decouple the residence time of solids and the hydraulic residence time (1/D). Thus, the study will not be restricted to the case α i = 1, i = 0, 1, as in most of the studies in the literature (see Tables 1 and2 below), and the case 0 ≤ α i ≤ 1, which is of biological interest, will be investigated.

If the growth rate µ 0 depends only on substrate s 0 and µ 1 depends only on s 1 , that is,

(1.4) µ 0 (•) = µ 0 (s 0 ), µ 1 (•) = µ 1 (s 1 ), then system (1.
2) has a cascade structure and describes a commensalistic relationship where the commensal species x 1 needs the first species x 0 to grow, while x 0 can grow without x 1 and it is not affected by the growth of the commensal species x 1 . If µ 0 depends on both substrates s 0 and s 1 , and

µ 1 depends on substrate s 1 , that is, (1.5) µ 0 (•) = µ 0 (s 0 , s 1 ), µ 1 (•) = µ 1 (s 1 ),
then system (1.2) describes a syntrophic relationship where two microbial species depend on each other for survival by the production of a required substrate s 1 . In this case, each species benefits from the presence of the other species. Tables 1 and2 summarize the modeling assumptions made in the literature on two-tiered model (1.2) describing the commensalistic and the syntrophic relationships, respectively, according to the input concentration s in 1 , the removal rates D i , and the choice of the growth functions.

Table 1 Literature examples of the commensalistic relationship of two-tiered model (1.2), the modeling assumptions and the description of the growth rates (1.4).

s in

1 D i µ 0 (s 0 ) µ 1 (s 1 )
Reilly [START_REF] Reilly | Stability of commensalistic systems[END_REF], 0 D Monod Monod Simeonov and Stoyanov [START_REF] Simeonov | Modelling and dynamic compensator control of the anaerobic digestion of organic wastes[END_REF] 0 D + a i Monod Monod Stephanopoulos [START_REF] Stephanopoulos | The dynamics of commensalism[END_REF] 0 D Monotonic Monotonic or Nonmonotonic Bernard et al. [START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF] ≥ 0 αD Monod Haldane Simeonov and Diop [START_REF] Simeonov | Stability analysis of some nonlinear anaerobic digestion models[END_REF] 0 D Monod or Contois Haldane Sbarciog et al. [START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF] ≥ 0 D Monotonic Nonmonotonic Benyahia et al. [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF] ≥ 0 αD Monotonic Nonmonotonic

Table 2 Literature examples of the syntrophic relationship of two-tiered model (1.2), the modeling assumptions and the description of the growth rates (1.5).

s in

1 D i µ 0 (s 0 , s 1 ) µ 1 (s 1 )
or µ 1 (s 0 , s 1 ) Kreikenbohm and Bohl [START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF] 0 D Monod in s 0 , decreasing in s 1 Monod Burchard [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF], El-Hajji et al. [START_REF] El-Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF] 0 D Increasing in s 0 , decreasing in s 1 Increasing Xu et al. [START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF] 0 D + a i Increasing in s 0 , decreasing in s 1 Monod Sari et al. [START_REF] Sari | The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat[END_REF] ≥ 0 D Increasing in s 0 , decreasing in s 1 Decreasing in s 0 , increasing in s 1 Harvey et al. [START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF] 0 D Increasing in s 0 , decreasing in s 1 Nonmonotonic Sari and Harmand [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] 0 D + a i Increasing in s 0 , decreasing in s 1 Increasing Fekih et al. [START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF] 0 D + a i Increasing in s 0 , decreasing in s 1 Nonmonotonic Daoud et al. [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF] ≥ 0 D + a i Increasing in s 0 , decreasing in s 1 Increasing

Harvey et al. [START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF] have studied model (1.2) in the particular case where s in 1 = 0, D i = D, and the growth rate µ 0 (s 0 , s 1 ) = f (s 0 ).g(s 1 ) with f is increasing in s 0 and g is decreasing in s 1 . Our study provides an extension of the results in [START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF] to the case where D 1 and D 2 are distinct from D. Notice that most of the studies in the existing literature (see Table 2) consider the case of equal removal rates (D 1 = D 2 = D), where the model can be reduced to a two-dimensional system. In this paper, we generalize [START_REF] Burchard | Substrate degradation by a mutualistic association of two species in the chemostat[END_REF][START_REF] El-Hajji | A mathematical study of a syntrophic relationship of a model of anaerobic digestion process[END_REF][START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF][START_REF] Kreikenbohm | A mathematical model of syntrophic cocultures in the chemostat[END_REF], by allowing distinct removal rates. In this case, the study of the stability is much more delicate and requires the Liénard-Chipart stability criteria [START_REF] Gantmacher | Application of the theory of matrices[END_REF] for a four-dimensional system. Furthermore, it is reported in the literature [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Bernard | Dynamical model development and parameter identification for an anaerobic wastewater treatment process[END_REF][START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF][START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Simeonov | Stability analysis of some nonlinear anaerobic digestion models[END_REF][START_REF] Stephanopoulos | The dynamics of commensalism[END_REF] that at many times the second reaction of (1.1) is inhibited by large values of s 1 , which instigates to consider a Haldane-type growth function for µ 1 . The goal of the present work is to understand the joined effects of syntrophy, mortality of two microbial species, substrate inhibition on their growth and inflowing substrate concentration of the second species, which have not been studied in the literature. Moreover, here, we do not specify kinetics but we consider qualitative properties on the growth functions and we assume that the second species is inhibited when the concentration of substrate becomes significant.

The particular case s in 1 = 0 was considered in [START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF]. The case where µ 1 does not present inhibition was considered in [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF].

On the other hand, our study provides an important tool for the experimentation which is the operating diagram showing the behavior of the syntrophic model (1.2) according to the control parameters D, s in 0 and s in 1 , when all biological parameters are fixed. This operating diagram is often studied numerically or theoretically both in the biological literature [START_REF] Pavlou | Computing operating diagrams of bioreactors[END_REF][START_REF] Sbarciog | Determination of appropriate operating strategies for anaerobic digestion systems[END_REF][START_REF] Wade | Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF] and the mathematical literature [START_REF] Abdellatif | Competition for a single resource and coexistence of several species in the chemostat[END_REF][START_REF] Bar | The operating diagram for a model of competition in a chemostat with an external lethal inhibitor[END_REF][START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF][START_REF] Dellal | The operating diagram of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Khedim | Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates[END_REF][START_REF] Mtar | Interspecific density-dependent model of predator-prey relationship in the chemostat[END_REF][START_REF] Sari | The operating diagram for a two-step anaerobic digestion model[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF][START_REF] Sari | Generalised approach to modelling a three-tiered microbial food-web[END_REF][START_REF] Weedermann | Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition[END_REF][START_REF] Weedermann | Optimal biogas production in a model for anaerobic digestion[END_REF].

This paper is organized as follows: in section 2, we present the assumptions made on the growth functions and give some preliminary results. Section 3 is devoted to the analysis of steady states and their local stability. In section 4, we present the operating diagrams which depict the different outcomes of the model according to control parameters. Finally, some conclusions are drawn in section 5. The definition domains of some auxiliary functions used for the description of the steady states with their conditions of existence and stability are given in Appendix A. The proofs of all results are reported in Appendix B. With specific growth rates satisfying the general assumptions, the maximal number of solutions of an equation which determines some definition domains are given in Appendix C. Finally, some tables are given in Appendix D.

Mathematical model and assumptions.

In what follows, we study model (1.2) where the removal rates D i and the growth rates µ i , i = 0, 1 are given by (1.3) and (1.5), respectively. Thus, the syntrophic model can be written as follows (2.1)

         ṡ0 = D s in 0 -s 0 -µ 0 (s 0 , s 1 )x 0 , ẋ0 = (µ 0 (s 0 , s 1 ) -D 0 )x 0 , ṡ1 = D s in 1 -s 1 + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 , ẋ1 = (µ 1 (s 1 ) -D 1 )x 1 .
We first make the following general assumptions on the bacterial growth rates. The functions µ 0 and µ 1 belong to C 1 (R + , R + ) and C 1 (R + ), respectively and verify: Hypothesis 2.1. Growth of species x 0 can take place if and only if the substrate s 0 is present: µ 0 (0, s 1 ) = 0, 0 < µ 0 (s 0 , s 1 ) < +∞, for all s 0 > 0 and s 1 ≥ 0. Hypothesis 2.2. Growth of species x 1 can take place if and only if the substrate s 1 is present: µ 1 (0) = 0 and µ 1 (s 1 ) > 0, for all s 1 > 0.

Hypothesis 2.3. Growth rate of species x 0 is favored by s 0 and is inhibited by the substrate s 1 : ∂µ 0 ∂s 0 (s 0 , s 1 ) > 0 and ∂µ 0 ∂s 1 (s 0 , s 1 ) < 0, for all s 0 > 0 and s 1 > 0.

Hypothesis 2.4. The nonmonotonic growth function µ 1 takes into account the growth-limiting for low concentrations of substrate s 1 and the growth-inhibiting for high concentrations: µ 1 (s 1 ) reaches a maximum value µ max

1 := µ 1 (s max 1 
) at s 1 = s max 1 and satisfies µ 1 (s 1 ) > 0, for all s 1 ∈ [0, s max 1 ), µ 1 (s 1 ) < 0, for all (s max 1 , +∞) and µ 1 (+∞) = 0.

