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A mathematical model of anaerobic digestion with syntrophic relationship, substrate
inhibition and distinct removal rates *

Radhouane Fekih-Salem*T, Yessmine Daoud*, Nahla Abdellatift8, and Tewfik Sari¥

Abstract. Understanding and exploiting the syntrophic relationship between microbial species is a major challenge in
the mathematical theory of the anaerobic digestion process. In this work, we focus on the acetogenesis
and hydrogenotrophic methanogenesis phases and we include distinct removal rates for the species. Our
study gives a quite comprehensive analysis of a syntrophic model by analyzing the joined effects of syntrophy
relationship, mortality, substrate inhibition and input concentrations that were neglected in previous studies.
The mathematical analysis of the model involving the mortality is a difficult problem since the model is not
reduced to a planar system as in the case where the dilution rates of the substrates and the removal rates of
microbial species are equal. Using general nonmonotonic growth rates, the necessary and sufficient conditions
of existence and local stability of all steady states of the four-dimensional system are determined, according to
the operating parameters. This general model exhibits a rich behavior with the coexistence of two microbial
species, the bistability, the multiplicity of coexistence steady states, and the existence of two steady states of
extinction of the first species. The operating diagram shows how the model behaves by varying the control
parameters and illustrates the effect of the substrate inhibition and the new input substrate concentration
(hydrogen) on the appearance or the disappearance of coexistence and bistability regions. Similarly to the
classical chemostat model, including the substrate inhibition can destabilize a two-tiered microbial ‘food chain’,
where the asymptotic behavior of the system depends on the initial condition.

Key words. Anaerobic digestion, chemostat, syntrophy, inhibition, bistability, operating diagram

AMS subject classifications. 34A34, 34D20, 37N25, 92B05

1. Introduction. Anaerobic Digestion (AD) is a process used for the biological treatment of mu-
nicipal, agricultural and industrial wastes with the additional benefit of producing energy in the form
of biogas. During this process, the waste is first partially transformed into volatile fatty acids and then
converted into methane and carbon dioxide, which can be used as a carbon source for microalgae [30].
AD process is too complex with difficulty to collect informative experimental data which complicates
the model validation and the parameter identification [15]. The generic AD Model No.1 (ADM1) of
the IWA Task Group for Mathematical Modeling of AD Processes is characterized by its extreme
complexity with 32 dynamic concentration state variables and a large number of parameters [3].

Many mathematical models describing the whole process or some key steps have been considered
in the last three decades; see [5, 7, 10, 17, 21, 25, 40, 41, 42, 49, 51, 52, 53]. A synthetic and unified
vision of many models involving two or three cross-feeding species and various types of inhibition has
been proposed in [14]. Using specific growth functions, the numerical simulations reveal the reduction
in both productivity and stability due to inhibitions with the occurrence of stable periodic orbits
owing to the presence of negative and positive feedback loops. In [25], a mathematical analysis of
the protein-rich Microalgae AD model (the so-called MAD) shows the process behavior according to
the control parameters where the operating diagram illustrates the ideal conditions to optimize biogas
yield and ammonia toxicity. In fact, the MAD model has been proposed in [28] and was validated from
experimental data of an AD process of Chlorella vulgaris microalgae involving four substrates and three
microbial species with three reactions and two steps (hydrolysis-acetogenesis and methanogenesis).

Recently, a complete mathematical analysis was provided in [31] of a two-step model (acidogenesis
and methanogenesis) introduced in [9] where a fifth state variable (ammonia) is included. The decay
and the inhibition caused by ammonia were taken into account by considering a general class of
response functions. In [52, 53], an eight-dimensional mathematical model describing three of the
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2 R. FEKIH-SALEM, Y. DAOUD, N. ABDELLATIF, AND T. SARI

four main stages of AD (acidogenesis, acetogenesis, and methanogenesis) was analyzed by considering
syntrophy and substrate inhibition effects. Following [51] and using general functional responses, a
three-tiered microbial food-web model was studied in [41] discovering the emergence of the coexistence
region in the operating diagram where a stable limit cycle is born via the Hopf bifurcation, which has
not been reported by [51]. The work of [41] has been recently extended in [34, 35] by considering the
effects of the phenol and hydrogen input concentrations, together with the effects of maintenance (or
decay) terms.

Using a step by step parameter identification procedure, Bernard et al. [7] have proposed and have
validated a reduced two-step model (the so-called AM2) from experimental data of the AD process.
This model has a cascade structure and has been widely applied for control and optimization of AD
process [21, 42, 43, 44]. Using a maximum likelihood principal component analysis [27] and generated
data built from ADMI1 model, the appropriate number of reactions is determined by a systematic
data driven-approach followed by a parameter identification procedure [22]. The resulting low-order
model is the two-tiered microbial ‘food chain’ leading to perfectible direct and cross-validation results.
The AM2 model was mathematically studied in [5, 38] and was extended in [4, 6], where a fifth state
variable (SMP: Soluble Microbial Products), important for fouling of membranes, is included. For
a review of mathematical modeling of anaerobic digestion with respect to theory, applications and
technologies, the reader is refereed to [50].

The two-tiered microbial model we consider here describes the next two biological reactions:

(1.1) S0 0 o + s1, 51— 1y

where a substrate sg (Volatile Fatty Acid) is consumed by a biomass z¢ (acetogenic bacteria) to produce
a product s1 (hydrogen). The substrate s; is consumed in the second reaction by another biomass
x1 (hydrogenotrophic methanogenic bacteria). po and p; are the bacterial growth rates, depending
eventually on one or both substrates. The substrates sy and s; are introduced in the reactor with the
inflowing concentrations s&* and s, respectively, and a dilution rate D. These reactions are described
by the following system of differential equations

) D (S%)n — 80) — MO( )an
@y = (po(-) — Do) xo,

(1.2) s= D(s7" = s1) +po(-)wo — pa()an,
1 = (w() — D1)a,

where Dg and D; represent, respectively, the disappearance rates of acetogenic and methanogenic
bacteria. In this study, the two-tiered model (1.2) is analyzed where D; can be modeled as in [29, 45]
by

(1.3) D,=o;D+a;, i=0,1,

where the nonnegative death (or decay) rate parameters ap and a; are taken into consideration with
units of the dilution rate (D has units 1/d). These decay terms included in model (1.2) are related
to consumption of energy, other than growth; see for instance [23] or [33]. The coefficients ap and ay
belong to [0, 1] and represent, respectively, the first and the second biomass proportion that leaves the
reactor. For example, in [7] these coefficients are proposed to model a biomass reactor attached to the
support or to decouple the residence time of solids and the hydraulic residence time (1/D). Thus, the
study will not be restricted to the case a; = 1, i = 0, 1, as in most of the studies in the literature (see
Tables 1 and 2 below), and the case 0 < a; < 1, which is of biological interest, will be investigated.
If the growth rate ug depends only on substrate sy and p1 depends only on sy, that is,

(1.4) po() = po(so),  pa(-) = p1(s1),

then system (1.2) has a cascade structure and describes a commensalistic relationship where the
commensal species x1 needs the first species xg to grow, while xy can grow without x; and it is not
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ANAEROBIC DIGESTION MODEL 3

affected by the growth of the commensal species 1. If o depends on both substrates sg and s;, and
p1 depends on substrate s, that is,

(1.5) po(-) = po(so,81),  pa(-) = pa(s1),

then system (1.2) describes a syntrophic relationship where two microbial species depend on each
other for survival by the production of a required substrate s;. In this case, each species benefits from
the presence of the other species. Tables 1 and 2 summarize the modeling assumptions made in the
literature on two-tiered model (1.2) describing the commensalistic and the syntrophic relationships,
respectively, according to the input concentration s%™, the removal rates D;, and the choice of the
growth functions.

Table 1
Literature examples of the commensalistic relationship of two-tiered model (1.2), the modeling assumptions and the
description of the growth rates (1.4).

References stn D, o(s0) 11 (s1)
Reilly [37], 0 D Monod Monod
Simeonov and Stoyanov [47] 0 D +a; Monod Monod
Stephanopoulos [48] 0 D Monotonic Monotonic or Nonmonotonic
Bernard et al. [7] >0 oD Monod Haldane
Simeonov and Diop [46] 0 D Monod or Contois Haldane
Sbarciog et al. [42] >0 D Monotonic Nonmonotonic
Benyahia et al. [5] >0 aD Monotonic Nonmonotonic
Table 2

Literature examples of the syntrophic relationship of two-tiered model (1.2), the modeling assumptions and the de-
scription of the growth rates (1.5).

References sin Dy to(so, 1) u1(s1) or pi(so,s1)

Kreikenbohm and Bohl [26] 0 D Monod in s, decreasing in s; Monod

Burchard [10], El-Hajji et al. [16] 0 D Increasing in sg, decreasing in s;  Increasing

Xu et al. [54] 0 D + a; Increasing in sg, decreasing in s; Monod

Sari et al. [39] >0 D Increasing in sg, decreasing in s; pecrea'smg L 50,
increasing in s;

Harvey et al. [24] 0 D Increasing in s, decreasing in s; Nonmonotonic

Sari and Harmand [40] 0 D+ a; Increasing in sg, decreasing in s; Increasing

Fekih et al. [18] 0 D +a; Increasing in sy, decreasing in s; Nonmonotonic

Daoud et al. [11] >0 D+a; Increasing in sg, decreasing in s; Increasing

Harvey et al. [24] have studied model (1.2) in the particular case where s" = 0, D; = D, and
the growth rate po(so,s1) = f(s0).g(s1) with f is increasing in sy and g is decreasing in s;. Our
study provides an extension of the results in [24] to the case where Dy and Dj are distinct from
D. Notice that most of the studies in the existing literature (see Table 2) consider the case of equal
removal rates (D1 = Dy = D), where the model can be reduced to a two-dimensional system. In
this paper, we generalize [10, 16, 24, 26], by allowing distinct removal rates. In this case, the study
of the stability is much more delicate and requires the Liénard-Chipart stability criteria [20] for a
four-dimensional system. Furthermore, it is reported in the literature [5, 7, 18, 24, 42, 46, 48] that at
many times the second reaction of (1.1) is inhibited by large values of s1, which instigates to consider a
Haldane-type growth function for p;. The goal of the present work is to understand the joined effects
of syntrophy, mortality of two microbial species, substrate inhibition on their growth and inflowing
substrate concentration of the second species, which have not been studied in the literature. Moreover,
here, we do not specify kinetics but we consider qualitative properties on the growth functions and we
assume that the second species is inhibited when the concentration of substrate becomes significant.
The particular case si* = 0 was considered in [18]. The case where p1 does not present inhibition was
considered in [11, 40, 54].

