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Abstract

This paper studies the estimation of the conditional density f(x, ·) of Yi given Xi =
x, from the observation of an i.i.d. sample (Xi, Yi) ∈ Rd, i = 1, . . . , n. We assume
that f depends only on r unknown components with typically r � d. We provide an
adaptive fully-nonparametric strategy based on kernel rules to estimate f . To select the
bandwidth of our kernel rule, we propose a new fast iterative algorithm inspired by the
Rodeo algorithm (Wasserman and Lafferty (2006)) to detect the sparsity structure of f .
More precisely, in the minimax setting, our pointwise estimator, which is adaptive to
both the regularity and the sparsity, achieves the quasi-optimal rate of convergence. Its
computational complexity is only O(dn log n).

Keywords: conditional density, high dimension, minimax rates, kernel density estima-
tors, greedy algorithm, sparsity, nonparametric inference.

1 Introduction

1.1 Motivations

Consider W = (W1, . . . ,Wn) a sample of a couple (X,Y ) of multivariate random vectors: for
i = 1, . . . , n,

Wi = (Xi, Yi),

with Xi valued in Rd1 and Yi in Rd2 . We denote d := d1 + d2 the joint dimension. We
assume that the marginal distribution of X and the conditional distribution of Y given X
are absolutely continuous with respect to the Lebesgue measure, and we denote by fX the
marginal density of X. Let us define f : Rd → R+ such as for any x ∈ Rd1 , f(x, ·) is the
conditional density of Y conditionally to X = x:

f(x, y)dy = dPY |X=x(y).

In this paper, we aim at estimating the conditional density f at a set point w = (x, y) in Rd.
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The issue of estimating a conditional density may arise as soon as we observe a (possibly
multidimensional) response Y associated with a (possibly multidimensional) covariate X. We
often study the regression function E(Y |X = x), but this information is restrictive, and the
entire distribution is more informative than the mean (think in particular to the case of
an asymetric or multimodal distribution). Thus the problem of estimating the conditional
distribution is found in various application fields: Meteorology, Insurance, Medical studies,
Geology, Astronomy. See Nguyen (2018) and references therein. Moreover, the ABC methods
(Approximate Bayesian Computation) are actually dedicated to find a conditional distribution
(of the parameter given observations) in the case where the likelihood is not computable but
simulable: see Izbicki et al. (2018) (and references therein) where the link between conditional
density estimation and ABC is studied.

Several nonparametric methods have been proposed for estimating a conditional density:
Hyndman et al. (1996) and Fan et al. (1996) have improved the seminal Nadaraya-Watson-type
estimator of Rosenblatt (1969) and Lincheng and Zhijun (1985), as well as De Gooijer and
Zerom (2003) who introduced another weighted kernel estimator. For these kernel estimators,
different methods have been advocated to tackle the bandwidth selection issue: bootstrap
approach (Bashtannyk and Hyndman, 2001) or cross-validation variants, see Fan and Yim
(2004); Holmes et al. (2010), Ichimura and Fukuda (2010). Later, adaptive-in-smoothness
estimators have been introduced: Brunel et al. (2007) with piecewise polynomial representa-
tion, Chagny (2013) with wraped base method, Le Pennec and Cohen (2013) with penalized
maximum likelihood estimator, Bertin et al. (2016) with Lepski-type method, Sart (2017) with
tests-based histograms.