Hypothesis 2.5. The maximum growth rate of the species x 0 decreases with the concentration of substrate s 1 : for all s 1 > 0, μ 0 (s 1 ) < 0 where μ0 (s 1 ) := sup s 0 ≥0 µ 0 (s 0 , s 1 ).

The following result proves that syntrophic model (2.1) preserves the biological significance where all solutions of the system are nonnegative and bounded for any nonnegative initial condition.

Proposition 2.6. For any nonnegative initial condition, the solution of system (2.1) exists for all nonnegative times, remains nonnegative and is positively bounded. In addition, the set

Ω = (s 0 , x 0 , s 1 , x 1 ) ∈ R 4 + : 2s 0 + x 0 + s 1 + x 1 ≤ D D min 2s in 0 + s in 1 ,
where D min = min(D, D 0 , D 1 ), is positively invariant and a global attractor for (2.1).

Analysis of the syntrophic model.

A steady state exists if and only if all its components are nonnegative. Model (2.1) can have at most six steady states, which we denote as follows:

• SS 0 (x 0 = x 1 = 0): the washout of both species.

• SS 1 (x 1 = 0, x 0 > 0): species x 1 is extinct while species x 0 survives.

• SS i 2 , i = 1, 2 (x 0 > 0, x 1 > 0)
: both species are maintained.

• SS i 3 , i = 1, 2 (x 0 = 0, x 1 > 0): species x 0 is extinct while species x 1 survives.
We show below that all steady states are unique, if they exist. However, bifurcations may occur (see Table 8) where two steady states collide, giving rise to a non hyperbolic steady state. First, we introduce in Table 3 the auxiliary functions for determining the existence and stability conditions.

Some comments and details on their definition domains are given in Appendix A. In the particular case of specific growth rates of Monod-type with hydrogen inhibition and of Haldane-type (C.1), the auxiliary functions defined in Table 3 can be calculated analytically and are given in Table 12.

Table 3 Auxiliary functions where dom(F0) and Ij, j = 1, 2 are given in Table 9.

Definition

s 0 = M 0 (y, s 1 )
Let s 1 0. s 0 = M 0 (y, s 1 ) is the unique solution of equation y = µ 0 (s 0 , s 1 ).

It is defined for y ∈ [0, μ0 (s 1 ))

s 1 = M 1 1 (y) s 1 = M 1 1 (y) is the unique solution in [0, s max 1 ] of equation y = µ 1 (s 1 ). It is defined for y ∈ [0, µ max 1 ]. s 1 = M 2 1 (y)
s 1 = M 2 1 (y) is the unique solution in [s max 1 , +∞) of equation y = µ 1 (s 1 ). It is defined for y ∈ (0, µ max 1 ]. F 0 D, s in 1 F 0 D, s in 1 = M 0 α 0 D + a 0 , s in 1 defined for D, s in 1 ∈ dom(F 0 ) F j 1 (D) F j 1 (D) = M 0 (α 0 D + a 0 , M j 1 (α 1 D + a 1 )), D ∈ I j F j 2 (D) F j 2 (D) = M j 1 (α 1 D + a 1 ) + F j 1 (D), D ∈ I j
The following result gives all the steady states of (2.1) and the necessary and sufficient conditions of their existence and stability. For convenience, we shall use the abbreviation LES for Locally Exponentially Stable.

Proposition 3.1. Assume that Hypotheses 2.1 to 2.4 hold. Then, the six steady states of (2.1) are

given in Table 4. The conditions of their existence and stability are given in Table 5.

Table 4 Steady states of (2.1). All functions are defined in Table 3.

s 0 , s 1 components x 0 , x 1 components SS0 s 0 = s in 0 , s 1 = s in 1 x 0 = 0, x 1 = 0 SS1 s 0 is a solution of equation µ 0 s 0 , s in 0 + s in 1 -s 0 = D 0 s 1 = s in 0 + s in 1 -s 0 x 0 = D D0 s in 0 -s 0 x 1 = 0 SS j 2 s 0 = F j 1 (D) s 1 = M j 1 (D 1 ) x 0 = D D0 s in 0 -s 0 x 1 = D D1 s in 0 + s in 1 -s 0 -s 1 SS j 3 s 0 = s in 0 s 1 = M j 1 (D 1 )
x 0 = 0

x 1 = D D1 s in 1 -M j 1 (D 1 )
Table 5 Necessary and sufficient conditions of existence and local stability of steady states of model (2.1).

Existence condition

Stability condition SS 0 always exists As we will see in Proposition 4.5, the limit case D = D1 corresponds to saddle-node bifurcations of SS 1 2 with SS 2 2 and SS 1 3 with SS 2 3 where these steady states are non hyperbolic. In the particular case s in 1 = 0, we obtain the same result as in [START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF] where SS 1 3 and SS 2 3 do not exist since the conditions of their existence in Table 5 are not satisfied. Compared to [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], a main change in the existence of steady states of our model (2.1) is the appearance of the second positive steady state SS 2 2 and two steady states SS 1 3 and SS 2 3 .

s in 0 < F 0 D, s in 1 and s in 1 < M 1 1 (D 1 ) or s in 1 > M 2 1 (D 1 ) SS 1 s in 0 > F 0 D, s in 1 s in 0 + s in 1 < F 1 2 (D) or s in 0 + s in 1 > F 2 2 (D) SS 1 2 s in 0 > max F 1 1 (D), F 1 2 (D) -s in 1 LES whenever it exists SS 2 2 s in 0 > max F 2 1 (D), F 2 2 (D) -s in 1 Always unstable SS 1 3 s in 1 > M 1 1 (D 1 ), s in 0 < F 1 1 (D) SS 2 3 s in 1 > M 2 1 (D 1 ), Always unstable Remark 3.2. Since the function F 0 D, s in 1 is defined for D, s in 1 ∈ dom(F 0 ) (see Proposition A.1), the condition s in 0 > F 0 D, s in
4. Operating diagrams. The operating diagram is a very useful tool to determine the asymptotic behavior of the process with respect to the control parameters D, s in 0 and s in 1 which are the most easily parameters to manipulate in a chemostat. All other parameters are fixed since they have biological meaning and cannot be easily manipulated by the biologist. The biological parameter values used in all figures are provided in Table 13. To construct the operating diagram, we first define in Table 6 the set of surfaces Γ = {γ 0 , γ j i , γ 4 , i = 1, 2, 3, j = 1, 2} which are the boundaries of different regions of the D, s in 0 , s in 1 -space. We define also in Table 6 the curve C j of the function

y = M j 1 (D 1 ) -s in 1 , j = 1, 2
to determine its sign according to s in 1 and D. As we will see in Propositions 4.

2 to 4.4, if D is fixed in Īj , then s in 1 = s in * 1j = M j 1 (α 1 D + a 1 ) and if s in 1 is fixed, the equation M j 1 (α 1 D + a 1 ) = s in 1 can have a unique solution D = D * j with j = 1, 2.
As stated in the following result, the surfaces in the set Γ separate the operating space D, s in 0 , s in 1 into twelve regions, denoted J k , k = 1, . . . , 12, and defined in Table 7.

Table 6 The set of surfaces Γ, the curves C1 and C2, and the corresponding colors in Figures 1 and3 

to 6. Γ, C 1 and C 2 Color γ 0 = D, s in 0 , s in 1 : s in 0 = F 0 D, s in 1 , D, s in 1 ∈ dom(F 0 ) Black γ 1 1 = D, s in 0 , s in 1 : s in 0 = F 1 1 (D), D ∈ I 1 Cyan γ 2 1 = D, s in 0 , s in 1 : s in 0 = F 2 1 (D), D ∈ I 2 Green γ 1 2 = D, s in 0 , s in 1 : s in 0 = F 1 2 (D) -s in 1 , D ∈ I 1 Red γ 2 2 = D, s in 0 , s in 1 : s in 0 = F 2 2 (D) -s in 1 , D ∈ I 2 Blue γ 1 3 = D, s in 0 , s in 1 : s in 1 = M 1 1 (D 1 ), D ∈ Ī1 = D, s in 0 , s in 1 : D = D * 1 = D, s in 0 , s in 1 : s in 1 = s in * 11 , D ∈ Ī1 Pink γ 2 3 = D, s in 0 , s in 1 : s in 1 = M 2 1 (D 1 ), D ∈ Ī2 = D, s in 0 , s in 1 : D = D * 2 = D, s in 0 , s in 1 : s in 1 = s in * 12 , D ∈ Ī2 Violet γ 4 = D, s in 0 , s in 1 : D = D1 Coral C 1 : curve of the function y = M 1 1 (D 1 ) -s in 1 , D ∈ Ī1 Magenta C 2 : curve of the function y = M 2 1 (D 1 ) -s in 1 , D ∈ Ī2 Brown
Proposition 4.1. Assume that Hypotheses 2.1 to 2.5 hold. The existence and the stability of the steady states of (2.1) in the twelve regions J k , k = 1, . . . , 12 of the operating diagram are determined in Table 7.