On the other hand, our study provides an important tool for the experimentation which is the
operating diagram showing the behavior of the syntrophic model (1.2) according to the control param-
eters D, 36” and sﬁ”, when all biological parameters are fixed. This operating diagram is often studied
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4 R. FEKIH-SALEM, Y. DAOUD, N. ABDELLATIF, AND T. SARI

numerically or theoretically both in the biological literature [36, 42, 51, 54] and the mathematical
literature [1, 2, 11, 12, 13, 18, 19, 23, 25, 32, 38, 40, 41, 52, 53].

This paper is organized as follows: in section 2, we present the assumptions made on the growth
functions and give some preliminary results. Section 3 is devoted to the analysis of steady states and
their local stability. In section 4, we present the operating diagrams which depict the different outcomes
of the model according to control parameters. Finally, some conclusions are drawn in section 5. The
definition domains of some auxiliary functions used for the description of the steady states with their
conditions of existence and stability are given in Appendix A. The proofs of all results are reported in
Appendix B. With specific growth rates satisfying the general assumptions, the maximal number of
solutions of an equation which determines some definition domains are given in Appendix C. Finally,
some tables are given in Appendix D.

2. Mathematical model and assumptions. In what follows, we study model (1.2) where the
removal rates D; and the growth rates p;, i = 0,1 are given by (1.3) and (1.5), respectively. Thus, the
syntrophic model can be written as follows

50 = D(s§"—s0) — po(so, s1)zo,

(2.1) Ty = (M0($07 51) — Do)wo,
$1 = D (s —s1) + po(so, s1)z0 — pa(s1)z,
&1 = (m(s1) — D)z

We first make the following general assumptions on the bacterial growth rates. The functions pg and
p1 belong to CH(RT,RT) and C'(RY), respectively and verify:

Hypothesis 2.1. Growth of species xg can take place if and only if the substrate sg is present:
to(0,51) =0, 0 < po(so, s1) < +oo, for all sp > 0 and s; > 0.

Hypothesis 2.2. Growth of species x1 can take place if and only if the substrate s; is present:
1#1(0) = 0 and p1(s1) > 0, for all s; > 0.

Hypothesis 2.3. Growth rate of species x¢ is favored by sp and is inhibited by the substrate s;:
g—’;‘;(so,sl) > 0 and g—‘s‘?(so,sl) < 0, for all sy > 0 and s; > 0.

Hypothesis 2.4. The nonmonotonic growth function p; takes into account the growth-limiting for
low concentrations of substrate s; and the growth-inhibiting for high concentrations: pu;(s;) reaches
a maximum value pf"*® = p (s7"%%) at s; = s7"*® and satisfies pj(s1) > 0, for all s; € [0, s]"%*),
wi(s1) <0, for all (s7"**, +00) and p1(+00) = 0.

Hypothesis 2.5. The maximum growth rate of the species xg decreases with the concentration of
substrate s;: for all 51 > 0, fig(s1) < 0 where fig(s1) := supg, > to(0, 51).
The following result proves that syntrophic model (2.1) preserves the biological significance where all
solutions of the system are nonnegative and bounded for any nonnegative initial condition.

Proposition 2.6. For any nonnegative initial condition, the solution of system (2.1) exists for all
nonnegative times, remains nonnegative and is positively bounded. In addition, the set

Q= {(80,$o,81,x1) € R 1250 +x0 + 51+ 21 < 2 (257 +s§”)},

min

where Dyin = min(D, Dy, D1), is positively invariant and a global attractor for (2.1).

3. Analysis of the syntrophic model. A steady state exists if and only if all its components are

nonnegative. Model (2.1) can have at most six steady states, which we denote as follows:

e SSy (z9p = z1 = 0): the washout of both species.

e SS; (z1 =0, xg > 0): species ] is extinct while species ¢ survives.

e 5SS, i =1,2 (zo > 0, 21 > 0): both species are maintained.

° SS%7 i=1,2 (xg =0, z1 > 0): species xg is extinct while species x; survives.
We show below that all steady states are unique, if they exist. However, bifurcations may occur
(see Table 8) where two steady states collide, giving rise to a non hyperbolic steady state. First, we
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introduce in Table 3 the auxiliary functions for determining the existence and stability conditions.
Some comments and details on their definition domains are given in Appendix A. In the particular
case of specific growth rates of Monod-type with hydrogen inhibition and of Haldane-type (C.1), the
auxiliary functions defined in Table 3 can be calculated analytically and are given in Table 12.

Table 3
Auziliary functions where dom(Fy) and I;, j = 1,2 are given in Table 9.
Definition

Let s1 > 0. s9 = My(y, s1) is the unique solution of equation y = po(so, $1)-
It is defined for y € [0, fig(s1))

so = Mo(y, s1)

max

o1 = ML(y) 51 = M (y) is the unique solution in [0, s7*%*] of equation y = p1(s1).
It is defined for y € [0, pj**].

51 = M2(y) 51= M2(y) is the unique solution in [s7%" +00) of equation y = py(s1).
It is defined for y € (0, u7**"].

FO' (D, st™) FO. (D,si™) = Mo (oD + ao, si") defined for (D, si") € dom(Fp)

Flj(D) FIJ(D) :Mq(a0D+a0,Mf(q1D+a1)), DEIj

Fi(D) Fi(D) = M{(a1D +a1) + Fi (D), D€ I,

The following result gives all the steady states of (2.1) and the necessary and sufficient condi-
tions of their existence and stability. For convenience, we shall use the abbreviation LES for Locally
Exponentially Stable.

Proposition 3.1. Assume that Hypotheses 2.1 to 2.4 hold. Then, the siz steady states of (2.1) are
given in Table 4. The conditions of their existence and stability are given in Table 5.

Table 4
Steady states of (2.1). All functions are defined in Table 3.
S0, S1 components Tg, £1 components
SSo  So = 86”, S1 = s’ln r9g=0,21 =0
So is a solution of equation go = D (s’" s )
SS1 o (80, 86n + Szln — 80) =D 0 : ODO 0 0
s1 = sy + st — s0 1= -
= HD =% )
s1 = M{(D1) r1= 757 (50" + 51" =50 — 1)
ss; 00 " OD : j
S1 = Ml (Dl) T = Dy (Szln — Ml (Dl))
Table 5
Necessary and sufficient conditions of existence and local stability of steady states of model (2.1).
Existence condition Stability condition
SSp  always exists sy < Fo (D,s{") and (s{"* < M{(D1) or s1* > M7 (D»))
SSy st > Fy (D, si) sin 4 51" < F3(D) or si* + si" > F2(D)

SSy  si* > max (F{ (D), F3(D) — si") LES whenever it exists
SS3  si" > max (FE(D), F3(D) — si*)  Always unstable

SSi st > MI(Dy), sin < FL(D)
SS2 sin > M3E(Dy), Always unstable

Remark 3.2. Since the function Fyy (D, s{") is defined for (D, s{") € dom(Fp) (see Proposition A.1),
the condition sj* > Fy (D, st") means that (D, s{") € dom(Fp) and the inequality is satisfied. Con-
versely, if (D, sﬁ”) ¢ dom(Fp), we let Fy (D, slln) = +o00. Thus, the condition si* < Fy (D, sﬁ") means
that (D, si") ¢ dom(Fp) or the inequality is satisfied and (D, s{") € dom(Fp). Similarly, the condi-
tion s > M{(Dl) means that D € I;, j = 1,2 and the inequality is satisfied, while the condition
sin < M (D;) means D ¢ I; or the inequality is satisfied and D € I;. The other conditions involving
functions FZJ (D), i,j = 1,2, follow similarly.

As we will see in Proposition 4.5, the limit case D = D; corresponds to saddle-node bifurcations
of SS3 with SS3 and SS} with SS3 where these steady states are non hyperbolic. In the particular case
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st = 0, we obtain the same result as in [18, 40] where SS and SS3 do not exist since the conditions
of their existence in Table 5 are not satisfied. Compared to [40], a main change in the existence of
steady states of our model (2.1) is the appearance of the second positive steady state SS3 and two
steady states SS§ and SS3.