All above references do not really deal with the curse of dimensionality. From a theoretical
point of view, the minimax rate of convergence for such nonparametric statistical problems
is known to be n−s/(2s+d) (possibly up to a logarithmic term), where s is the smoothness of
the target function. This illustrates that estimation gets increasingly hard when d is large.
Moreover the computational complexity of above methods is often intractable as soon as d is
larger than 3 or 4. A first answer to overcome this limitation is to consider the single-index
model, as Fan et al. (2009) or Bouaziz and Lopez (2010), but this implies a strong structural
assumption. A more general advance has been made by Hall et al. (2004) who assume that
some components of X can be irrelevant, i.e. that they contain no information about Y and
should be dropped before conducting inference. Their cross-validation approach allows them to
obtain a minimax rate for a r1-dimensional C2 function, where r1 is the number of relevant X-
components. Efromovich (2010) has improved these non-adaptive results by using thresholding
and Fourier series and achieves the minimax rate n−s/(2s+r1) without any knowledge of r1 nor s.
Note that above rates were established for the L2-loss whereas we shall consider the pointwise
loss. Moreover these combinatorial approaches make their computation cost prohibitive when
both n and d are large. In the same framework, Shiga et al. (2015) assume that the dependence
of Y on the relevant components is additive. Another way is paved by Otneim and Tjøstheim
(2018) who estimate the dependence structure in a Gaussian parametric way while estimating
marginal distributions nonparametrically. More recently, Izbicki and Lee (2016, 2017) have
proposed two attractive methodologies using orthogonal series estimators in the context of
an eventual smaller unknown intrinsic dimension of the support of the conditional density.
In particular, the Flexcode method originally proposes to transfer successful procedures for
high dimensional regression to the conditional density estimation setting by interpreting the
coefficients of the orthogonal series estimator as regression functions, which allows to adapt
to data with different features (mixed data, smaller intrinsic dimension, relevant variables) in
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function of the regression method. However, the optimal tuning parameters depend in fact
on the unknown intrinsic dimension. Furthermore, optimal minimax rates are not achieved,
revealing the specific nature of the problem of conditional density estimation, more intricate,
in full generality, than regression.

1.2 Objectives, methodology and contributions

In this paper, we wish to estimate the conditional density f by assuming that only r ∈ [0, d]
components are relevant, i.e. that there exists a subset R ⊂ {1, . . . , d} with cardinal r,
such that for any fixed {zj}j∈R, the function {zk}k∈Rc 7→ f(z1, . . . , zd) is constant on the
neighborhood of w, with Rc = {1, . . . , d} \ R. Assuming that f is s-Hölderian, our goal is to
provide an estimation procedure such that it achieves the best adaptive rate. The meaning
of adaptation is twofold in this paper: The first meaning corresponds to adaptation with
respect to the smoothness, which is the classical meaning of adaptation. The second one
corresponds to adaptation with respect to the sparsity. So our goal is to propose an optimal
procedure in this context, meaning that it does not depend on the knowledge of s and r.
Furthermore, for practical purposes in moderate large dimensions, it should be implemented
with low computational time.

For this purpose, we consider a particular kernel estimator depending on a bandwidth
h ∈ Rd+ to be selected. To circumvent the curse of dimensionality, we consider an iterative
algorithm on a special path of bandwidths inspired by the Rodeo procedures proposed by
Wasserman and Lafferty (2006) and Lafferty and Wasserman (2008) for nonparametric re-
gression, Liu et al. (2007) for density estimation and Nguyen (2018) for conditional density
estimation. More precisely, our new procedure, called RevDir CDRodeo, is a variation of the
CDRodeo proposed by Nguyen (2018) (and called Direct CDRodeo in the sequel). Each
iteration step of this new algorithm is based on comparisons between partial derivatives of our
kernel rule, denoted Zhj , and specific thresholds λhj , respectively defined in (2.3) and (2.5).
Let us mention that for variable selection in the regression model with very high ambient
dimension, Comminges and Dalalyan (2012) used similar ideas to select the relevant variables
by comparing some quadratic functionals of empirical Fourier coefficients to prescribed sig-
nificance levels. Consistency of this (non-greedy) procedure is established by Comminges and
Dalalyan (2012).

We establish that, up to a logarithmic term whose exponent is positive but as close to 0 as
desired, RevDir CDRodeo achieves the rate ((log n)/n)s/(2s+r), which is the optimal adaptive
minimax rate on Hölder ballsHd(s, L), when the conditional density depends on r components.
When r is much smaller than d, this rate is much faster than the usual rate ((log n)/n)s/(2s+d)

achieved by classical kernel rules. Furthermore, unlike previous Rodeo-type procedures, our
procedure is adaptive with respect to both the smoothness and the sparsity. To the best of our
knowledge, our RevDir CDRodeo procedure is the first algorithm achieving quasi-minimax
rates for conditional density estimation in this setting where both sparsity and smoothness are
unknown. Furthermore, tuning RevDir CDRodeo is very easy (see Section 3.2) and we show
that the total worst-case complexity of RevDir CDRodeo algorithm is only O(dn log n). This
last result is very important for modern statistics where many problems deal with very large
datasets.

3



1.3 Plan of the paper and notations

The plan of the paper is the following. First we describe in Section 2 the estimation procedure.
We give heuristic ideas based on the oracle approach and explain why some modifications of
the Direct CDRodeo procedure are necessary. Then a detailed presentation of our algorithm
is provided in Section 2.2.4. Next the main result is stated in Section 3. The complexity of
the algorithm is computed in Section 3.4. The proofs are gathered in Section 4.