Table 7 Existence and stability of steady states in the regions of the operating diagram. The letter S (resp. U) means that the corresponding steady state is LES (resp. unstable). No letter means that the steady state does not exist.

Condition 1 Condition 2 Region Color SS0 SS1 SS 1 2 SS 2 2 SS 1 3 SS 2 3 s in 1 < M 1 1 (D1) s in 0 < F0 D, s in 1 J1 Cyan S F0 D, s in 1 < s in 0 < F 1 2 (D) -s in 1 J2 Green U S F 1 2 (D) -s in 1 < s in 0 < F 2 2 (D) -s in 1 J3 Red U U S s in 0 > F 2 2 (D) -s in 1 J4 Yellow U S S U M 1 1 (D1) < s in 1 < M 2 1 (D1) s in 0 > F 2 2 (D) -s in 1 J5 Yellow U S S U U F0 D, s in 1 < s in 0 < F 2 2 (D) -s in 1 J6 Red U U S U F 1 1 (D) < s in 0 < F0 D, s in 1 J7 Red U S U s in 0 < F 1 1 (D) J8 Blue U S M 2 1 (D1) < s in 1 s in 0 < F 1 1 (D) J9 Deep pink S S U F 1 1 (D) < s in 0 < F 2 1 (D) J10 Gray S S U U F 2 1 (D) < s in 0 < F0 D, s in 1 J11 Gray S S U U U s in 0 > F0 D, s in 1 J12 Yellow U S S U U U
Since the definition domain of the function F j i is I j where D ≤ D1 with Φ j (D) > 0 (see Appen-dix A), it's necessary to distinguish the following two cases according to the sign of Φ j ( D1 ):

(4.1) case 1: Φ j D1 > 0, case 2: Φ j D1 ≤ 0.

Note that, the condition of case 1 is equivalent to (μ 0 (s max 1

) -a 0 ) /α 0 > D1 while the opposite inequality holds in case 2.

Since it is very difficult to observe the twelve regions of the operating diagram in three-dimensional space, it would be much better to illustrate cuts along two-dimensional planes by fixing one of the three operating parameters in order to have a better vision and understanding. In plane where D is kept constant is a curve of a function of s in 1 . However, the intersections of the surfaces γ j i , i = 1, 2, 3, j = 1, 2 with this plane are straight lines (see Table 10).

The various regions of the operating diagram are then very clear to visualize it. To study the operating diagram when D is fixed, we need the following result which determines the relative positions of the curve γ 0 with the straight lines γ j i , i, j = 1, 2 according to the values of s in 1 and s in * 1j .

(a) 

s in 0 γ 1 3 γ 2 3 γ 0 γ 2 1 γ 1 1 γ 2 2 γ 1 2 s in 1 C 2 C 1 (b) s in 0 γ 1 3 γ 2 3 γ 0 γ 2 2 γ 2 1 γ 1 2 γ 1 1 s in 1 J 1 J 2 J 3 J 4 J 8 J 7 J 6 J 5 J 9 J 10 J 11 J 12
(a) s in 0 γ 0 J 1 J 2 s in 1 (b) s in 0 γ 0 γ 1 3 γ 2 3 J 1 J 2 J 8 J 9 s in 1 (c) s in 0 γ 1 3 γ 0 γ 2 3 J 1 J 2 J 3 J 8 J 7 J 6 J 9 J 10 γ 1 2 γ 1 1 s in 1
F 0 D, s in 1 < F 1 1 (D) < F 1 2 (D) -s in 1 .
and for all s in 1 ∈ s in * 11 , sin 1 ,

(4.3) F 0 D, s in 1 > F 1 1 (D) > F 1 2 (D) -s in 1 .
For all D ∈ I 2 , the three curves γ 0 , γ 2 1 and γ 2 2 intersect at the same point s in 1 = s in * 12 (see Figure 1)

such that s in * 12 < sin 1 . For all s in 1 ∈ 0, s in * 12 , (4.4) 
F 0 D, s in 1 < F 2 1 (D) < F 2 2 (D) -s in 1 ,
and for all s in 1 ∈ s in * 12 , sin 1 ,

(4.5) F 0 D, s in 1 > F 2 1 (D) > F 2 2 (D) -s in 1 .
According to the position of D relatively to the critical values D i , D1 , D1 and D0 (0) which are defined in Table 9, the regions of the operating diagram in the s in 1 , s in 0 plane where D is kept constant are cataloged as follows:

1. if D ∈ I 2 , then the twelve regions exist (see Figure 1); However, the intersections of the surfaces γ j 3 , j = 1, 2 with this plane are straight lines (see Table 11).

To determine the operating diagram when s in 1 is fixed, we show the following result which determines the relative positions of the curves γ 0 and γ j i , i, j = 1, 2 according to the values of D and D * 1 . We begin by considering the case s in 1 ≤ s max . For all D ∈ I 2 ,

F 0 D, s in 1 ≤ F 2 1 (D) ≤ F 2 2 (D) -s in 1 .
There exists a solution

D = D * 1 ∈ Ī1 of equation s in 1 = M 1 1 (α 1 D + a 1 ) if and only if (4.6) s in 1 ≥ M 1 1 (a 1 ).
It is unique if it exists. If D * 1 ∈ I 1 , the three curves γ 0 , γ According to the position of s in 1 relatively to M 1 1 (a 1 ) and the two cases of (4.1) where

s in 1 ∈ [0, s max 1 ]
and is kept constant, the regions of the operating diagram in the D, s in 0 plane are cataloged as follows:

1. If s in 1 < M 1 1 (a 1 )
, there exist at most four regions J 1 to J 4 (see Figure 3(a,c) in case 1 of (4.1)

and Figure 4(a,d) in case 2).

Let s in

1 ≥ M 1 1 (a 1 ). If D * 1 ∈ I 1
, there exist at most eight regions J 1 to J 8 (see Figure 3(b,d) in case 1 and Figure 4(b,e) in case 2). If case 2 holds and D * 1 ∈ Ī1 \I 1 , there exist at most five regions J 1 and J 5 to J 8 (see Figure 4(c,f)).

The operating diagram of Figure 4(b,e) shows the existence of seven regions J 1 to J 8 where the region J 4 is empty in the case 2 of (4.1) with M 1 1 (a 1 ) < s in 1 ≤ s max 1 and D * 1 ∈ I 1 . However, this region J 4 can be not empty for another set of parameters such that D * 1 < D 1 .

By similar arguments to that in the proof of Proposition 4.3, we can prove the following result which determines the relative positions of the curves γ 0 and γ j i , i, j = 1, 2 according to the values of . For all D ∈ I 0 ∩ I 1 , we have

D and D * 2 in the case s in 1 > s max 1 . (a) s in 0 , y γ 4 γ 0 D0 γ 2 2 C 2 γ 2 1 γ 1 2 γ 1 1 C 1 D (b) s in 0 , y γ 1 3 γ 4 γ 0 D0 γ 2 2 C 2 γ 2 1 γ 1 1 γ 1 2 C 1 D (c) s in 0 γ 4 γ 0 γ 2 2 γ 1 2 J 1 J 2 J 3 J 4 D (d) γ 1 3 s in 0 γ 4 γ 0 γ 2 2 γ 1 1 J 1 J 2 J 3 J 4 J 5 J 6 J 7 ? J 8
a) s in 0 , y γ 2 2 γ 2 1 γ 1 2 C 2 C 1 γ 1 1 γ 0 D 1 D1 D0 D (b) s in 0 , y γ 2 2 γ 2 1 γ 1 3 γ 1 2 γ 0 γ 1 1 - C 2 C 1 D 1 D * 1 D1 D0 D @ @ @ @ @ R (c) s in 0 , y γ 2 2 γ 2 1 γ 0 γ 1 2 γ 1 3 γ 1 1 - C 2 C 1 D 1 D0 D1 D (d) s in 0 γ 2 2 γ 1 2 γ 0 J 1 J 2 J 3 J 4 D (e) s in 0 γ 2 2 γ 1 3 γ 1 2 γ 0 γ 0 γ 1 1 J 1 J 2 J 3 J 5 J 6 J 7 ? J 8 D (f ) s in 0 γ 2 2 γ 1 1 γ 0 γ 1 3 γ 0 γ 1 1 J 1 J 5 J 6 J 7 J 8 D
F 1 2 (D) -s in 1 < F 1 1 (D) < F 0 D, s in 1 . There exists a solution D = D * 2 ∈ Ī2 of equation s in 1 = M 2 1 (α 1 D + a 1 ) if and only if (4.7) s in 1 ≤ M 2 1 (a 1 ).
It is unique if it exists. If D * 2 ∈ I 2 , the three curves γ 0 , γ 2 1 and γ 2 2 intersect at the same point 

D = D * 2 (see
γ 4 γ 0 γ 2 2 γ 2 1 C 2 γ 1 1 γ 1 2 C 1 D0 D (b) s in 0 , y γ 0 γ 4 γ 2 1 γ 2 2 γ 1 1 C 2 γ 1 2 C 1 D0 D (c) s in 0 γ 2 3 γ 4 γ 0 γ 2 2 γ 1 1 J 5 J 6 J 7 J 8 J 12 J 11 J 10 J 9 J 2 J 1 γ 2 1 9 D (d) s in 0 γ 0 γ 4 γ 2 1 γ 1 1 J 12 J 11 J 10 J 9 J 1 D Figure 5
. The curves C1, C2 and those of Γ in case 1 of (4.1) with s in 1 > s max

1 0.689: (a) s in 1 = 1.5 < M 2 1 (a1) 4.37, (b) s in 1 = 5 > max s max 1 , M 2 1 (a1) . (c)-(d)
The respective corresponding operating diagrams.