4. Operating diagrams. The operating diagram is a very useful tool to determine the asymptotic
behavior of the process with respect to the control parameters D, 56” and s’i” which are the most easily
parameters to manipulate in a chemostat. All other parameters are fixed since they have biological
meaning and cannot be easily manipulated by the biologist. The biological parameter values used in
all figures are provided in Table 13. To construct the operating diagram, we first define in Table 6 the
set of surfaces I' = {0, v/, 74,7 = 1,2,3,j = 1,2} which are the boundaries of different regions of the
(D, sin, s"ln)—space. We define also in Table 6 the curve C; of the function y = Mf (D) — s, j=1,2
to determine its sign according to s{" and D. As we will see in Propositions 4.2 to 4.4, if D is fixed
in Jj, then s = s = M{ (a1 D + a1) and if si" is fixed, the equation Mj (a1 D + a1) = si can have

J
a unique solution D = D; with j = 1,2. As stated in the following result, the surfaces in the set I"

separate the operating space (D7 36”, 311”) into twelve regions, denoted Ji, k = 1,...,12, and defined
in Table 7.
Table 6
The set of surfaces I, the curves C1 and Ca, and the corresponding colors in Figures 1 and 3 to 6.
I', C; and Co Color
7 = {(D, 36”, sﬁ") sgt = Fy (D, s{"), (D,s") € dom(Fy)} Black
= (D,sé",si") sit=F}D), De I, Cyan
v ={(D,sir, si") st = FE(D), D € I Green
v ={(D,sir, st") : sit = F3(D) —s", De I Red
V2 = (D,sé”,si") sin = F3(D) — st Del, Blue
’V?{ - {(D756n7511n) 7in:]\411(l)1)7 De[l} Pink
={(D,sg",s1") : D = DT}2 ={(D,sg",s7") : 57" = 811", D e L}
Y3 = {(D786n7511n) Sin:Ml (D1)7 DEIQ} Violet
= {(D,sé",si") :D=Ds} = {(D,sg",s") : s7" = s15%, D€ I}
V4= {(D, sy, 311") D= D1} - Coral
Cy: curve of the function y = M} (D) —s*, D € I Magenta
Cay: curve of the function y = M?(Dy) — si", D € I, Brown

Proposition 4.1. Assume that Hypotheses 2.1 to 2.5 hold. The existence and the stability of the
steady states of (2.1) in the twelve regions Jy, k = 1,...,12 of the operating diagram are determined
in Table 7.

Table 7
Existence and stability of steady states in the regions of the operating diagram. The letter S (resp. U) means that
the corresponding steady state is LES (resp. unstable). No letter means that the steady state does not ezist.

Condition 1 Condition 2 Region Color SSp SS; SS3 SSs? Ssi Ss?
st < Fo (D, sﬁ") ' Ji1 Cyan S
in 1 Fy (D,s") < s < F3(D) — s{" J2  Green U S
si" < Mi(Dy) F3(D) —s" <s" <FZ(D)—si" J3 Red U U S
so" > FQQ(D) — 81" Js+ Yellow U S S U
st > F3(D) — s Js  Yellow U S S U U
) in 5 Fo (D,s") < sy < F5(D) — s{" Js Red U U S U
Mi(Dh) < si" < MI(DW) 1 (py < §in < Ry (D, i) Jr  Red U S U
so" < Fll(D) Js  Blue U S
56;’ < F{(D) . Jo  Deep pink S S U
2 in Fi (D) < sg* < F{ (D) Jio  Gray S S U U
Mi(Dr) <si FE(D) < s* < Fo (D, s1") Ju  Gray S S U U U
sq" > Fo (D,sﬁ") J12 Yellow U S S U U U

Since the definition domain of the function F/ is I; where D < Dy with ®;(D) > 0 (see Appen-
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dix A), it’s necessary to distinguish the following two cases according to the sign of ®;(D;):

(4.1) case 1: ®; (D1) >0, case 2: ®; (Dy) <0.

max

Note that, the condition of case 1 is equivalent to (fio (s7°%) — ag) /ap > D; while the opposite
inequality holds in case 2.

Since it is very difficult to observe the twelve regions of the operating diagram in three-dimensional
space, it would be much better to illustrate cuts along two-dimensional planes by fixing one of the
three operating parameters in order to have a better vision and understanding. In subsection 4.1, we
study the operating diagrams in the (s’i”, 36") plane where D is fixed. In subsection 4.2, we determine
the operating diagrams in the (D, 36") plane where s is kept constant.

4.1. Operating diagrams in the (s{",s") plane when D fixed. The intersection of the surface
Yo with the (s’i", 56”) plane where D is kept constant is a curve of a function of si*. However, the
intersections of the surfaces 'yg ,i=1,2,3, j = 1,2 with this plane are straight lines (see Table 10).
The various regions of the operating diagram are then very clear to visualize it. To study the operating
diagram when D is fixed, we need the following result which determines the relative positions of the

curve 7o with the straight lines fyf , 1,7 = 1,2 according to the values of si" and SZ{;*

96” ’Y% (a) Yo sg’l "y% (b) Yo

Figure 1. (a) The curves C1, C2 and those of I in the case D € I» = [0,D1 ~ 1.165) where D = 1.1 <
min (D1, Do(0) =~ 2.556), s1" = 511" =~ 0.495 and 51" = 513" =~ 0.961 and Case 1 of (4.1) holds. (b) The corresponding
operating diagram in the (311", 56") plane.

(a)

50 50

in in

40+ 404

T J2

30 30

20

J1 7

in
T T T T —S1 0 T
o 0,1 0,2 03 0.4 0,5 0 0,5

Figure 2. Operating diagrams in the (si”, 56") plane with D constant u;here case 2 of (4.1) holds: (a) D, :‘1.856 <
D =1.857 < Do(0) ~2.21, (b) D; ~1.829 < D =1.83 < D1, (¢) D1 ~1.285 < D = 1.7 < D.

15 0 0.5

Proposition 4.2. Let D € I;. We have 511’;”* = MJ(Dy) >0, j = 1,2 such that s{7* < s"%*. For all

D € I, the three curves Yo, 71 and s intersect at the same point si* = sti* (see Figures 1 and 2(c))

such that s{1* < 5" where 5" is the unique solution of Do(s") = D. For all s € [0, s{7*),
(4.2) Fy (D, s") < F{(D) < Fy(D) — si™.
and for all s € (s{1*,5"),

(4.3) Fy (D,s") > F}(D) > Fy(D) — si™.
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For all D € Iy, the three curves 'yo, 73 and v3 intersect at the same point s* = si%* (see Figure 1)
such that s{5* < . For all si" € [0, s%%"),

(4.4) Fy (D, s") < F}(D) < F5(D) — si",
and for all st € (si3*, 51"),
(4.5) Fy (D, s{") > FE(D) > F3(D) — si™.

According to the position of D relatively to the critical values INDZ-, Dy, Dy and Dy (0) which are
defined in Table 9, the regions of the operating diagram in the (si”, 36”) plane where D is kept constant
are cataloged as follows:

1. if D € Iy, then the twelve regions exist (see Figure 1);

2. if D € I1\I, then eight regions exist where the four regions Jy, J5, J11 and Ji2 are empty
(see Figure 2(c));

3. if D € Iyn L\, or if Dy < D < min (Dl,DO(O)), then only the regions J1, J2, Js and Jy
exist (see Figure 2(b));

4. if D € II\{l1 U Iy}, or if Dy(0) < D < Dy, then only the regions J1, Js and Jo exist (see
Figure 2(b) where [J5 is empty);

5. if D € Ig\I3, or if Dy < D < Dy(0), then only the regions [J; and J» exist (see Figure 2(a));

6. if D ¢ IoUIy, or if D > max (D1, Dy(0)), then only the region J; exists (see Figure 2(a) where
J2 is empty).

4.2. Operating diagrams in the (D,s() plane when s'" fixed. The intersection of the surfaces
Yo and ’yg , 1,7 = 1,2 with the (D, 56”) plane where s is kept constant is a curve of a function of D.
However, the intersections of the surfaces 74, j = 1,2 with this plane are straight lines (see Table 11).
To determine the operating diagram when sil'”. is fixed, we show the following result which determines

the relative positions of the curves 7o and v/, 7,7 = 1,2 according to the values of D and Dj. We
begin by considering the case s{" < s7"%%.

Proposition 4.3. Let s* < s7"%%. For all D € Iy,
Fo (D, s") < F{(D) < F3(D) — s{".
There exists a solution D = D} € Iy of equation st = M} (a1 D + ay) if and only if
(4.6) s > Mi(ay).

It is unique if it exists. If D} € I, the three curves o, 71 and 4 intersect at the same point D = D%
(see Figures 3 and 4(b)) such that for all D € [0, D}), (4.3) holds and for all D € (Df,D1) NIy N1y,
(4.2) holds. The curves vy, ¥i and v4 do not intersect if DY € I1\I, where for all D € Iy, (4.3) holds
(see Figure 4(c)) or if D} does not exist, where for all D € I, (4.2) holds (see Figures 3 and 4(a)).

According to the position of s¢" relatively to M{ (a1) and the two cases of (4.1) where st € [0, saT]

and is kept constant the regions of the operating diagram in the (D 50 ) plane are cataloged as follows:

1. If si* < M{ (al), there exist at most four regions J; to Ju (see Figure 3(a,c) in case 1 of (4.1)
and Figure 4(a,d) in case 2).

2. Let si" > M{(a1). If D € I, there exist at most eight regions J; to Jg (see Figure 3(b,d) in
case 1 and Figure 4(b,e) in case 2). If case 2 holds and D € I;\I;, there exist at most five
regions J; and J5 to Jg (see Figure 4(c,f)).

The operating diagram of Figure 4(b,e) shows the existence of seven regions J; to Jg where the region
Ju is empty in the case 2 of (4.1) with Mj (a;) < st < s7%% and D} € I,. However, this region [J,
can be not empty for another set of parameters such that D} < D;.

By similar arguments to that in the proof of Proposition 4.3, we can prove the following result
which determines the relative positions of the curves 7y and 'yf , 1,5 = 1,2 according to the values of
D and D3 in the case s{* > s]"**.
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856”7 y (a) Yo DO
75 7
o]
5]
Co
o]
27
7
5]
1
PY% 1+
71 D
Clﬂ 0 0,5 1 s 2 y
56" (c)
J2
2
. J1
V2
o .D

o0 0.5

Figure 3. The curves C1, C2 and those of T in case 1 of (4.1) with si"

1 1.5 2

D
0.5 2
max

< 8T ~ 0.689: (a) si" =

(b) Mi(a1) < si™ =0.35. (c)-(d) The respective corresponding operating diagrams.