In the sequel, we denote by ? the convolution product. For a function g : (u1, . . . , ud) 7→
g(u1, . . . , ud), we denote ∂jg the partial derivative ∂

∂uj
g when there is no ambiguity. We

introduce the following partial order on the bandwidths:

h � h′ ⇔ ∀k ∈ {1, . . . , d} hk ≤ h′k.

2 Estimation procedure

2.1 Kernel rule

Our estimation procedure of the conditional density f is based on a kernel rule, namely the
kernel estimator introduced in (Bertin et al., 2016). So, let K : R → R be a kernel function,
namely K satisfies

∫
RK(t)dt = 1. Then, for any bandwidth h = (hj)j=1,...,d ∈ (R∗+)d, the

estimator of f associated with K and h is defined for any w ∈ Rd, by

f̂h(w) :=
1

n

n∑
i=1

1

f̃X (Xi)
Kh(w −Wi), (2.1)

where for any v ∈ Rd,

Kh(v) =

d∏
j=1

h−1
j K(vj/hj)

and f̃X is an estimator of fX , built from a sample X̃ not necessarily independent of W .

Remark 1. Note that (non conditional) density estimation is a special case of the problem
studied in this paper. It corresponds to the setting where d1 = 0 and fX ≡ 1 (≡ f̃X). In this
case, f̂h(w) is the classical kernel density estimator extensively studied in the literature.

Since f can be expressed as the ratio

f(x, y) =
fXY (x, y)

fX(x)
,

the class of rules defined as the ratio of two density estimates has intensively been studied.
The estimate f̂h(w) does not belong to this class. Actually, our goal is to take into account
the specific nature of the conditional density f , not the nature of fXY and fX . In particular,
a relevant component both for the joint density fXY and the marginal density fX may be
irrelevant for the conditional density; this occurs if a component of X is independent of Y and
in this case relevance may be not detected by a ratio of two density estimates. Similarly, the
smoothness of f can be different from the smoothness of the functions fXY and fX . Remark
that if we could take f̃X = fX , then

E[f̂h(w)] =

∫∫
1

fX(u)
Kh(w − (u, v))fX,Y (u, v)dudv =

∫
Kh(w − z)f(z)dz = (Kh ? f)(w), (2.2)
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which ensures that E[f̂h(w)] is a good approximation of f when h is small enough under mild
assumptions on K and f . These arguments justify the introduction of f̂h(w). The choice of
f̃X is essential and will be discussed in Section 3.3. Equality (2.2) shows that the selection of
h will be essentially dictated by the intrinsic properties of the conditional density f .

Now, as explained in Introduction, the principal issue is to choose an appropriate band-
width h which adapts simultaneously to the unknown sparsity and smoothness of f . In
particular, large values of the components of the bandwidths will correspond to irrelevant
components of f , namely Rc = {1, . . . , d} \ R. Several estimation kernel procedures based
on optimization over an exhaustive grid of bandwidths have been proposed in the literature.
But the larger the class of bandwidths, the larger the computational time. So, most of them
have to face with large running times, leading to intractable procedures, even for moderately
large dimensions. Furthermore, as explained in Introduction, very few are able to deal with
the two-fold adaptive objective.

These are the reasons why, unlike classical methods involving criteria minimization over a
large class of smoothing parameters, we propose an algorithm generating an iterative smooth
path through the set of bandwidths in the same spirit as Wasserman and Lafferty (2006)
and Lafferty and Wasserman (2008) for nonparametric regression, Liu et al. (2007) for density
estimation and Nguyen (2018) for non-adaptive conditional density estimation. The greediness
of our procedure, which is presented in the next paragraph, leans on the selection of this
path of bandwidths. It enables us to address adaptive conditional density estimation in high
dimensions.

2.2 From the Direct CDRodeo procedure to the RevDir CDRodeo pro-
cedure

In the sequel, to describe our algorithm, we fix w = (x, y), the estimation point, and we
assume that K is of class C1.