(a) s in 0 , y γ 0 γ 2 3 γ 4 γ 2 2 γ 2 1 C 2 C 1 γ 1 2 γ 1 1 D 1 D * 2 D1 D (b) s in 0 , y γ 2 3 γ 0 γ 4 γ 2 2 γ 2 1 C 2 C 1 γ 1 2 γ 1 1 D (c) s in 0 , y γ 0 γ 2 1 γ 2 2 γ 4 C 2 C 1 γ 1 2 γ 1 1 D (d) s in 0 γ 2 2 γ 0 γ 1 1 J 10 J 1 J 9 J 5 J 6 J 7 J 8 D * 2 D1 D (e) s in 0 γ 2 2 γ 2 3 γ 0 γ 2 1 γ 1 1 γ 4 J 1 J 9 J 10 J 11 J 12 J 5 J 6 J 7 J 8 D * 2 D1 D (f ) s in 0 γ 0 γ 2 1 γ 1 1 γ 4 J 1 J 9 J 10 J 11 J 12 D1 D Figure 6
. The curves C1, C2 and those of Γ in case 2 of (4.1) with s in

1 > s max 1 0.689: (a) s in 1 = 1 < M 2 1 (a1) 5.615; D * 2 1.742 / ∈ I2 = [0, 1.285), (b) s in 1 = 3.2 < M 2 1 (a1); D * 2 ∈ I2, (c) s in 1 = 6 > M 2 1 (a1). (d)-(e)-(f )
The respective corresponding operating diagrams.

According to the position of s in 1 relatively to M 2 1 (a 1 ) and the two cases of (4.1) where s in 1 > s max 

1. Let s in 1 ≤ M 2 1 (a 1 ). If D * 2 ∈ I 2
, in case 1 of (4.1), J 3 and J 4 are empty and the other ten regions can exist (see Figure 5(a,c)), while in case 2, J 2 to J 4 are empty and we can have up to nine regions in the operating diagram (see Figure 6(b,e) in case 2). If case 2 holds and

D * 2 ∈ Ī2 \I 2
, there exist at most seven regions J 1 and J 5 to J 10 (see Figure 6(a,d)).

If s in

1 > M 2 1 (a 1 ), at most the five regions J 1 and J 9 to J 12 can exist (see Figure 5(b,d) in case The following result determines the nature of bifurcations of system (2.1) that might happen by crossing the various regions of the operating parameters space D, s in 0 , s in 1 through the surfaces of Γ where the steady states coalesce and can change stability.

(a) s in 0 γ 2 2 γ 1 2 γ 0 D1 J 1 J 2 J 3 J 4 D (b) s in 0 γ 2 2 γ 1 2 γ 0 ? J 4 D1 J 1 J 2 J 3 J 4 D (c) s in 0 γ 2 2 γ 1 2 γ 0 ? J 4 D1 J 1 J 2 J 3
Proposition 4.5. The bifurcation analysis of the steady states of (2.1) by crossing the surfaces of Γ according to the operating parameters D, s in 0 and s in 1 is summarized in Table 8.

Table 8

Bifurcations according to surfaces of Γ. The letter TB (resp. SNB) means a transcritical bifurcation (resp. saddlenode bifurcation). Note that k = 2, 3.

Γ Conditions

Transition Bifurcation

γ 0 s in 1 < M 1 1 (D 1 ) J 1 to J 2 TB: SS 0 =SS 1 M 1 1 (D 1 ) < s in 1 < M 2 1 (D 1 ) J 6 to J 7 M 2 1 (D 1 ) > s in 1 J 11 to J 12 γ 1 1 M 1 1 (D 1 ) < s in 1 < M 2 1 (D 1 ) J 7 to J 8 TB: SS 1 2 =SS 1 3 s in 1 > M 2 1 (D 1 ) J 9 to J 10 γ 2 1 s in 1 > M 2 1 (D 1 ) J 10 to J 11 TB: SS 2 2 =SS 2 3 γ 1 2 s in 1 < M 1 1 (D 1 ) J 2 to J 3 TB: SS 1 =SS 1 2 γ 2 2 s in 1 < M 1 1 (D 1 ) J 3 to J 4 TB: SS 1 =SS 2 2 M 1 1 (D 1 ) < s in 1 < M 2 1 (D 1 ) J 5 to J 6 γ 1 3 s in 0 > F 2 2 -s in 1 J 4 to J 5 TB: SS 0 =SS 1 3 F 1 2 -s in 1 < s in 0 < F 2 2 -s in 1 if D < D * 1 , if not F 0 < s in 0 < F 2 2 -s in 1 J 3 to J 6 s in 0 < F 0 if D < D * 1 , if not s in 0 < F 1 1 J 1 to J 8 γ 2 3 s in 0 > F 2 2 -s in 1 if D < D * 2 , if not s in 0 > F 0 J 5 to J 12 TB: SS 0 =SS 2 3 F 1 1 < s in 0 < F 0 if D < D * 2 , if not F 1 1 < s in 0 < F 2 1 J 7 to J 10 s in 0 < F 1 1 J 8 to J 9 γ 4 s in 1 < s max 1 J 2 to J 4 SNB: SS 1 2 =SS 2 2 γ 4 s in 1 > s max 1 J 2 to J 12 SNB: SS 1 k =SS 2 k J 1 to J 11 J 1 to J 9 SNB: SS 1 3 =SS 2 3
We have only studied the bifurcations that occur by transitions through surfaces in two-dimensional planes and not through the points given by the intersections of curves and lines. However, the study of such bifurcations can be determined in the same way.

Discussion and conclusion.

In this paper, we have generalized the mathematical analysis of the simplified model (2.1) of anaerobic digestion in the form of a two-tiered microbial food chain describing a syntrophic relationship between two microbial species in a chemostat. To this end, we allow a large class of growth functions with distinct disappearance rates. The main contribution of this 

Definition D0 s in 1 D0 s in 1 = μ0 s in 1 -a 0 /α 0 D1 D1 = (µ max 1 -a 1 ) /α 1 Φ j (D) Φ j (D) = μ0 M j 1 (D 1 ) -D 0 , for D ∈ Īj , j = 1, 2 D1
D1 is the solution of Φ 1 (D) = 0

D i D i are the solutions of Φ 2 (D) = 0, i = 1, . . . , n I 0 Let s in 1 0. I 0 = 0, D0 s in 1 if α 0 ∈ (0, 1] I 0 = [0, +∞) if α 0 = 0 and a 0 < μ0 s in 1 , otherwise I 0 = ∅. J 0 Let D 0. J 0 = 0, sin 1 , if D0 (+∞) < D < D0 (0), where sin 1 is the unique solution of D0 (s in 1 ) = D. J 0 = [0, +∞), if D ≤ D0 (+∞) and J 0 = ∅ if D ≥ D0 (0). dom(F 0 ) dom(F 0 ) = D, s in 1 : D ∈ I 0 and s in 1 ≥ 0 or s in 1 ∈ J 0 and D ≥ 0 Ī1 Ī1 = 0, D1 if α 1 ∈ (0, 1] Ī1 = [0, +∞) if α 1 = 0 and a 1 ≤ µ max 1 , otherwise Ī1 = ∅. Ī2 Ī2 = Ī1 if a 1 > 0 and Ī2 = Ī1 \{0} if a 1 = 0 I j , I j = {D ∈ Īj / Φ j (D) > 0}, j = 1, 2
D1 < D0 (0) in case 1 of (4.1), D1 < D0 (0) in case 2 of (4.1) and lim

s in 1 →s in- 1 F 0 D, s in 1 = +∞.
Proof. Let s in 1 be fixed. From Table 3, the function When case 1 of (4.1) holds, we have

F 0 D, s in 1 is defined if and only if (A.1) D 0 < μ0 s in 1 ⇐⇒ D < D0 s in 1 = μ0( s in 1 )-a0
α 0 D1 + a 0 < μ0 M 1 1 α 1 D1 + a 1 < μ0 (0),
because the function μ0 (•) is decreasing (see Hypothesis 2.5). Thus, D1 < D0 (0). Moreover, when case 2 of (4.1) holds, we conclude that D1 < D0 (0) where D1 is a solution of Φ 1 (D) = 0 because

α 0 D1 + a 0 = μ0 M 1 1 (α 1 D1 + a 1 ) < μ0 (0).
The following result determines the definition domain I 1 of the function F 1 i (•), i = 1, 2, according to the coefficients α 0 and α 1 .