30180, Y

zo—s%)", Y
154 2
'y

(0)

|
)
£]
|
o1 ‘
| 1
— i —

1 .
Yo YO

0 < M{(a1) ~ 0.109,

D

J1

2 DO C 0.2

04 06

D

0 T T T T
0 0.5 1 L5 2

Figure 4. The curves C;, j = 1,2 and those of T' in case 2 of (4.1) with si™
Mi(a1) ~0.109, (b) Mi(a1) < s = 0.35; D} ~1.503 € I, D,

Proposition 4.4. Let s

u 02 04 06

08 1

X

1214 3 18

f)l

2o Y ’YO B
J2
10
5 5
y ,

T4 06 08 1 T2~ 14

G e D1
5 (f) v

Do

12 14 16 18 . 1 L5

~

max

< 57

~ 0.689: (a) si™

1,6 — 1,8 ~

Do Dy

2

=0<

35; D 1.829 (¢) Mi(a1) < si" = 0.65; D; ~1.853 ¢ I, and
a magnification of C; when D € [1.85, D1], D1 ~ 1.856. (d)-(e)-(f) The respective corresponding operating diagrams.

> s, For all D € Ip N 11, we have

Fy (D) —si" < F}(D) < Fy (D, s{") .
= M? (oD + ay) if and only if

There exists a solution D = D} € Iy of equation st

"< Mi(ay).

(4.7)

It is unique if it exists.

If D5 € I, the three curves Yo, v2 and 3 intersect at the same point

D = Dj (see Figure 5(a) and Figure 6(b)) such that for all D € [0, D3) N I, (4.4) holds and for all
D e (D;,Dl) N1IoN Iz, (4.5) holds. The curves vy, v2 and 5 do not intersect if D} € Io\Ia, where
for all D € Iy, (4.4) holds (see Figure 6(a)) or if D3 does not exist, where for all D € Iy, (4.5) holds
(see Figure 5(b) and Figure 6(c)).
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10 szi)n’ ) ’Y% (a) 7470 ,

I

I

&1 |

|

64 A2 ‘

J2 }

|

2 \

! |

24C3 }

N |
011 [0 oa oD
72 C - 0.4 0.6 0.8 1.2 1.4 1,6D0

s (c) V3 Y4 Y0

~2
72 /1
D

0.2 0.4 0.6 0.8 1 1.2 14 0 0.2 0.4 0.6 0.8 1 1.2 14

Figure 5. The curves C1, Ca and those of I' in case 1 of (4.1) with s > ST ~ 0.689: (a) si" = 1.5 < Mi(a1) ~
4.37, (b) si" =5 > max (s7***, M7 (a1)). (c)-(d) The respective corresponding operating diagrams.
2 in

78671’ Yy ((1) ) 0, REE 30,80

404

3
104
~ 2
1
104
C4 Cofl_
o ‘ ‘ = D 0 T : : ) T ! i
Cl 02 04 06 08 1 |,2r)11,4 l.bﬁ,x]r)l Cl : C]_ :
sE (d) 73 ~vo 50" v 74 S50 71 (f) ¥iv4
Ju
20 \75 204 \711
J1o
J1
V2
104
i D i D ad_ D
1 1.5 D;Dlz o QSD; 1 1.5 D12 1 15 D12

Figure 6. The curves C1, C2 and those of I in case 2 of (4.1) with sim > 87" >~ 0.689: (a) 81" =1 < Mi(a1) ~ 5.615;
D3 ~ 1.742 ¢ I, = [0,1.285), (b) si" = 3.2 < Mi(a1); D3 € I, (c) s = 6 > M{(a1). (d)-(e)-(f) The respective
corresponding operating diagrams.

According to the position of 52" relatively to M?(a;) and the two cases of (4.1) where st > s7a®
and is kept constant, the regions of the operating diagram in the (D,s%") plane are cataloged as
follows:

1. Let si" < M12(a1). If D5 € I, in case 1 of (4.1), J3 and Jy are empty and the other ten
regions can exist (see Figure 5(a,c)), while in case 2, J» to Js are empty and we can have
up to nine regions in the operating diagram (see Figure 6(b,e) in case 2). If case 2 holds and
D3 € I\ I, there exist at most seven regions J; and J5 to Jio (see Figure 6(a,d)).

2. If s* > M?(ay), at most the five regions [J; and Jy to Ji2 can exist (see Figure 5(b,d) in case
1 and Figure 6(c,f) in case 2).

With the same set of parameters of the operating diagram of Figure 3(a) that we redraw in Figure 7(a),
the equation ®9(D) = 0 has no solution. In Appendix C, with the specific growth rates defined in (C.1),
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we show that this equation has at most three solutions 15j, J =1,2,3 such that lim ,  5- F?(D) = +o0,
J

i = 1,2 (see Proposition A.4). The operating diagrams of Figure 7(b-c) show that in the case of two

or three solutions of the equation ®9(D) = 0, we have the same number of regions but there is a

change in the shape and the connectivity of the regions. This property is the same for the various

cases studied above even when the equation ®o(D) = 0 has several roots with general growth rates

satisfying Hypotheses 2.1 to 2.4.

J4

) J.
VD, ®) st 23 (99D,

4

Xs%" (a) D Yo sf)"

50

Y0

2
Y25

J2
J2

J1 Ji J1

1
: : : D : : D D
Figure 7. Operating diagrdms of (2.1) when si" = 0 and case 1 of (4.1) holds: equation ®2(D) = 0 (a) has no

solution, (b) has two solutions (c) has three solutions. The operating diagram (a) is the same in Figure 3(c).

The following result determines the nature of bifurcations of system (2.1) that might happen by
crossing the various regions of the operating parameters space (D, 54, 311”) through the surfaces of I’
where the steady states coalesce and can change stability.

Proposition 4.5. The bifurcation analysis of the steady states of (2.1) by crossing the surfaces of T’
according to the operating parameters D, si* and s is summarized in Table 8.

Table 8
Bifurcations according to surfaces of I'. The letter TB (resp. SNB) means a transcritical bifurcation (resp. saddle-
node bifurcation). Note that k = 2, 3.

I' Conditions Transition Bifurcation
s < M} (Dy) Ji to T
Yo Mll(Dl) < szln < M12(D1) Js to T TB: SS9p=SS;
ME(Dy) > si" Ju to Jio
M} (Dy) < st < M2(Dy) J7 to T
1 Mi(Dy 1 1 7 8  TB: SSi=SS!
m Slln > M%(Dl) jg to ._710 2 3
")/12 Slln > M12(D1) le to jll TB: SS§:SS§
v st < M{(Dy) Js to Js TB: SS;=SS}
o s7" < M{(Dy) T3 to Ju 2
. TB: SS1=SS
2 MI(Dy) < st < ME(Dy) Ts to Js 152
so > F5 — s ' ' - Jato Ts
v3 F21 — st < sin < F? —sin if D < Dy, if not Fy < 53" < F2 -5 J3t0 Js TB: SSp=SS}
syt < Fp it D < D7, if not sf* < F11 J1 to Js
86n>F22—Sin ifD<D§,ifIlOt 86”>F0 Js to J1a
73 Fl <si* < Fyif D < D3, if not F}' < s < F{ Jzto Jio TB: SSy=SS3
sy" < Ff Js to Jy
Yo oo ST < ST T2 to Ju SNB: SS%:SS§
J2 to Jh2 1 2
) SNB: SS; =SS
Y4 o STT > ST Jh to Ji1 k k

JitoJo  SNB: SSi=SS2

We have only studied the bifurcations that occur by transitions through surfaces in two-dimensional
planes and not through the points given by the intersections of curves and lines. However, the study
of such bifurcations can be determined in the same way.

5. Discussion and conclusion. In this paper, we have generalized the mathematical analysis of
the simplified model (2.1) of anaerobic digestion in the form of a two-tiered microbial food chain
describing a syntrophic relationship between two microbial species in a chemostat. To this end, we
allow a large class of growth functions with distinct disappearance rates. The main contribution of this
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study is to bring out the mutual effects of the syntrophy relationship, the decay of the two microbial
species, the substrate inhibition on the growth of the second species and a new inflowing concentration
(hydrogen) which are not studied together in the existing literature. First, we have determined the
necessary and sufficient conditions of existence and local stability of all steady states of syntrophic
model (2.1) according to the operating parameters D, sé” and s%". Second, we have analyzed the
operating diagrams to determine the behavior of the system according to the control parameters and
to choose the appropriate inputs and the initial states to achieve a good operation of the process. The
operating diagrams show that the system can have a unique stable steady state: either of coexistence
(Jivi = 3,6,7) or washout (J;) or exclusion of one of two microbial species (J;,7 = 2,8). It can
also exhibit a bistability between coexistence and washout (J;,7 = 10,11) or exclusion of the second
species (J;,© = 4,5,12) or between washout and exclusion of the first species (Jy). If required, to
ensure (or to avoid) the coexistence of two microbial species in the process, the operating parameter
values can be chosen in (out) the regions J;, i = 3,6, 7, where there exists a unique stable steady state
of coexistence and the other steady states are unstable. The study of the nature of bifurcations of the
steady states shows that all the coalesces and the change of stability can be either by a transcritical or
a saddle-node bifurcation by crossing the boundary of the regions of the operating parameters space.

In [40], where s* = 0 and py is increasing, the analysis of the operating diagram of (2.1) shows
the existence only of the three regions [J; to J3 where the bistability cannot occur and the two steady
states of extinction of the first species SS3 and SS% do not exist. In [18], where only st = 0, that is, u1
is nonmonotonic, SS} and SS2 do not exist and the operating diagram has at most four regions J; to
J1 where the system can exhibit a bistability between the steady state SS; of exclusion of the second
species and the coexistence steady state SS3. It is shown, when the substrate inhibition increases, that
there is an emergence of the bistability region [Jy first and then its disappearance with the coexistence
region J3 for a sufficiently large substrate inhibition rate.