2.2.1 The Direct CDRodeo procedure

To select the bandwidth, we would like to use local variations of f . Indeed, heuristically, the
larger the local variations of f , the smaller the bandwidth. So, we naturally rely on partial
derivatives of f , which are, of course, not observed. So, as a proxy of ∂

∂wj
f , we consider Zhj ,

the partial derivatives of the estimator with respect to the components of the bandwidths,
defined for h ∈ (R∗+)d and j ∈ {1, . . . , d} by:

Zhj :=
∂

∂hj
f̂h(w). (2.3)

Denoting J : t 7→ K(t) + tK ′(t), Zhj can be easily expressed, which constitutes a key step to
obtain algorithms with low computational time. We obtain:

Zhj =
−1

nh2
j

n∑
i=1

1

f̃X(Xi)
J
(
wj−Wij

hj

) d∏
k 6=j

h−1
k K

(
wk −Wik

hk

)
. (2.4)

The CDRodeo procedure proposed by Nguyen (2018), called the Direct CDRodeo procedure
in the sequel, involves the Zhj ’s as follows:
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1. We start from a bandwidth h = (h1, . . . , hd) whose components hj are all equal to h0 > 0
quite large (typically, h0 is close to 1).

2. At each step, for all j, if j is not deactivated, we compare |Zhj | to a threshold λhj , where

λhj := Cλ

√
(log n)a

nh2
j

∏d
k=1 hk

, (2.5)

with Cλ = 4‖J‖2‖K‖d−1
2 and a > 1 a tuning parameter. Observe that λ2

hj is a good
proxy of Var(Zhj) up to the logarithmic term.

- If |Zhj | > λhj , then hj ← βhj for β ∈ (0, 1) a constant fixed in advance, and j is
still active.

- If |Zhj | ≤ λhj , j is deactivated and hj remains unchanged for the next steps of the
path.

3. We stop when all components are deactivated or if
∏n
j=1 hj <

logn
n .

The next paragraph provides heuristic arguments explaining why such an algorithm is able,
simultaneously, to detect irrelevant components and provide suitable bandwidths for relevant
components.

2.2.2 Heuristic arguments

Introducing

Z̄hj =
−1

nh2
j

n∑
i=1

1

fX(Xi)
J
(
wj−Wij

hj

) d∏
k 6=j

h−1
k K

(
wk −Wik

hk

)
, (2.6)

which is close to Zhj if f̃X is a good estimate of fX , we easily obtain that E[Z̄hj ] = 0 if j ∈ Rc,
which means that, with high probability, j is rapidly deactivated by the Direct CDRodeo
procedure. Indeed, λhj is tuned (via the Bernstein concentration inequality) so that with high
probability, |Z̄hj − E[Z̄hj ]| ≤ λhj . We then obtain large smoothing parameters for irrelevant
components.

To explain heuristically why the Direct CDRodeo procedure is suitable for relevant com-
ponents, we use the oracle approach. For the sake of simplicity, we assume that f̃X = fX .
Given a bandwidth h, we have:

E[(f̂h(w)− f(w))2] = B2(h) + Var(f̂h(w)),

where B(h) := E[f̂h(w)]− f(w) is the bias term and

Var(f̂h(w)) =
1

n
Var

(
Kh(w −W1)

fX(X1)

)
≈ 1

n
‖Kh‖2 ≈

1

n
×

d∏
j=1

1

hj
, (2.7)

where previous approximations are justified if f is bounded from above and fX bounded from
below in the neighborhood of w. Then, the ideal bandwidth should be a global minimizer of
the function

h 7→ R̃(h) := B2(h) +
1

n
×

d∏
j=1

1

hj
.
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Denoting h∗ such a global minimizer, we assume that the sign of B is constant in the neighbor-
hood of h∗. Without loss of generality, we then assume that B is positive in the neighborhood
of h∗. So h∗ will be a minimizer of

h 7→ R(h) := B(h) +
1√

n×
∏d
j=1 hj

. (2.8)

Then, if B is of class C1, h∗ should satisfy for any j,

∂

∂hj
B(h∗) =

1

2

√
1

n(h∗j )
2
∏d
k=1 h

∗
k

.

Ideally, a good algorithm would select a bandwidth satisfying this property. Of course, partial
derivatives of the bias are unknown but for any h, under mild assumptions,

∂

∂hj
B(h) = E

[
∂

∂hj
f̂h(w)

]
= E[Zhj ],

so Zhj is an unbiased estimate of ∂
∂hj

B(h). Finally, heuristically, an ideal bandwidth should
satisfy

Zh∗j ≈
√

1

n(h∗j )
2
∏d
k=1 h

∗
k

,

which is the case for the Direct CDRodeo procedure up to a logarithmic term, since CDRodeo
stops as soon as |Zhj | = λhj (observe that similar arguments can be used if B remains negative
in the neighborhood of h∗ and in this case, we have to replace Zhj with −Zhj).