Proposition A.2. Let s in 1 ≥ 0 be fixed. The function F 1 i (D), i = 1, 2, is defined on

(A.2) I 1 =              [0, +∞), if α 0 = α 1 = 0, a 1 < µ max 1 , μ0 M 1 1 (a 1 ) > a 0 ∅, if α 0 = α 1 = 0 and a 1 ≥ µ max 1 or μ0 M 1 1 (a 1 ) ≤ a 0 0, μ0 M 1 1 (a 1 ) -a 0 /α 0 , if α 0 > 0, α 1 = 0, a 1 < µ max 1 , μ0 M 1 1 (a 1 ) > a 0 0, D1 ,
if α 0 ≥ 0, α 1 > 0, and case 1 of (4.1) holds 0, D1 , if α 0 ≥ 0, α 1 > 0, and case 2 of (4.1) holds.

Similarly to case s 0 , no trajectory can leave the positive octant R 4 + by crossing the boundary face s 1 = 0 since s 0 ≥ 0 and x 0 ≥ 0. Therefore, all solutions of (2.1) remain nonnegative. Let z = 2s 0 +x 0 +s 1 +x 1 . From (2.1), it follows that

ż = D 2s in 0 + s in 1 -2s 0 -s 1 -D 0 x 0 -D 1 x 1 ≤ D min D D min 2s in 0 + s in 1 -z .
By applying Gronwall's lemma, we obtain e -D min t , for all t ≥ 0.

(B.1) z(t) ≤ D D min 2s in 0 + s in 1 + z(0) -D D min 2s in 0 + s in
We deduce that z(t) ≤ max z(0), D D min 2s in 0 + s in

1

, for all t ≥ 0.

Consequently, the solutions of (2.1) are bounded for all t ≥ 0. Inequality (B.1) implies that the set Ω is positively invariant and is a global attractor for (2.1).

Proof of Proposition 3.1. The steady states of (2.1) are the solutions of the following set of equation 

D s in 0 -s 0 -µ 0 (s 0 , s 1 )x 0 = 0 (B.2) (µ 0 (s 0 , s 1 ) -D 0 ) x 0 = 0 (B.3) D s in 1 -s 1 + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 = 0 (B.4) (µ 1 (s 1 ) -D 1 ) x 1 = 0. (B.
(B.6) D s in 0 -s 0 -D 0 x 0 = 0 D s in 1 -s 1 + D 0 x 0 -D 1 x 1 = 0.
By solving (B.6), we obtain x 0 and x 1 with respect to s 0 and s 1 :

x 0 = D D 0 s in 0 -s 0 , (B.7)

x 1 = D D 1 s in 0 -s 0 + s in 1 -s 1 . (B.8)
We can also solve (B.6) and obtain s 0 and s 1 with respect to x 0 and x 1 :

s 0 = s in 0 -D 0 D x 0 , (B.9) s 1 = s in 1 + D 0 D x 0 -D 1 D x 1 . (B.10)
For SS 0 , one has x 0 = x 1 = 0. Hence, (B.9) and (B.10) result in s 0 = s in 0 and s 1 = s in 1 . Thus, SS 0 always exists.

For SS 1 , one has x 0 > 0, x 1 = 0. Hence, (B.7) results in

x 0 = D D 0 s in 0 -s 0 .
Using (B.8) and x 1 = 0, it follows that

s 1 = s in 1 + s in 0 -s 0 . Since x 0 > 0, (B.3) results in (B.11) ψ(s 0 ) := µ 0 s 0 , s in 1 + s in 0 -s 0 = D 0 .
Thus, SS 1 exists if and only if equation (B.11) has a nonnegative solution and the s 1 and x 0 -components are positive. This condition is equivalent to say that 0 ≤ s 0 < s in 0 . From Hypotheses 2.1 and 2.3, we see that the function s 0 → ψ(s 0 ) is strictly increasing from 0 for s 0 = 0 to µ 0 s in 0 , s in 1 for s 0 = s in 0 .

Therefore, there exists a solution of equation (B.11) in 0, s in 0 if and only if

(B.12) µ 0 s in 0 , s in 1 > D 0 .
If such a solution exists, then it is unique. Under Hypothesis 2.3 and the definition of M 0 in Table 3,

we have for all y ∈ [0, μ0 (s 1 )) and s 1 ≥ 0, (B.13) ∂M 0 ∂y (y, s 1 ) = ∂µ 0 ∂s 0 (M 0 (y, s 1 ), s 1 )

-1

> 0.

Using (B.13), condition (B.12) is equivalent to the existence condition of SS 1 in Table 5.

For SS j 2 , j = 1, 2, one has x 0 > 0 and x 1 > 0. Hence, (B.7) and (B.8) result in

x 0 = D D 0 s in 0 -s 0 , x 1 = D D 1 s in 0 + s in 1 -s 0 -s 1 .
Moreover, (B.3) and (B.5) result in µ 0 (s 0 , s 1 ) = D 0 and µ 1 (s 1 ) = D 1 . Using the definitions of M 0 and M j 1 in Table 3, we obtain s 0 = M 0 (D 0 , s 1 ), s 1 = M j 1 (D 1 ), where the function M j 1 (D 1 ) is defined for all D ∈ Īj . From Hypotheses 2.1, 2.3, and 2.5, the function s 0 → µ 0 s 0 , M j 1 (D 1 ) is strictly increasing from 0 for s 0 = 0 to μ0 M j 1 (D 1 ) when s 0 tends towards infinity. Using the definitions of Φ j (D) and I j in Table 9, equation µ 0 s 0 , M j 1 (D 1 ) = D 0 has a solution s 0 ≥ 0 if and only if

Φ j (D) := μ0 M j 1 (D 1 ) -D 0 > 0, with D ∈ Īj ,
or equivalently D ∈ I j . Thus, SS j 2 exists if and only if s in 0 + s in 1 > s 0 + s 1 and s in 0 > s 0 , that is, the existence condition in Table 5 is satisfied with D ∈ I j .

For SS j 3 , j = 1, 2, one has x 0 = 0 and x 1 > 0. Hence, (B.8) and (B.9) result in

s 0 = s in 0 , x 1 = D D 1 s in 1 -s 1 .
Since x 1 > 0, (B.5) results in µ 1 (s 1 ) = D 1 . Using the definitions of M j 1 in Table 3, we obtain

s 1 = M j 1 (D 1 )
, where D ∈ Īj .

Thus, we conclude that SS j 3 exists if and only if

s in 1 > M j 1 (D 1 ).
In what follows, we determine the local asymptotic stability of each steady state of (2.1). Let J be the Jacobian matrix of (2.1) at a steady state (s 0 , x 0 , s 1 , x 1 ), that is given by

(B.14) J =     -D -Ex 0 -µ 0 F x 0 0 Ex 0 µ 0 -D 0 -F x 0 0 Ex 0 µ 0 -D -F x 0 -µ 1 x 1 -µ 1 0 0 µ 1 x 1 µ 1 -D 1     , where E = ∂µ 0 ∂s 0 (s 0 , s 1 ) > 0, F = - ∂µ 0 ∂s 1 (s 0 , s 1 ) > 0.
For SS 0 , the characteristic polynomial is P 0 (λ) = (λ -λ 1 )(λ -λ 2 )(λ + D) 2 , where

λ 1 = µ 0 s in 0 , s in 1 -D 0 , λ 2 = µ 1 s in 1 -D 1 .
Thus, SS 0 is LES if and only if

(B.15) µ 0 s in 0 , s in 1 < D 0 and µ 1 s in 1 < D 1 .
If D 0 ≥ μ0 s in 1 , that is, D / ∈ I 0 , then the first condition of (B.15) is satisfied. If D ∈ I 0 , using (B.13) and the definition of M 0 in Table 3, it follows that the first condition of (B.15) is equivalent to

s in 0 < M 0 D 0 , s in 1 = F 0 D, s in 1 . If D 1 > µ max 1
, that is, D / ∈ Ī1 , then the second condition of (B.15) is satisfied. If D ∈ Īj , j = 1, 2, using the definition of M j 1 in Table 3, it follows that the second condition of (B.15) is equivalent to

(B.16) s in 1 < M 1 1 (D 1 ) with D ∈ Ī1 or s in 1 > M 2 1 (D 1 ) with D ∈ Ī2 .
At SS 1 , the Jacobian matrix is given by

J =     -D -Ex 0 -D 0 F x 0 0 Ex 0 0 -F x 0 0 Ex 0 D 0 -D -F x 0 -µ 1 0 0 0 µ 1 -D 1     .
Denote C i and L i the columns and lines of the matrix J -λI. The replacements of L 1 by L 1 + L 3 and then C 3 by C 3 -C 1 preserve the determinant and lead to the following characteristic polynomial

P 1 (λ) = (λ -λ 1 )(λ -λ 1 ) λ 2 + c 1 λ + c 2 ,
where

λ 1 = µ 1 s in 0 + s in 1 -s 0 -D 1 , λ 2 = -D, c 1 = D + (E + F )x 0 and c 2 = D 0 (E + F )x 0 .
Since c 1 > 0 and c 2 > 0, the real parts of the roots of the quadratic factor are negative. Therefore, SS 1 is LES if and only if λ 1 < 0, that is, (B.17)