Conversely in [11], where s > 0 and j; is increasing, it is shown that the steady states of
coexistence SSo and of extinction of the first species SS3 are unique. Moreover, the bistability cannot
occur where at most six regions exist such that all bistability regions J4, J5 and Jy to J12 do not exist.
Thus, our mathematical study of the operating diagrams of model (2.1) shows the significant impact of
substrate inhibition on the behavior of the process and the emergence of the bistability regions which
are empty when the growth rate p; is increasing [11, 40]. Our findings on the destabilization of a two-
tiered microbial ‘food chain’ by substrate inhibition are similar to those in [18, 24] where the behavior
of system depends on the initial condition. Furthermore, a low, as well as a high concentration of
input substrate, can cause destabilization by the extinction of the highest trophic level of a tri-trophic
food chain model in the chemostat [8].

Recently in [38], an extension of the study of the two-tiered model (1.2) in [5] with a commensalistic
relationship (uo(-) = po(so)) provides a complete analysis of the operating diagram. It is shown that
our six steady states exist and at most nine regions exist where only the regions J7, J19 and J11 are
empty. Hence, the main change of the behavior of the process by considering the effect of syntrophic
relationship compared to [38] is that the system can exhibit a bistability between the washout SSy
and the coexistence SS1.

These theoretical messages explain the joined effect of syntrophy, mortality, substrate inhibition,
and input substrates on the maintenance of coexistence and the protection of microbial ecosystems.
Finally, the results in this contribution may also serve for optimal experimental design by studying
the biogas production and the process performance with respect to operating parameters. This is an
important question that deserves further attention and will be the object of future work.

Appendix A. Definition domains and properties of auxiliary functions. First, we introduce in
Table 9 some notations and the definition domains of the auxiliary functions defined in Table 3 that
we will show in this section. The following proposition determines the domain and some properties of
the function Fy (D, s{").

Proposition A.1. The function Fy (D,si”) is defined for (D,sﬁ") € dom(Fy). Moreover, one has
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Table 9
Notations and intervals of auziliary functions.
Definition

Do (s1") Do (s1") = (jio (s1") = ao) /o
D, Dy = (p"** — a1) Jen
o;(D)  &;(D) = fio (M{(Dl)) — Dy, forDelj, j=1,2
D, Dy is the solution of ®(D)=0
D; D; are the solutions of ®5(D) =0, i=1,.

Let si" > 0. Io = [0, Dy (si")) if oo € (O, ]

fo Iy = [0, 400) if ap = 0 and ag < fig ( in)  otherwise Iy = 0.
Let D > 0. Jo = [0,55"), if Dy(+00) < D < Dy(0),
Jo where Eﬁn is the unique solution of Dg(s%") = D.

J():[ ),1fD§D0(+OO) and J():@lfDZD()(O)
dom(Fp) dom(Fo) {(D,s") : (D € Ip and si" > 0) or (si" € Jo and D >0)}
5 Il [0 Dl] if o1 € (0 1]

h I = [0,+c0) if oy = 0 and a; < p***, otherwise I; = 0.
I Iy =1 ifa; >0and I, = [;\{0} if a; =0
1, Ij={D eI/ ®;(D)>0},j=1,2

Dy < Dy(0) in case 1 of (4.1), Dy < Do(0) in case 2 of (4.1) and

lim _FO(D s7 )z—l—oo.

7/7L
81 81

Proof. Let si" be fixed. From Table 3, the function Fy (D 311”) is defined if and only if

(Al) Dy < Lo (52‘1”) — D« Do (Szln) = M7

agp

where D ( m) is defined and positive if and only if a9 % 0 and [ig (311”) > ag. In the particular case
ag = 0, the condition Dy < MO( m) is equivalent to ag < MO( m). T hus, the function Fj (-, sil”) is
defined on Iy. Let D be fixed. From Hypothesis 2.5, the function s¢" — Dy ( m) is decreasing from
Dy(0) to Do(+00). If D < D0(+oo) then (A.1) holds for all si" > 0. If Do(+00) < D < Dy(0), then
there exists a unique solution 59" of equation D = Dy ( m) such that (A.1) holds for all si" € [O Ei").
If D > Dy(0), (A.1) does not hold for all s"Ll” > 0. Hence, the function Fy(D,-) is defined on Jo.
Consequently, Fj (D,s1 ) is defined for ( ,S ) € dom(Fyp). Since s} satisfies Do = uo (+oo 5t ) it
follows that
Fy (D, 51") = My (po (+00,51") , 51") = +o0.

When case 1 of (4.1) holds, we have
OzoDl +ag < Mo (Mll (a1D1 + al)) < ﬂo(O),

because the function fig(-) is decreasing (see Hypothesis 2.5). Thus, Dy < Dy(0). Moreover, when
case 2 of (4.1) holds, we conclude that D; < Dy(0) where D is a solution of ®;(D) = 0 because
|

aoD1 + ag = fio (Mll(oqbl + a1)> < [10(0).

The following result determines the definition domain I; of the function Fil(-)7 1 = 1,2, according to
the coefficients oy and a;.

Proposition A.2. Let s{* > 0 be fived. The function F}(D), i = 1,2, is defined on

[0, +OO), ifag=a1 =0, a1 < ,umax, Ho (Mll(al)) > ag

0, if ag = a1 =0 and a1 > ,um‘”c or fip (Mll(al)) < ag
(A.2) I ={ [0, (fio (M](a1)) —ao) /o), if ag >0, a1 =0, a1 < pu{"*, fio (M{(a1)) > ao

[0, 1, if ap > 0,1 > 0, and case 1 of (4.1) holds

D]
[O, ﬁ1> , if ap > 0,01 >0, and case 2 of (4.1) holds.
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Proof. The function Fil, i = 1,2, is defined if and only if
(A.3) D < Mmaw and Dy < fig (Mll(Dl)) .

If ap = oy = 0, (A.3) is equivalent to a1 < p"** and ag < fo (M (a1)). Thus, I; = [0,400) if
this last condition holds, else I; = 0. If ap > 0 and oy = 0, (A.3) is equivalent to a1 < pi***
and agD + ag < [ig (Mll(al)), that is, I = [0, (ﬂo (Mll(al)) —ao) /ao). If a9 > 0 and a1 > O,

straightforward calculation shows that

(A.4) (D) = ajiy (M (D1)) M’ (Dy) = a.

Recall that the function M] is increasing. From Hypothesis 2.5, one has ®(D) < 0 for all D € I.

Therefore, ®1(D) > 0 for all D € [0, D;] since ®1(D;) > 0 when case 1 of (4.1) holds and ®1(D) > 0

forall D € [O, 151> since ®1(D1) < 0 when case 2 of (4.1) holds (see Figures 8 and 9). [ |
When the growth functions are given by (C.1) (as we will show in Proposition C.1), the equation

®5(D) = 0 has at most three solutions in the case 1 of (4.1) and two solutions in the case 2 of (4.1).

For simplicity, we determine in this particular case the definition domain I of the function F?, i = 1, 2.
The general case can be treated similarly, without added difficulty.

Proposition A.3. The function F? is defined on

[0, 4+00), if ag = 0,01 =0, fig (Mlz(al ) > ayg,
[0, (fi0 (M7 (a1)) — ao) /ao) , if g > 0,a1 = 0, fig (M7 (a1)) > ao,

(A5) =1 lo,D], if ag = 0,a1 > 0,®5 (D1) > 0, ig (M?(ar1)) > ao,
<D17D1:| ) ifQOZO,Oél >07(I)2 (Dl) >O ,U‘O (M12(a/1)) Saf)?

otherwise, when ag > 0 and a; > 0,

[O,Dl] , if case 1 of (4.1) holds and n =0,
(51,D1] , if case 1 of (4.1) holds and n =1,
0, 152) U El,Dl} . if case 1 of (4.1) holds and n = 2,
(A.6) L= (Eg, D U (51, Dl] , if case 1 of (4.1) holds and n = 3,
0, l~)1> , if case 2 of (4.1) holds and n =1,
(52, l~)1> if case 2 of (4.1) holds and n = 2,
where ﬁi, i = 1,...,n, are the solutions of the equation ®o(D) = 0 and n denotes the number of

solutions such that D; > lNDj, for all i < j. Note that the function F? is not defined for D =0 in the
particular case a; = 0.

Proof. The function Ff, 1= 1,2, is defined if and only if
(A7) 0< Dy <p™™ and ®o(D) > 0.

If oy = 0, similar arguments as the proof of I; imply that of Ir. If ap = 0 and «; > 0, then ®4(D)
is positive for all D € I, using (A.4), Hypothesis 2.5 and the function M? is decreasing. Hence,
®9(D) > 0 is positive if and only if @5 (D;) > 0. In this case, ®2(D) > 0 for all D € [0, D] if
®,(0) > 0, that is, jig (M?(a1)) > ap. Otherwise, $o(D) > 0 for all D € (b’l,Dl} where Dy is the
unique solution of ®9(D) = 0.

Let ap > 0 and oy > 0. From (A.4), the sign of ®,(D) can change at D € Iy, that is, the
function ®3 can be nonmonotonic on I (see Figures 8 and 9(b-d)). When case 1 holds and n = 0,
we have ®q (Dl) > 0 and the equation ®3(D) = 0 has no solution. Consequently, ®2(D) > 0 for
all D € [0 Dl] Hence, the function F2 is defined on Iy = I, where I, = [O,Dl] when a; > 0 and
I, = (0 Dl] when a1 = 0. When case 1 holds and n = 1, the equation ®3(D) = 0 has a unique solution

51 € [O,Dl]. Thus, the function Ff is defined on (Dl,Dl] since ®o(D) > 0 for all D € <51,D1]
The other cases can be treated similarly (see Figure 8(b-d)). [ ]
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The following result describes the properties of the functions Fy and FZJ ,i,j = 1,2, when si" is fixed.