Note that if previous arguments are only heuristic ones, several issues can be pointed out:

1. Some singular points of the risk function R (defined in (2.8)) can correspond to non-
global minimizers. In particular, the larger the distance between the initial bandwidth
of the algorithm and the minimizer of R, the larger the probability to stop at a local
minimizer of R. To circumvent this problem, we can take a small value for h0. But
taking a too small value for h0 may be inappropriate for irrelevant components.

2. If card(R) is large, many components of the optimal bandwidth are small, which leads
to many steps of the Direct CDRodeo procedure and then to a larger computational
cost.

The first point shows that initialization appears as a key point of the algorithm. In view
of these issues, it is natural to consider some variations of the Direct CDRodeo procedure.
They are described in the next paragraph.

2.2.3 The Reverse CDRodeo procedure

The first variation which could be considered is the Reverse CDRodeo procedure in the same
spirit as Liu et al. (2007) (see Section 4.2 therein). We start with a small bandwidth and use
a sequence of non-decreasing bandwidths to select the optimal value, still by comparing the
Zhj ’s with the λhj ’s. As illustrated by Liu et al. (2007), this approach is very useful for image
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data. However, the choice of the initial bandwidth is very sensitive. In particular, assume that
f has a very low regularity and has only one relevant component, say the first one for instance.
In this case, if h∗ is the ideal bandwidth, h∗1 = 1/n (up to a logarithmic term). So, since R is
unknown, the initialization of the bandwidth must be not larger than h0,rev = (1/n, . . . , 1/n).
However, such a small bandwidth leads to instability problem. In particular, the variance of
f̂h0,rev(w) is of order nd−1 (see Equation (2.7)).

2.2.4 Our procedure: The RevDir CDRodeo procedure

Previous arguments show that to circumvent previous issues, we have to combine Direct
and Reverse CDRodeo procedures, leading to the RevDir CDRodeo procedure. This new
procedure, precisely described by Algorithm 1, comprises two steps after fixing the initial
bandwidth whose components are all equal to h0, where h0 is assumed to be larger than all
relevant components of the optimal bandwidth.

1. The first step is the Reverse CDRodeo algorithm with a sequence of non-decreasing
bandwidths to estimate Rc.

2. The second step, which concerns only components j such that after the Reverse Step
hj = h0, is the Direct CDRodeo algorithm. Its goal is to deal with components
associated with R.

The output bandwidth of the algorithm is denoted ĥ. The function f is finally estimated
by f̂ := f̂ĥ. Figure 1 illustrates the bandwidth path for two components. If the component
belongs to Act(−1) (resp. Act(0)), it is deactivated during the Reverse Step (resp. the Direct
Step) and is larger (resp. smaller) than the initial bandwidth value h0. Note that the RevDir
procedure generalizes both the Direct and Reverse procedures in function of the choice of
h0. Indeed, if we set h0 = 1, the RevDir procedure behaves as a Direct procedure with the
same initialization. Conversely, setting h0 = 1/n brings us back on the Reverse procedure.
Nonetheless, note that the tuning of h0, as well as of the parameters a and β, needs a careful
attention, which is discussed in the next section.

3 Theoretical results

3.1 Sparsity and smoothness classes of functions

This section is devoted to the theoretical results satisfied by the RevDir CDRodeo procedure.
We consider a kernel function K : R→ R of class C1, with compact support denoted supp(K).
We shall also assume that K is of order p, i.e.: for ` = 1, . . . , p− 1,

∫
R t

`K(t)dt = 0. Taking
a kernel of order p is usual for the control of the bias of the estimator. Then, we define the
neighborhood U of the point w ∈ Rd as follows:

U :=
{
u ∈ Rd : w − u ∈ (supp(K))d

}
.

In the sequel, we denote
‖f‖∞, U := sup

x∈ U
|f(x)|.
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Algorithm 1 RevDir CDRodeo algorithm

1. Input: the estimation point w, the observations W , the bandwidth decreasing factor
β ∈ (0, 1), the bandwidth initialization value h0 > 0, a tuning parameter a > 1.

2. Initialization:

. Initialize the trial bandwidth: for k = 1 : d, H(0)
k ← h0.