µ 1 s in 0 + s in 1 -s 0 < D 1 . If D 1 > µ max 1 , that is, D / ∈ Ī1 , then condition (B.17) is satisfied. If D 1 ≤ µ max 1 , that is, D ∈ Ī1 , then condition (B.17) is equivalent to (B.18) s 0 > s in 0 + s in 1 -M 1 1 (D 1 ) or s 0 < s in 0 + s in 1 -M 2 1 (D 1 ).
Since the function s 0 → ψ(s 0 ) = µ 0 s 0 , s in 0 + s in 1 -s 0 is increasing, (B.18) is equivalent to

ψ(s 0 ) > ψ s in 0 + s in 1 -M 1 1 (D 1 ) or ψ(s 0 ) < ψ s in 0 + s in 1 -M 2 1 (D 1 ) .
At SS 1 , one has ψ (s 0 ) = D 0 . Thus, condition (B.18) is equivalent to

(B.19) D 0 > µ 0 s in 0 + s in 1 -M 1 1 (D 1 ), M 1 1 (D 1 ) or D 0 < µ 0 s in 0 + s in 1 -M 2 1 (D 1 ), M 2 1 (D 1 ) . If D ∈ Ī1 \I 1 , that is, Φ 1 (D) < 0 (or equivalently μ0 M 1 1 (D 1 ) < D 0 ) then the first condition of (B.19) is satisfied. If D ∈ Ī1 \I 2 , that is, μ0 M 2
1 (D 1 ) < D 0 , then the second condition of (B. [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF]) is not satisfied. If D ∈ I j , j = 1, 2, then condition (B. [START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF]) is equivalent to

s in 0 + s in 1 < M 0 D 0 , M 1 1 (D 1 ) + M 1 1 (D 1 ) or s in 0 + s in 1 > M 0 D 0 , M 2 1 (D 1 ) + M 2 1 (D 1 )
because the function M 0 •, M 1 1 (D 1 ) is increasing. These conditions are the same as those in Table 5.

For SS j 2 , j = 1, 2, the characteristic polynomial is P 2 (λ) = λ Proof. From definition of the function Φ j in Table 9 and Hypothesis 2. Table 13 The biological parameter values used for system (2.1) with the specific growth functions (C.1). 

Parameter

m 0 K 0 K i m 1 K 1 K I α 0 a 0 α 1 a 1 Figures 1, 3

1 means that D, s in 1 ∈ 1 / 1 = 1 means that D, s in 1 / 1 ∈

 1111111 dom(F 0 ) and the inequality is satisfied. Conversely, if D, s in ∈ dom(F 0 ), we let F 0 D, s in +∞. Thus, the condition s in 0 < F 0 D, s in ∈ dom(F 0 ) or the inequality is satisfied and D, s in dom(F 0 ). Similarly, the condition s in 1 > M j 1 (D 1 ) means that D ∈ Īj , j = 1, 2 and the inequality is satisfied, while the conditions in 1 < M j 1 (D 1) means D / ∈ Īj or the inequality is satisfied and D ∈ Īj . The other conditions involving functions F j i (D), i, j = 1, 2, follow similarly.

plane where s in 1 is kept constant. 4 . 1 .

 41 subsection 4.1, we study the operating diagrams in the s in 1 , s in 0 plane where D is fixed. In subsection 4.2, we determine the operating diagrams in the D, s in 0 Operating diagrams in the s in 1 , s in 0 plane when D fixed. The intersection of the surface γ 0 with the s in 1 , s in 0

Figure 1 . 11 0.495 and s in 1 = s in * 12 0

 111112 Figure 1. (a) The curves C1, C2 and those of Γ in the case D ∈ I2 = [0, D1 1.165) where D = 1.1 < min D1, D0(0) 2.556 , s in 1 = s in * 11

Figure 2 .

 2 Figure 2. Operating diagrams in the s in 1 , s in 0 plane with D constant where case 2 of (4.1) holds: (a) D1 1.856 < D = 1.857 < D0(0) 2.21, (b) D1 1.829 < D = 1.83 < D1, (c) D1 1.285 < D = 1.7 < D1.

Proposition 4 . 2 .

 42 Let D ∈ Īj . We have s in * 1j := M j 1 (D 1 ) ≥ 0, j = 1, 2 such that s in * 11 < s in * 12 . For all D ∈ I 1 , the three curves γ 0 , γ 1 1 and γ 1 2 intersect at the same point s in 1 = s in * 11 (see Figures 1 and 2(c)) such that s in * 11 < sin 1 where sin 1 is the unique solution of D0 (s in 1 ) = D. For all s in 1 ∈ 0, s in * 11 , (4.2)

2. if D ∈ I 1 4 . 2 .

 142 Figure 2(b) where J 2 is empty); 5. if D ∈ I 0 \ Ī1 , or if D1 < D < D0 (0), then only the regions J 1 and J 2 exist (see Figure 2(a)); 6. if D / ∈ I 0 ∪ Ī1 , or if D > max D1 , D0 (0) , then only the region J 1 exists (see Figure 2(a) where J 2 is empty). 4.2. Operating diagrams in the D, s in 0 plane when s in 1 fixed. The intersection of the surfaces

1 . 4 . 3 .

 143 Proposition Let s in 1 ≤ s max1

1 1 and γ 1 2 1 (( 4 . 2 ), γ 1 1 and γ 1 2 do not intersect if D * 1 ∈

 21421 intersect at the same point D = D * see Figures 3 and 4(b)) such that for all D ∈ [0, D * 1 ), (4.3) holds and for all D ∈ D * 1 , D1 ∩ I 0 ∩ I 1 , holds. The curves γ 0 Ī1 \I 1 , where for all D ∈ I 0 , (4.3) holds (see Figure 4(c)) or if D * 1 does not exist, where for all D ∈ I 1 , (4.2) holds (see Figures 3 and 4(a)).

γ 1 2 DFigure 3 .

 23 Figure 3. The curves C1, C2 and those of Γ in case 1 of (4.1) with s in 1 < s max 1 0.689: (a) s in 1 = 0 < M 1 1 (a1) 0.109, (b) M 1 1 (a1) < s in 1 = 0.35. (c)-(d) The respective corresponding operating diagrams.

(

  

Figure 4 .< s max 1 0 1 1 1 1Proposition 4 . 4 .

 411144 Figure 4. The curves Cj, j = 1, 2 and those of Γ in case 2 of (4.1) with s in 1 < s max 1 0.689: (a) s in 1= 0 < M 1 1 (a1) 0.109, (b) M 1 1 (a1) < s in 1 = 0.35; D * 1 1.503 ∈ I1, D1 1.829 (c) M 1 1 (a1) < s in 1 = 0.65; D * 1 1.853 / ∈ I1,and a magnification of Cj when D ∈ [1.85, D1], D1 1.856. (d)-(e)-(f ) The respective corresponding operating diagrams.

1

 1 

Figure 5 (

 5 a) and Figure 6(b)) such that for all D ∈ [0, D * 2 ) ∩ I 2 , (4.4) holds and for all D ∈ D * 2 , D1 ∩ I 0 ∩ I 2 , (4.5) holds. The curves γ 0 , γ 2 1 and γ 2 2 do not intersect if D * 2 ∈ Ī2 \I 2 , where for all D ∈ I 2 , (4.4) holds (see Figure 6(a)) or if D * 2 does not exist, where for all D ∈ I 2 , (4.5) holds (see Figure 5(b) and Figure 6(c)).

1

  and is kept constant, the regions of the operating diagram in the D, s in 0 plane are cataloged as follows:

1 and Figure 6

 6 (c,f) in case 2).With the same set of parameters of the operating diagram of Figure3(a) that we redraw in Figure7(a), the equation Φ 2 (D) = 0 has no solution. In Appendix C, with the specific growth rates defined in (C.1), we show that this equation has at most three solutions D j , j = 1, 2, 3 such that lim D→ D - jF 2 i (D) = +∞, i = 1, 2 (see Proposition A.4). The operating diagrams of Figure7(b-c) show that in the case of two or three solutions of the equation Φ 2 (D) = 0, we have the same number of regions but there is a change in the shape and the connectivity of the regions. This property is the same for the various cases studied above even when the equation Φ 2 (D) = 0 has several roots with general growth rates satisfying Hypotheses 2.1 to 2.4.

J 4 DFigure 7 .

 47 Figure 7. Operating diagrams of (2.1) when s in 1 = 0 and case 1 of (4.1) holds: equation Φ2(D) = 0 (a) has no solution, (b) has two solutions (c) has three solutions. The operating diagram (a) is the same in Figure 3(c).

α 0 ,where D0 s in 1 is defined and positive if and only if α 0 = 0 and μ0 s in 1 > a 0 . 1 ∈ 1 =

 011011 In the particular case α 0 = 0, the condition D 0 < μ0 s in 1 is equivalent to a 0 < μ0 s in 1 . Thus, the functionF 0 •, s in1 is defined on I 0 . Let D be fixed. From Hypothesis 2.5, the function s in 1 → D0 s in 1 is decreasing from D0 (0) to D0 (+∞). If D ≤ D0 (+∞), then (A.1) holds for all s in 1 ≥ 0. If D0 (+∞) < D < D0 (0), then there exists a unique solution sin 1 of equation D = D0 s in 1 such that (A.1) holds for all s in 1 ∈ 0, sin 1 . If D ≥ D0 (0), (A.1) does not hold for all s in 1 ≥ 0. Hence, the function F 0 (D, •) is defined on J 0 . Consequently, F 0 D, s in 1 is defined for D, s in dom(F 0 ). Since sin 1 satisfies D 0 = µ 0 +∞, sin 1 , it follows that F 0 D, sin M 0 µ 0 +∞, sin 1 , sin 1 = +∞.