Proposition A.4. Let si* > 0. We have Iy C I, F}(D) < F?(D), i = 1,2, for all D € I and

lim Fy(D,si") = lim F(D)= lim F?(D)=+4c0, j=1,...,n.
D—Dg D—Dy D—D7

When case 1 of (4.1) holds, we have F} (Dl) = F? (Dl), 1=1,2.
Proof. Using Hypothesis 2.5, given that M (D1) < MZ(Dy), for all D € I, we can write
(A.8) ®1(D) = jio (M1 (D1)) — Do > jig (M7 (D1)) — Dy = ®5(D).

If D € I, that is, D € I, such that ®3(D) > 0, then D € I; and ®;(D) > ®3(D) > 0, that is, D € I;.
Thus, Is C I;. Under Hypothesis 2.3 and the definition of Mj in Table 3, we have for all y € [0, fip(s1))
and s; > 0,

(A9) O (1, 51) = — [29 (Mo(y, 1), 51)] [%2 (Mo(y, s1),51)] >0
. s, \U»rS1) = D51 olY;s1); 81 950 olY;s1); 81 .
From the definition of Ff in Table 3, it follows that

FH(D) = My (Do, M{(D1)) < Mo (Do, M{(Dy)) = F{(D), for all D € I.

Similarly, F} (D) < F3(D), for all D € I». From the definitions of Fy and Dy (s{") in Tables 3 and 9,
we then obtain

Fo (Do (55%) ) = Mo (a0Do (s17) + a0, %) = Mo (o (s17) ,51") = +oc.

When case 1 of (4.1) holds, the function Ff , 4,7 = 1,2, is defined for D = D;. Using Hypothesis 2.4
and the definition of Dy in Table 9, it follows that

(A.10) M} (00 Dy + ar) = M} () = M2 (47 = 57
Consequently,
Fll (Dl) =M (OéoDl + aop, STGI) :F12 (Dl), F21 (Dl) =M (OéoDl + ag, S?mm) + STQI :F22 (Dl)

From the definitions ®; and D1 in Table 9, we have [ig (Mll (alf)l + a1>) = a0D1 + ag. Therefore,

Fll (ﬁl) = My (ﬂg (Mll (albl + a1)) ,Mll (OqDl + a1)) = 400,
F21 (ﬁl) = Fll (f)l) —|—M11 (OqDl —|—CL1> = +o00.
The last limit follows similarly. |

Appendix B. Proofs.

Proof of Proposition 2.6. Since the vector field defined by system (2.1) is C', the uniqueness
of solution to initial value problems holds. From (2.1), x;(tp) = 0, for any t¢ > 0 implies #;(to) = 0,
i=0,1. If 2;(0) = 0, then x;(t) = 0 for all ¢ as the boundary face z; = 0 is invariant in the vector
field C! by (2.1). If 2;(0) > 0, then z;(t) > 0 for all t as z; = 0 cannot be reached in finite time by
trajectories for which z;(0) > 0 by the uniqueness of solutions. On the other hand, we have

so(tg) =0 forany tog =0 = 5o(ty) = Dsi".

If $0(to) = 0, then so(¢) > 0 for all ¢, using arguments similar to case x;. However, if $0(¢9) > 0, then
s0(t) = 0 for all ¢. In fact, assume that so(0) > 0 and that it exists tg > 0, such that so(t9) = 0 and
so(t) > 0, for t € (0,%p). Then $¢(fp) < 0 which contradicts $o(tp) > 0. Finally, we have

Sl(to) =0 forany tp >0 = él(to) = Dsiln + Lo (So(t(]),()) .I'o(t()).
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Similarly to case sg, no trajectory can leave the positive octant Ri by crossing the boundary face s; = 0
since sg > 0 and xg > 0. Therefore, all solutions of (2.1) remain nonnegative. Let z = 2so+x9+s1+ 1.
From (2.1), it follows that

=D (286” + sﬁ” — 289 — 31) — Doxg — D121 < Diin <ﬁ (286" + 81'1”) — z) .

By applying Gronwall’s lemma, we obtain

(B.1) z(t) <

Diin (236" + s’i”) + (2(0) — Diin (236" + sﬁ")) e~ Pmint  for all ¢ > 0.

We deduce that
2(t) < max (z(O), 2 (288 + 511”)) , forall t>0.

min

Consequently, the solutions of (2.1) are bounded for all ¢ > 0. Inequality (B.1) implies that the set
is positively invariant and is a global attractor for (2.1). [ ]

Proof of Proposition 3.1. The steady states of (2.1) are the solutions of the following set of
equation

I
o o o o

D (56” — so) — po(so, $1)Zo

(1o(s0,51) — Do) xo

D (si" = s1) + po(s0, s1)x0 — pa(s1)21
(p1(s1) — D1)

Using (B.2)+(B.3) and (B.4)-(B.3)4(B.5), we obtain the set of equations

0w W w
oUW N

~—~~

)
)
)
)

)
6” — 80) — Doxg =0
iln

D (s
(B.6) { D (s{" = s1) + Doxg — D1y = 0.

By solving (B.6), we obtain z¢ and 7 with respect to sp and s;:

(B.7) 20 = 75 (5" — s0) ,
D

(B.8) T = 1 (st —so+ st — s1) .
We can also solve (B.6) and obtain sp and s; with respect to xg and x;:

(B.9) s0 = s — %xo,
(B.10) s1= 8" + Prao — P,
For SSy, one has zp = z1 = 0. Hence, (B.9) and (B.10) result in so = s§* and s; = s". Thus, SSg

always exists.
For SS;, one has xg > 0, 21 = 0. Hence, (B.7) results in

To = DQO (sf)" — 80) .
Using (B.8) and x1 = 0, it follows that
51 =87+ s — s0.
Since g > 0, (B.3) results in
(B.11) ¥(s0) == po (s0. 1" + s — s0) = Do.

Thus, SS; exists if and only if equation (B.11) has a nonnegative solution and the s; and xg-components
are positive. This condition is equivalent to say that 0 < so < s§*. From Hypotheses 2.1 and 2.3, we
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see that the function sy — 1(sp) is strictly increasing from 0 for sp = 0 to g (56”, 321”) for sg = 56”.

Therefore, there exists a solution of equation (B.11) in [0, s{) if and only if
(B.12) 140 (56”, sil”) > Dy.

If such a solution exists, then it is unique. Under Hypothesis 2.3 and the definition of My in Table 3,
we have for all y € [0, ip(s1)) and s > 0,

-1
(B.13) B (y,51) = [ (Moly,51),50)] >0,
Using (B.13), condition (B.12) is equivalent to the existence condition of SS; in Table 5.
For SSJ, j = 1,2, one has zp > 0 and 1 > 0. Hence, (B.7) and (B.8) result in

mozD%(sf)"fSo), fﬁlzp%(sf)nﬁLSlin*SO*Sl)'

Moreover, (B.3) and (B.5) result in pg (so,s1) = Do and p1(s1) = Dy. Using the definitions of My and
M in Table 3, we obtain
so = Mo(Do,s1), s1=Mj(D1),

where the function Mf (D) is defined for all D € I j. From Hypotheses 2.1, 2.3, and 2.5, the function
S0 — Lo (so, Mf(D1)> is strictly increasing from 0 for sp = 0 to fig (Mf(Dl)) when sg tends towards

infinity. Using the definitions of ®;(D) and I; in Table 9, equation fyg (so,Mf (D1)> = Dy has a
solution sy > 0 if and only if

®;(D) = fig (M{(Dl)) —Dy>0, with Delj
or equivalently D € I;. Thus, SS% exists if and only if si* + st > so + 51 and s > sp, that is, the
existence condition in Table 5 is satisfied with D € I;.
For SS%, j = 1,2, one has 2y = 0 and z; > 0. Hence, (B.8) and (B.9) result in
So = S%n, T = DQI (57,171 — 81) .
Since 1 > 0, (B.5) results in p1(s1) = D1. Using the definitions of Mf in Table 3, we obtain
S1 = M{(Dl), where D € I_j.

Thus, we conclude that SS?,; exists if and only if si* > Mf (Dy).
In what follows, we determine the local asymptotic stability of each steady state of (2.1). Let J
be the Jacobian matrix of (2.1) at a steady state (sg, xo, $1, 1), that is given by

—D — E.CL'(] — o Fﬂfo 0
ECE[) Mo — DO —F.’L‘Q 0
(B.14) Exg Ho —D — Fxg— phz1 —m
0 0 R w1 — Dy
where 9 5
Ho Ho
D50 (50,51) >0, D51 (50,51)

For SSy, the characteristic polynomial is Py(A) = (A — A1)(A — A2) (A + D)2, where
M= po (s6%,57") — Do, Ag = (s7") — Du.
Thus, SSg is LES if and only if

(B.15) po (s, s4") < Dy and  py (s{") < Dy.
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If Do > fig (s4"), that is, D ¢ Io, then the first condition of (B.15) is satisfied. If D € Iy, using (B.13)
and the definition of My in Table 3, it follows that the first condition of (B.15) is equivalent to

si" < Mo (Do, sV") = Fy (D, si") .

If Dy > p"9®, that is, D ¢ I, then the second condition of (B.15) is satisfied. If D € [}, j = 1,2,
using the definition of M{ in Table 3, it follows that the second condition of (B.15) is equivalent to

(B.16) s < M{(Dy) with Del; or s">M}D;) with D€ .

At SS1, the Jacobian matrix is given by

—-D — Exo —D() F.T() 0
J = E."L‘Q 0 —FQTO 0
Ex() D() —D — FJ,’O — U1
0 0 0 H1 — D1

Denote C; and L; the columns and lines of the matrix J — AI. The replacements of L1 by Li + L3
and then Cs by C3 — C preserve the determinant and lead to the following characteristic polynomial

PiA) = (A=A — M) (W +ead+e),

where )\1 = 1 (Sf)n + Sin — SQ) — Dl, )\2 = —D, cl1 = D+ (E + F)J,‘() and Cy = D()(E + F)$(). Since
c1 > 0 and co > 0, the real parts of the roots of the quadratic factor are negative. Therefore, SS; is
LES if and only if A; < 0, that is,

(B.17) 1 (36" + s — s0) < D.