. Determine which variables are active for the Reverse Step or for the Direct Step:

Act(−1) ← {k = 1 : d, |ZH(0)k| ≤ λH(0)k}
Act(0) ← {1 : d} \ Act(−1)

3. Reverse Step:

. Initialize the counter: t← −1

. Initialize the current bandwidth: ĥ(−1) ← H(0)

. While (Act(t) 6= ∅) & (max ĥ
(t)
k ≤ β) :

I Set the current trial bandwidth: H(t)
k =

{
β−1ĥ

(t)
k if k ∈ Act(t)

ĥ
(t)
k else.

I Set the next active set: Act(t−1) ← {k ∈ Act(t), |ZH(t)k| ≤ λH(t)k}

I Update the current bandwidth: ĥ(t)
k ←

{
H

(t)
k if k ∈ Act(t−1)

ĥ
(t)
k else.

I Initialize the next bandwidth: ĥ(t−1) ← ĥ(t)

I Decrement the counter: t← t− 1

4. Direct Step:

. Initialize the current bandwidth: ĥ(0) ← ĥ(t)

. Reinitialize the counter: t← 0

. While
(
Act(t) 6= ∅

)
&

(
d∏

k=1

ĥ
(t)
k ≥

(logn)1+a

n

)
:

I Increment the counter: t← t+ 1

I Set the current active set: Act(t) ← {k ∈ Act(t−1), |Zĥ(t−1)k| > λĥ(t−1)k}

I Set the current bandwidth: ĥ(t)
k ←

{
β.ĥ

(t−1)
k if k ∈ Act(t)

ĥ
(t−1)
k else.

5. Output: ĥ← ĥ(t) (and compute f̂ĥ(w)).

Remark 2. The size of U is fixed. But U could be chosen so that its size goes to 0. In this
case, we have to modify the stopping rule of the Reverse Step, namely max ĥ

(t)
k ≤ β, to force

max ĥ
(t)
k

n→∞−→ 0. For instance, if we impose max ĥ
(t)
k ≤

1
logn , the rates of convergence of our

estimate would typically be deteriorated by a logarithmic term.
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iterations

h Reverse Step Direct Step

h0 -1
|

-2
|

-3
|

0
|

1
|

2
|

end

ĥj

tj

ĥk

tk

j ∈ Act(−1)

k ∈ Act(0)

Figure 1: The two patterns of bandwidth path: the components j ∈ Act(−1) with a deacti-
vation time tj ≤ 0 in red, and in blue the components k ∈ Act(0) with a deactivation time
tk ≥ 0.

The notion of relevant components has already been introduced in Section 1.2 but subse-
quent results only need that the function f is locally sparse, so we shall consider the following
definition depending on U .

Definition 1. We denote R the subset of {0, . . . , d} with cardinal r such that for any fixed
{zj}j∈R, the function {zk}k∈Rc 7→ f(z1, . . . , zd) is constant on U . We call relevant any com-
ponent in R.

The previous definition means that on U , f depends only on r of its d variables. In the
sequel, we consider the minimax point of view and we derive rates on Hölder balls defined as
follows.

Definition 2. Let L > 0 and s > 0. We say that the conditional density f belongs to the
Hölder ball of smoothness s and radius L, denoted Hd(s, L), if f is of class Cq and if it satisfies
for all z ∈ U and for all t ∈ R such that z + tek ∈ U∣∣∂qkf(z + tek)− ∂qkf(z)

∣∣ ≤ L|t|s−q,
where q = ds − 1e = max{l ∈ N : l < s} and ek is the vector where all coordinates are null
except the kth one which is equal to 1.

In the sequel, we investigate adaptive results in terms of sparsity and smoothness properties
on Hölder balls Hd(s, L). It means that our procedure will not depend on the knowledge of
R and (s, L).

3.2 Tuning the RevDir CDRodeo procedure

The RevDir CDRodeo procedure depends on three tuning parameters, namely h0, β and a.
In the sequel, we take β ∈ (0, 1). Its value has no influence on rates of convergence. But of

course, the larger β, the more accurate the procedure, but the larger the computational time.
In practice, we set β close to 1.
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The parameter a will be assumed to be larger than 1. Its value does not affect the
polynomial rate of convergence but the smaller a, the smaller the exponent of the logarithmic
factor of the rate. In practice, a will be larger but close to 1.