1

 1 

5 )

 5 Using (B.2)+(B.3) and (B.4)-(B.3)+(B.5), we obtain the set of equations

4 + c 1 λ 3 + c 2 λ 2 + c 3 λ + c 4 , where c 1 = G j x 1 + 1 (D 1 ) > s max 1 .

 43211111 Hx 0 + 2D, c 2 = EG j x 0 x 1 + (D + D 0 )Hx 0 + (D + D 1 )G j x 1 + D 2 , c 3 = (D 0 + D 1 )EG j x 0 x 1 + DD 0 Hx 0 + DD 1 G j x 1 , c 4 = D 0 D 1 EG j x 0 x 1 , with H = E + F and G 1 := µ 1 M 1 1 (D 1 ) > 0 since M 1 1 (D 1 ) < s max 1 and G 2 := µ 1 M 2 1 (D 1 ) < 0 since M j Note that G 1 = G 2 =0, when D = D1 where SS 1 2 = SS 2 2 . Using the Liénard-Chipart stability criteria (see Gantmacher [20], Theorem 11), SS j 2 is LES if and only if (B.20) c i > 0, i = 1, 3, 4, and c 1 c 2 c 3 -c 2 1 c 4 -c 2 3 > 0.

Figure 8 .

 8 Figure 8. Case (C.3): (a,c) number of intersections of the curves Γ0 and Γ1 and (b,d) the corresponding number of solutions of equation Φj(D) = 0. (a-b) In case 1 of (4.1), the equation Φ2(D) = 0 has three solutions on 0, D1 . (c-d) In case 2 of (4.1), the equation Φ2(D) = 0 has two solutions on 0, D1 .

Figure 9 .

 9 Figure 9. Case (C.4), in particular without decay: (a,c) number of intersections of the curves Γ0 and Γ1 of the functions µ0 and µ1, respectively, and (b,d) the corresponding number of solutions of equation Φj(D) = 0. (a-b) In case 1 of (4.1), the equation Φ2(D) = 0 has two solutions on 0, D1 . (c-d) In case 2 of (4.1), the equation Φ2(D) = 0 has one solution on 0, D1 .

5 ,

 5 we have, for j = 1, 2,Φ j (D) = 0 ⇐⇒ M j 1 (D 1 ) = μ-1 0 (D 0 ) ⇐⇒ µ 1 μ-1 0 (D 0 ) = D 1 . Let y = μ-1 0 (D 0 ). Thus, D 0 = μ0 (y) and D 1 = µ 1 (y). From definition (1.3) of D i , i = 0, 1, we have D 1 = α 1 (D 0 -a 0 )/α 0 + a 1 . Consequently, equation (C.2) holds.When the growth functions µ 0 and µ 1 are of type (C.1), we obtainm 1 y K 1 + y + y 2 /K I = K i m 0 α 1 /α 0 + (K i + y) (a 1 -a 0 α 1 /α 0 ) K i + y .When condition (C.3) holds, we obtain an algebraic equation of degree three in y and consequently the equation (C.2) has at most three solutions. Hence, if case 1 of (4.1) holds, that is, the equation Φ 1 (D) = 0 has no solution, then the equation Φ 2 (D) = 0 has at most three solutions. However, if case 2 of (4.1) holds, that is, the equation Φ 1 (D) = 0 has one solution, then the equation Φ 2 (D) = 0 has at most two solutions. When condition (C.4) holds, we obtain an algebraic equation of degree two in y. Thus, the rest of the results follows similarly.

, and 5 ,Figure 7
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 9 Notations and intervals of auxiliary functions.
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study is to bring out the mutual effects of the syntrophy relationship, the decay of the two microbial species, the substrate inhibition on the growth of the second species and a new inflowing concentration (hydrogen) which are not studied together in the existing literature. First, we have determined the necessary and sufficient conditions of existence and local stability of all steady states of syntrophic model (2.1) according to the operating parameters D, s in 0 and s in 1 . Second, we have analyzed the operating diagrams to determine the behavior of the system according to the control parameters and to choose the appropriate inputs and the initial states to achieve a good operation of the process. The operating diagrams show that the system can have a unique stable steady state: either of coexistence (J i , i = 3, 6, 7) or washout (J 1 ) or exclusion of one of two microbial species (J i , i = 2, 8). It can also exhibit a bistability between coexistence and washout (J i , i = 10, 11) or exclusion of the second species (J i , i = 4, [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF][START_REF] Dellal | Global analysis of a model of competition in the chemostat with internal inhibitor[END_REF] or between washout and exclusion of the first species (J 9 ). If required, to ensure (or to avoid) the coexistence of two microbial species in the process, the operating parameter values can be chosen in (out) the regions J i , i = 3, 6, 7, where there exists a unique stable steady state of coexistence and the other steady states are unstable. The study of the nature of bifurcations of the steady states shows that all the coalesces and the change of stability can be either by a transcritical or a saddle-node bifurcation by crossing the boundary of the regions of the operating parameters space.

In [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], where s in 1 = 0 and µ 1 is increasing, the analysis of the operating diagram of (2.1) shows the existence only of the three regions J 1 to J 3 where the bistability cannot occur and the two steady states of extinction of the first species SS 1 3 and SS 2 3 do not exist. In [START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF], where only s in 1 = 0, that is, µ 1 is nonmonotonic, SS 1 3 and SS 2 3 do not exist and the operating diagram has at most four regions J 1 to J 4 where the system can exhibit a bistability between the steady state SS 1 of exclusion of the second species and the coexistence steady state SS 1 2 . It is shown, when the substrate inhibition increases, that

there is an emergence of the bistability region J 4 first and then its disappearance with the coexistence region J 3 for a sufficiently large substrate inhibition rate.

Conversely in [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF], where s in 1 ≥ 0 and µ 1 is increasing, it is shown that the steady states of coexistence SS 2 and of extinction of the first species SS 3 are unique. Moreover, the bistability cannot occur where at most six regions exist such that all bistability regions J 4 , J 5 and J 9 to J 12 do not exist.

Thus, our mathematical study of the operating diagrams of model (2.1) shows the significant impact of substrate inhibition on the behavior of the process and the emergence of the bistability regions which are empty when the growth rate µ 1 is increasing [START_REF] Daoud | Steady state analysis of a syntrophic model: The effect of a new input substrate concentration[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]. Our findings on the destabilization of a twotiered microbial 'food chain' by substrate inhibition are similar to those in [START_REF] Fekih-Salem | Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process[END_REF][START_REF] Harvey | Quantifying the effects of the division of labor in metabolic pathways[END_REF] where the behavior of system depends on the initial condition. Furthermore, a low, as well as a high concentration of input substrate, can cause destabilization by the extinction of the highest trophic level of a tri-trophic food chain model in the chemostat [START_REF] Boer | Food chain dynamics in the chemostat[END_REF].

Recently in [START_REF] Sari | The operating diagram for a two-step anaerobic digestion model[END_REF], an extension of the study of the two-tiered model (1.2) in [START_REF] Benyahia | Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes[END_REF] with a commensalistic relationship (µ 0 (•) = µ 0 (s 0 )) provides a complete analysis of the operating diagram. It is shown that our six steady states exist and at most nine regions exist where only the regions J 7 , J 10 and J 11 are empty. Hence, the main change of the behavior of the process by considering the effect of syntrophic relationship compared to [START_REF] Sari | The operating diagram for a two-step anaerobic digestion model[END_REF] is that the system can exhibit a bistability between the washout SS 0 and the coexistence SS 1 2 .

These theoretical messages explain the joined effect of syntrophy, mortality, substrate inhibition, and input substrates on the maintenance of coexistence and the protection of microbial ecosystems.

Finally, the results in this contribution may also serve for optimal experimental design by studying the biogas production and the process performance with respect to operating parameters. This is an important question that deserves further attention and will be the object of future work.

Appendix A. Definition domains and properties of auxiliary functions. First, we introduce in If α 0 = α 1 = 0, (A.3) is equivalent to a 1 < µ max 1 and a 0 < μ0 M 1 1 (a 1 ) . Thus, I 1 = [0, +∞) if this last condition holds, else I 1 = ∅. If α 0 > 0 and α 1 = 0, (A.3) is equivalent to a 1 < µ max 1 and α 0 D + a 0 < μ0 M 1 1 (a 1 ) , that is, I 1 = 0, μ0 M 1 1 (a 1 ) -a 0 /α 0 . If α 0 ≥ 0 and α 1 > 0, straightforward calculation shows that

Recall that the function M 1 1 is increasing. From Hypothesis 2.5, one has Φ 1 (D) < 0 for all D ∈ Ī1 .