If Dy > p" that is, D ¢ I, then condition (B.17) is satisfied. If D < p"%®, that is, D € I, then
condition (B.17) is equivalent to

(B.18) 50> 50+ 5" — ML(Dy) or so < syt 4 s7 — ME(Dy).
Since the function sy — ¥ (sg) = 1o (so, 86” + st — so) is increasing, (B.18) is equivalent to
P(so) > (s + si* — M{(D1)) or w(so) < (s§" + s" — MP(Dy)).
At SSi, one has ¥ (sp) = Dy. Thus, condition (B.18) is equivalent to
(B.19) Do > po (s§* + st — M{(D1), M{(Dy)) or Doy < o (s§* + s — M{(Dy), M7(Dy)).

If D € I1\I1, that is, ®1(D) < 0 (or equivalently fio (M{(D1)) < Dy) then the first condition of
(B.19) is satisfied. If D € I \Iy, that is, i (M7(D1)) < Do, then the second condition of (B.19) is
not satisfied. If D € I}, j = 1,2, then condition (B.19) is equivalent to

sot + st < Mo (Do, M{(D1)) + M{(D1) or s§*+ s > My (Do, M{(D1)) + M (D)

because the function M (-, M} (Dl)) is increasing. These conditions are the same as those in Table 5.
For SS?, j = 1,2, the characteristic polynomial is Pa(\) = A e A + X2 4 3\ + ¢4, where

c1 = ijl + Hxg+ 2D, co= EG]'$0561 + (D + DQ)HCEQ + (D + Dl)ijl + D2,
c3 = (Do + Dl)Eijoajl + DDgHzxy + DDlij1, cy = DoDlEij()xl,

with H = E+ F and Gy := p} (M} (D1)) > 0 since M{ (D) < s7*** and Go := pf (ME(D1)) < 0 since
Mf(Dl) > s7'*. Note that G1 = G2 =0, when D = Dy where SS} = SS%. Using the Liénard-Chipart
stability criteria (see Gantmacher [20], Theorem 11), SS} is LES if and only if

(B.20) ¢ >0, ©=1,3,4, and cicacs — 0%04 — c% > 0.
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Hence, SS3 is unstable as long as it exists with D # D; because the condition ¢4 > 0 in (B.20) is
unfulfilled as Go < 0. For SS3, ¢; > 0, for all i = 1,3,4, as E, F, H and G are positive. Following
[40], where the particular case ap = ay = 1 was considered, we obtain

crea¢3 — cieq — ¢ = 35D° + D + 13D 4+ 99 D* + 11D + 70,
where the coefficients v;, j = 0,...,5, can be written as follows:

v5 =2(apHzo + a1G1x1),
va =2[a0(1 — a1) + a1 (1 — ap) | EGizox1 + ((3 + ap)Hzo + (3 + a1)Giz1) (o Hzo + a1 Gixy)
+ 2a0Hxo + 2a1G1r21,
v3 =[2(a1a0 + apar)H + (ap(5 — 4a1) + a1(5 — 4a)) E + 3(ao + a1) F)|Graox:
+ [041(040 +1)H + ((7 —3a1)ag + 3a1 + a%) E+ ap(ag 4+ a1 + 2)F] HGlx%xl
[ao a1+ 1)H + ((7 —3ap)aq + 3ap + a%) E+ aj(ap + ag + 2) ] Garoz?
+ (3 + 2ap)ag H?xf + (3 + 2a1)a1 G323 + ag(ag + 1) H?z + ay (g + 1) Gia},
=[ao((200 + a1 + 2)H + (5 — 301)E + a1 F) + a1((e + 1) H + 3(1 — ap) E + aoF)| HG 2321
lag((a1 + 1)H 4+ 3(1 — a1)E + a1 F) 4+ a1(2(ag + a1 + 1) H + (5 — 4ag) E)|G2aoz?
[((3 = 2a1)ap + a1)H + 2(ag + 201)E + ((a0 + a1)® + 200 ) F| EGiafai
(af + 200 + 1) EH?*Grxgzy + (of 4 2a1 + ag) EGTzoxt + (14 2ap)ag Hx})
(1+ 2a1)a1G15L‘1 + (apHzo — alGlxl) + 4apa1 FGixow1,
v1 =(Hzo + Grz1)(agHzo — a1G1x1)2 + 4a0a1FHG1x%m1 + 4a0a1FG%x0x%
+ Jao((5 — 201)E + (200 + 3)F) 4+ a1((5 — 2a0) E + (201 + 3)F)|EG3 2323
+ (2(ap 4 Dag + a1) EH?Gradzy + (ag + 2(ay + 1)a1) EG3zoz?
+ (o + o1 ) (Hzo + G ) E*G3ada?,
Yo =(ap + a1)(Hzo + Glxl)E2Glaz0m1 + (ao + ay1)? EFGl.QZOQZl (apHzo — a1G121)* EGzo1 .

n
+
N
N

Since ag and o are in [0,1], then 7; > 0 for j = 0,...,5. Thus, the conditions of Liénard-Chipart
stability criteria (B.20) are satisfied for SS3 which is LES as long as it exists with D # D;.
For SS}, j = 1,2, the characteristic polynomial is

P = (A= M)A =) (A2 +eh+ ),

where \y = =D, Ay = pg (50 ,M](D1)> — Dy, c1 = D+ Gz and ¢ = D1Gjzq. For SS%, co < 0 since
G2 < 0. Therefore, the roots of the quadratic factor are real and have opposite signs. Consequently,

if SS2 exists, it is unstable. For SS, the real parts of the roots of the quadratic factor are negative as
G1 > 0 so that ¢; > 0 and ¢y > 0. Therefore, SS% is LES if and only if

(B.21) po (s§', M{(D1)) < Dy <= s§" < My (Do, M{(Dy)),

since the function My (-, M{(Dy)) is increasing. [ |

Proof of Proposition 4.1. Assume that s < M} (D;). Using Table 5, SSj j=1, 2 does not
exist. In this case, we have Ff(D) < Fg(D) — st If (D, s, st") € Jh, then si' < Fy (D, si™). From
Table 5, SSg is LES and SS; does not exist. If D ¢ I;, then the existence condition of SS% does not
hold since Ff(D) = sz (D) = +o00. Let D € I;. Assume that the existence condition of SS% holds.
Then,

Mo (DO’Mf(D1)> = F{(D) < s§" < Fo (D, s{") = My (Do, s1") .

Using (A.9), we obtain Mj(Dl) < 4" which is the desired contradiction. If (D, s{, si") € J, then
Fy (D, st") < s < F3(D) — si". From Table 5, SS is unstable and SS; exists and is LES. If D ¢ I,
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the existence condition of SS% does not hold. Let D € I;. If SSJ exists, that is, sin > FJ (D) — si".
This is a contradiction for j = 1. However, for j = 2, one has F2 (D) —sin < F2 (D) — s < si which
is a contradiction. If (D, s, si") € J3, then F} (D) — st < st < F2(D) — s, From Table 5, SS3
exists and is LES while SS3 does not exist. Assume that si* < Fy (D, si"). Hence,

F(D) < Fy(D) — s{" < Fy (D,s{"), or (equivalently) M{(D;) < si",

which is a contradiction, that is, s > Fo (D sy ) T herefore SSg exists and is unstable while SS;
exists and is LES, using Table 5. If ( sg', si") € Ju, then s > F3(D)—si" > Fy (D) —sl > F (D).
From Table 5, SS} exists and is LES Whlle SS3 exists and is unstable Assume that si" < Fy (D, si").
Hence,

F{(D) < Fy (D,s"), or (equivalently) M{(D;) < s",

which is a contradiction. Thus, s > Fy (D 511”) Therefore, SSy is unstable while SS; is LES, using
Table 5

Assume that M} (D;) < si* < MZ(Dy). Using Table 5, SSy is unstable, SS3 exists and 882 does
not eX1st In this cas, we have F{'(D) > Fy(D) — si* and F2( ) < F3(D) — st If (D, s, s ) € Js,
then s > F3(D) — si" > F(D) > F(D). Assume that s < Fy (D, si"). Hence,

FE(D) < Fy (D,s{"), or (equivalently) MZ(Dy) < si"

which is a contradiction. Thus, s§* > Fo (D, st™). From Table 5, SS; and SS} exist and are LES while
SS3 exists and is unstable. If (D g, s7) € Js, then

Fy(D) — s" < F}(D) < Fy (D, s{") < si* < F3(D) — st"

because M} (D;) < si. Using Table 5, SS; and SS} exist and are unstable, SS} exists and is LES, SS3
does not exist. If (D 56", ’") e J7, then

FI(D) < s§" < Fy (D, s{") < F{(D) < F3(D) — s{",
as st < M?(Dy). From Table 5, SS; and SS3 do not exist, and SS} exists and is LES, and SS} exists
and is unstable. If (D, s, s{") € Js, then

st < F{(D) < Fy (D, si") < F{(D) < F3(D) — s{".

From Table 5, SSy, SS3 and SS3 do not exist and SS} exists and is LES.
Assume that M?(D;) < si*. Using Table 5 SS1 and SS3% exist. In this case, we have F} (D) >
Fy(D) — st and FZ(D) > F3(D) — s{". If (D, 80 ,si") € Ty, then

st < F{(D) < F{(D) < Fy (D, s}").

From Table 5, SS1, SS3 and SS% do not exist, SSy and SS are LES and SS2 is unstable. If (D 50 , 8¢ ) €
j107 then
F/(D) < s§" < FE(D) < Fy (D, s{").