Therefore, Φ 1 (D) > 0 for all D ∈ 0, D1 since Φ 1 ( D1 ) > 0 when case 1 of (4.1) holds and Φ 1 (D) > 0 for all D ∈ 0, D1 since Φ 1 ( D1 ) ≤ 0 when case 2 of (4.1) holds (see Figures 8 and9).

When the growth functions are given by (C.1) (as we will show in Proposition C.1), the equation Φ 2 (D) = 0 has at most three solutions in the case 1 of (4.1) and two solutions in the case 2 of (4.1).

For simplicity, we determine in this particular case the definition domain I 2 of the function

The general case can be treated similarly, without added difficulty.

Proposition A.3. The function F 2 i is defined on

otherwise, when α 0 > 0 and α 1 > 0, (A.6) where D i , i = 1, . . . , n, are the solutions of the equation Φ 2 (D) = 0 and n denotes the number of solutions such that D i > D j , for all i < j. Note that the function F 2 i is not defined for D = 0 in the particular case a 1 = 0.

Proof. The function

If α 1 = 0, similar arguments as the proof of I 1 imply that of

is positive for all D ∈ Ī2 , using (A.4), Hypothesis 2.5 and the function

Let α 0 > 0 and α 1 > 0. From (A.4), the sign of Φ 2 (D) can change at D ∈ Ī2 , that is, the function Φ 2 can be nonmonotonic on Ī2 (see Figures 8 and9(b-d)). When case 1 holds and n = 0, we have Φ 2 D1 > 0 and the equation Φ 2 (D) = 0 has no solution. Consequently, Φ 2 (D) > 0 for all D ∈ 0, D1 . Hence, the function F 2 i is defined on I 2 = Ī2 where Ī2 = 0, D1 when a 1 > 0 and Ī2 = 0, D1 when a 1 = 0. When case 1 holds and n = 1, the equation Φ 2 (D) = 0 has a unique solution D 1 ∈ 0, D1 . Thus, the function

The other cases can be treated similarly (see Figure 8(b-d)).

The following result describes the properties of the functions F 0 and F j i , i, j = 1, 2, when s in 1 is fixed.

When case 1 of (4.1) holds, we have

Proof. Using Hypothesis 2.5, given that

), for all D ∈ Ī2 , we can write

Thus, I 2 ⊂ I 1 . Under Hypothesis 2.3 and the definition of M 0 in Table 3, we have for all y ∈ [0, μ0 (s 1 ))

and s 1 ≥ 0, (A.9)

From the definition of F j 1 in Table 3, it follows that

Similarly,

From the definitions of F 0 and D0 s in

in Tables 3 and9, we then obtain

When case 1 of (4.1) holds, the function

and the definition of D1 in Table 9, it follows that (A.10)

Consequently,

From the definitions Φ 1 and D1 in Table 9, we have μ0

The last limit follows similarly.

Appendix B. Proofs.

Proof of Proposition 2.6. Since the vector field defined by system (2.1) is C 1 , the uniqueness of solution to initial value problems holds. From (2.1), x i (t 0 ) = 0, for any t 0 0 implies ẋi (t 0 ) = 0, i = 0, 1. If x i (0) = 0, then x i (t) = 0 for all t as the boundary face x i ≡ 0 is invariant in the vector field C 1 by (2.1). If x i (0) > 0, then x i (t) > 0 for all t as x i ≡ 0 cannot be reached in finite time by trajectories for which x i (0) > 0 by the uniqueness of solutions. On the other hand, we have s 0 (t 0 ) = 0 for any t 0 0 ⇒ ṡ0 (t 0 ) = Ds in 0 .

If ṡ0 (t 0 ) = 0, then s 0 (t) 0 for all t, using arguments similar to case x i . However, if ṡ0 (t 0 ) > 0, then s 0 (t) 0 for all t. In fact, assume that s 0 (0) ≥ 0 and that it exists t 0 > 0, such that s 0 (t 0 ) = 0 and s 0 (t) > 0, for t ∈ (0, t 0 ). Then ṡ0 (t 0 ) ≤ 0 which contradicts ṡ0 (t 0 ) > 0. Finally, we have

Hence, SS 2 2 is unstable as long as it exists with D = D1 because the condition c 4 > 0 in (B.20) is unfulfilled as G 2 < 0. For SS 1 2 , c i > 0, for all i = 1, 3, 4, as E, F , H and G 1 are positive. Following [START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF], where the particular case α 0 = α 1 = 1 was considered, we obtain

where the coefficients γ j , j = 0, . . . , 5, can be written as follows:

Since α 0 and α 1 are in [0, 1], then γ j > 0 for j = 0, . . . , 5. Thus, the conditions of Liénard-Chipart stability criteria (B.20) are satisfied for SS 1 2 which is LES as long as it exists with D = D1 .

For SS j 3 , j = 1, 2, the characteristic polynomial is

where

Therefore, the roots of the quadratic factor are real and have opposite signs. Consequently, if SS 2 3 exists, it is unstable. For SS 1 3 , the real parts of the roots of the quadratic factor are negative as

Proof of Proposition 4.1. Assume that s in 1 < M 1 1 (D 1 ). Using Table 5, SS j 3 , j = 1, 2 does not exist. In this case, we have 5, SS 0 is LES and SS 1 does not exist. If D / ∈ I j , then the existence condition of SS j 2 does not hold since F j 1 (D) = F j 2 (D) = +∞. Let D ∈ I j . Assume that the existence condition of SS j 2 holds. Then,

Using (A.9), we obtain 

. This is a contradiction for j = 1. However, for j = 2, one has

exists and is LES while SS 2 2 does not exist. Assume that s in 0 ≤ F 0 D, s in 1 . Hence,

which is a contradiction, that is, s in 0 > F 0 D, s in 1 . Therefore, SS 0 exists and is unstable while SS 1 exists and is LES, using Table 5. If D, s in 0 , s in 5, SS 1 2 exists and is LES while SS 2 2 exists and is unstable. Assume that s in 0 ≤ F 0 D, s in 1 . Hence,

Therefore, SS 0 is unstable while SS 1 is LES, using Table 5.

). Using Table 5, SS 0 is unstable, SS 1 3 exists and SS 2 3 does not exist. In this cas, we have

which is a contradiction. Thus, s in 0 > F 0 D, s in 1 . From Table 5, SS 1 and SS 1 2 exist and are LES while SS 2 2 exists and is unstable. If D, s in 0 , s in 1 ∈ J 6 , then

Using Table 5, SS 1 and SS 

as s in 1 < M 2 1 (D 1 ). From Table 5, SS 1 and SS 2 2 do not exist, and SS 1 2 exists and is LES, and SS 1 3 exists and is unstable. If D, s in 0 , s in 1 ∈ J 8 , then

From Table 5, SS 1 , SS 1 2 and SS 2 2 do not exist and SS 1 3 exists and is LES.

Assume that M 2 1 (D 1 ) < s in 1 . Using Table 5, SS 1 3 and SS 2 3 exist. In this case, we have

From Table 5, SS 1 , SS 1 2 and SS 2 2 do not exist, SS 0 and SS 1 3 are LES and 5, SS 1 and SS 2 2 do not exist, SS 0 and SS 1 2 are LES, and SS 1 3 and SS 2 3 are unstable. If D, s in 0 , s in 5, SS 1 does not exist, SS 0 and SS 1 2 are LES, and SS 2 2 , SS 1 3 and SS 2 3 are unstable. If D, s in 0 , s in 1 ∈ J 12 , then

From Table 5, SS 1 and SS 1 2 are LES, and SS 0 , SS 2 2 , SS 1 3 and SS 2 3 are unstable.

Proof of Proposition 4.2. Let D ∈ Īj . We have

), for all D ∈ Ī2 . For all D ∈ I 1 , one has

As the function F 0 (D, •) is increasing, we obtain s in * 11 < sin 1 . For all D ∈ I 1 , we have

that is, the curves γ 0 , γ 1 1 and γ 1 2 intersect at s in * 11 . For all s in 1 ∈ 0, s in * 11 , one has M j 1 (D 1 ) > s in 1 and therefore 

Since M 0 is increasing with respect to the second variable (see formula (A.9)), we have for all D ∈ I 2 ,

that is, (4. 

where m j and K j , j = 0, 1, denote the maximum growth rates (units are 1/d) and the Michaelis-Menten constants with units of concentration kg COD/m 3 ; K i and K I represent the inhibition factor due to s 1 for the growth of the species x 0 and x 1 , respectively, with units of concentration. The following result determines the maximal number of solutions of the equation Φ 2 (D) = 0 in the particular case of growth functions (C.1) when α 0 > 0 and α 1 > 0.

When the growth functions are given by (C.1), we succeeded in finding a set of parameters such that we show the maximum number of intersections of the curves Γ 0 and Γ 1 and the corresponding number of solutions of the equation Φ j (D) = 0 (see Figures 8 and9).

Appendix D. Tables. In this section, we give some tables used in the paper. Tables 10 and11 describe the intersections of the surfaces of Γ with a two-dimensional operating plane where D or s in 1 is constant, respectively. Table 12 presents the auxiliary functions defined in Table 3 in the particular case of the Monod-type with hydrogen inhibition and of the Haldane-type given by (C.1). Table 13 provides the biological parameter values used in all the figures.