From Table 5, SS; and SS3 do not exist, SSp and SS} are LES, and SS} and SS3 are unstable. If
(D 56”, m) € J11, then
F}(D) < F£(D) < s{" < Fy (D, s}").

From Table 5, SS; does not exist, SSg and SS% are LES, and SS%, SS% and SS% are unstable. If
(D, s§*, st") € Jha, then

Fy(D) — si* < F}(D) < F{(D) < Fy (D, s{") < s§".

From Table 5, SS; and SS} are LES, and SSp, SS3, SSi and SS3 are unstable. [ ]
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Proof of Proposition 4.2. Let D € fj. We have 52{;* = Mf(Dl) > 0, 7 = 1,2 such that

5% < si* because M{(D1) < MZ(D1), for all D € I,. For all D € I, one has
Fy (D, s11*) = My (Do, M{(D1)) = F{(D) < +oo = Fy (D, 5").
As the function Fy(D,-) is increasing, we obtain si7* < 5. For all D € I, we have
F{(D) = F{(D) + M (Dy) — si{" = F3 (D) — si}",

that is, the curves 7o, 71 and 75 intersect at s{%*. For all s¢" € [0, s{1*), one has Mf (D1) > st™ and
therefore . '

My (D, s*) < My (Do, M{(D1)) < My (Do, M{(D1)) + M{(Dy) — si",
that is, (4.2) holds. Inversely, for all s € (s{7*,5%"), (4.3) holds. The second assertion is proved in a
similar manner. [}

Proof of Proposition 4.3. Let s{* < s7%%%. The function D — M?(ayD+a1)—si" is nonnegative
for all D € I since it is decreasing from M?(a1) — s for D = 0 to s7"%® — st > ( for D = D;. Thus,
for all D € I,

F}(D) = My (Do, M{ (D1)) < Mo (Do, M (D1)) + M{ (Dy) — s = F3(D) — si".
Since M is increasing with respect to the second variable (see formula (A.9)), we have for all D € Iy,
Fy (D, si") = My (Do, s{") < My (Do, M7 (Dy)) = F£(D).

Since the function D — M (a1 D + a1) — s%" is increasing from M7 (a;) — st for D = 0 to s7'9% — si"
for D = Dy, there exists a solution D} € I; of equation M{(a1D +a1) = si" if and only if (4.6) holds.
If such D} exists then it is unique. If D} € Iy, the function F! is defined for D = D} where

F21 (DT) — Slin:M[) (Oz()DT + agp, Mll (alDT + al)) :Fll (DT):MO (OzoDT + ago, Szln) :Fo ( T, Slln) .
Since M{ (Dq) < st if D < Dj, one has
Fy (D) — s{" = My (Do, M| (D1)) 4+ M{ (D) — si* < Mo (Do, M} (D1)) = F{ (D) < My (Do, st"),

that is, (4.3) holds. Inversely, if D > D}, then (4.2) holds. If D% € I}\I1, that is, D} € [f)l,[)l}, then

Mi(a1D + ay) < st for all D € [O, 151) Therefore, (4.3) holds where Dy (s%") < D,. If D* does not
exist, then Mi(a;D + a1) > si" for all D € I; and consequently (4.2) holds. [ ]

Proof of Proposition 4.5. From Table 6, the surface vy is defined by 36” = Fy (D, 821") Using
Tables 4 and 5 and Proposition 3.1, we can see that SSy and SS; coalesce and are nonhyperbolic steady
states on the surface vy. Using Table 5, if sil” < Mll(Dl), we have a transition from J; to J2 where
SSp becomes unstable and SS; emerges stable in the positive octant Ri. All other cases are left to
the reader since they can be treated similarly. |

Appendix C. The particular case for growth functions (C.1). The Hypotheses 2.1 to 2.5 are
satisfied by the following growth rates of Monod-type with hydrogen inhibition and of Haldane-type,
respectively,

moSo 1 misi

C]. S0, S = 5 S - )

where mj and K, j = 0, 1, denote the maximum growth rates (units are 1/d) and the Michaelis-Menten
constants with units of concentration (kg COD/ m3); K; and Ky represent the inhibition factor due
to s1 for the growth of the species x¢ and x1, respectively, with units of concentration. The following
result determines the maximal number of solutions of the equation ®2(D) = 0 in the particular case
of growth functions (C.1) when ap > 0 and a; > 0.
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Figure 8. Case (C.3): (a,c) number of intersections of the curves I'y and I'1 and (b,d) the corresponding number of
solutions of equation ®;(D) = 0. (a-b) In case 1 of (4.1), the equation ®2(D) = 0 has three solutions on [0, D1]. (c-d)
In case 2 of (4.1), the equation ®2(D) =0 has two solutions on [0, D1].
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o 5 P, (D) &1(D)
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o I 3 3 : 3 i T =2 % 1 3 3 4 g s s D
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Figure 9. Case (C.4), in particular without decay: (a,c) number of intersections of the curves I'o and I'1 of the
functions jio and p1, respectively, and (b,d) the corresponding number of solutions of equation ®;(D) = 0. (a-b) In case
1 of (4.1), the equation ®2(D) = 0 has two solutions on [0, D1]. (c-d) In case 2 of (4.1), the equation ®2(D) = 0 has
one solution on [0, Dl].

Proposition C.1. Let g > 0 and g > 0. The equations ®1(D) = 0 and Po(D) = 0 are equivalent
to

(C2) p1(y) = fo(y) :== 2jio(y) + a1 — Lag, with y = fig"' (Do).

When the growth functions po and py are of type (C.1), the equation ®o(D) = 0 has at most three
solutions in the case 1 of (4.1) when

(03) al/al 7é ao/Ozo,

and at most two solutions in the case 2 of (4.1) (see Figure 8(b-d)). It has at most two solutions in
the case 1 of (4.1) when

(04) al/al = ao/Oéo,
and at most one solution in the case 2 of (4.1), (see Figure 9(b-d)).
Proof. From definition of the function ®; in Table 9 and Hypothesis 2.5, we have, for j = 1,2,
®;(D) =0 < M{(D:)=f," (Do) < i (fy"(Do)) = Dr.

Let y = fig " (Do). Thus, Dy = fig(y) and Dy = 1 (y). From definition (1.3) of D;, i = 0,1, we have
Dy = a1(Dg — ap)/ap + a1. Consequently, equation (C.2) holds. When the growth functions ug and
w1 are of type (C.1), we obtain

miy _ Kimoon/ao + (Ki +y) (a1 — agon/a)
Ki+y+y?/K; Ki+vy

When condition (C.3) holds, we obtain an algebraic equation of degree three in y and consequently
the equation (C.2) has at most three solutions. Hence, if case 1 of (4.1) holds, that is, the equation
&1 (D) = 0 has no solution, then the equation ®2(D) = 0 has at most three solutions. However, if case
2 of (4.1) holds, that is, the equation ®;(D) = 0 has one solution, then the equation ®3(D) = 0 has
at most two solutions. When condition (C.4) holds, we obtain an algebraic equation of degree two in
y. Thus, the rest of the results follows similarly. |
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When the growth functions are given by (C.1), we succeeded in finding a set of parameters such
that we show the maximum number of intersections of the curves I'g and I'; and the corresponding

number of solutions of the

Appendix D. Tables.

equation ®;(D) = 0 (see Figures 8 and 9).

In this section, we give some tables used in the paper. Tables 10 and 11

describe the intersections of the surfaces of I' with a two-dimensional operating plane where D or s
is constant, respectively. Table 12 presents the auxiliary functions defined in Table 3 in the particular
case of the Monod-type with hydrogen inhibition and of the Haldane-type given by (C.1). Table 13
provides the biological parameter values used in all the figures.

Table 10

Intersections of the surfaces of I' with a (s’i", sé") plane where D is constant.

I'  Condition I'N{D = constant}
D < Dy(0) Curve of the function sy = Fy (D, si")
70 D> Dy(0) Empty
i Delj Horizontal line si* = F} (D)
D ¢ 1 Empty
i Delj Oblique line si* = Fy (D) — si"
2 p ¢ I Empty
i Del Vertical line s{* = s{* = M{ (D;)
B D ¢ 1 Empty -
D =D, Whole plane (s’ln, 56”)
" p+D Empty
Table 11
Intersections of the surfaces of I' with a (D, sé") plane where si™ is constant.
I'  Condition rn { st = constant}
D < l:)o (sﬁ” Curve of the function si* = Fy (D Y )
0 p > Dy (511” Empty
; Del; Curve of the function si* = FY{ (D)
M p ¢ I Empty

; Deljand s < FJ(D) Curve of the function s{* = Fy (D) — st"
72 D ¢ I; or si" > FJ(D) Empty

1 (M1 (al) m‘”] Vertical line D = Dy
s (M} (@), s77]  Empty

9 51 € [spror Ml( 1)) Vertical line D = D}
s si [si"", MP(a1))  Empty
v S > maX(O ST — gt")  Vertical line D = D;

Table 12
Auziliary functions with the specific growth functions (C.1) where I, j = 1,2 are defined by (A.2), (A.5), and (A.6).
Auxiliary function Definition domain
_ Koy(l+s:1/K;)
Mo(y, s1) = 5=y 07s, 750 0<y<iim

(m1—y) K1t/ (K1 (mi—y))?—4K1 K1y

7 _ m
Ml(y)_ 2y 0<y<71+2m
_ Ko(aoD+ao)(1+si" /K;) m
Fo ( ) 0— (aoD+ao)(1+s§"/K ) 0<aD+ao< T”O/KZ
i _ Ko(aoD+ao)(14+Mj (a1 D+a1)/K;) ‘
H(D)= mo— (a0D+a0)(1+M1(a1D+a1)/K) D el
FZJ(D):M](alD+a1)+F](D) DGI]‘
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