Finally, to initialize the procedure, we take h0 such that

C2/d
λ

(
(log n)a

n

) 1
d(2p+1)

≤ h0 ≤ 1, (3.1)

where Cλ, only depending on the kernel K, is defined in Section 2.2.1. Note in particular that
the lower bound does not depend on any unknown value, and thus can be implemented as
the bandwidth initialization. Besides, observe that each component of the ideal bandwidth
for estimating f on Hd(s, L) is of order n−1/(2s+r) for relevant components and are constant
for irrelevant ones. So, if s ≤ p as assumed in Theorem 3.1, then h0 is larger than all relevant
components of the optimal bandwidth, as required by the RevDir CDRodeo procedure.

3.3 Assumptions and main result

To derive rates of convergence for f̂(w), we need three assumptions. The first two ones are
related to fX , the density of the Xi’s.
Assumption LX [Lower bound on fX ]
The density fX is bounded away from 0 in the neighborhood of x:

δ := inf
u∈U1

fX(u) > 0,

where U1 :=
{
u ∈ Rd1 : x− u ∈ (supp(K))d1

}
.

Remark 3. Similarly, to Remark 2, the size of U1 is fixed but it could decrease to 0 if we
modify the stopping rule of the Reverse Step.

This assumption is classical in the regression setting or for conditional density estimation.
Indeed, if fX is equal or close to 0 in the neighborhood of x, we shall have no or very few
observations to estimate the distribution of Y given X. Thus, this assumption is required in
all of the aforementioned works about conditional density estimation.

The next assumption specifies that we can estimate fX very precisely.
Assumption EfX [Estimation of fX ]
The estimator of fX in (2.1) satisfies the following two conditions:

Condition (i) a positive lower bound: δ̃X := inf
u∈ U1

f̃X(u) > n−1/2,

Condition (ii) a concentration inequality in local sup norm:

P

(
sup
u∈ U1

∣∣∣fX(u)− f̃X(u)
∣∣∣ > MX

(log n)
a
2

√
n

)
≤ exp(−(log n)1+a−1

2 ),

with MX :=
δ‖J‖2‖K‖d−1

2

4‖f‖∞,U‖J‖1‖K‖d−1
1

.
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Remark 4. For the simpler problem of density estimation, since fX ≡ 1 ≡ f̃X , Assump-
tion EfX is obviously satisfied.

The following proposition shows that conditions of Assumption EfX are feasible if we have
at hand a sample, with same distribution as X, whose size is large enough. Furthermore, f̃X ,
the estimator provided by the proof of Proposition 1, is easily implementable.

Proposition 1. Given a sample X̃ with same distribution as X and of size nX = nc with
c > 1, if fX is of class Cp′ with p′ ≥ d1

2(c−1) , there exists an estimator f̃X which satisfies
Assumption EfX .

To prove Proposition 1, we build f̃X as a truncated kernel estimator with a fixed bandwidth,
but other methods can be used in practice, as, for instance, a Rodeo algorithm for density
estimation. Actually any reasonable nonparametric estimator would have a rate of convergence
in sup norm of the form n−βX (typically β = p′/(2p′+d1)). Then Condition (ii) of Assumption
EfX is verified as soon as n−βX ≤ n−1/2 and we need c ≥ 1 + d1/(2p

′). Then, observe that if fX
is of class C∞, then we just need c = 1 and we can take X̃ = X. If we know that fX is at least
of class C1 but its precise smoothness is unknown, taking c ≥ 1 + d1/2 is sufficient to satisfy
assumptions of Proposition 1.

The next assumption is necessary to control the bias.
Assumption M [Monotonicity]
For all j ∈ R, for all h and h′ ∈ (R∗+)d such that h � h′, |E[Z̄h,j ]| ≤ |E[Z̄h′,j ]|, where Z̄h,j is
defined as Zh,j in (2.3) but with true fX replacing f̃X .

Let us comment Assumption M that requires monotony of a specific bias term. Indeed,
denoting Mj the pseudo-kernel defined by Mj(z) = J(zj)

∏
k 6=jK(zk), we have

E[Z̄hj ] =
∂

∂hj
(Kh ? f − f)(w) = − 1

hj

∫
Mj(z)[f(w − h.z)− f(w)]dz,

which is, under mild assumptions, of order
∑d

k=1 h
s
kh
−1
j ≈ hs−1

j if the smoothness of f at w
is exactly s in each direction. In this case, Assumption M is satisfied (we assume s > 1
subsequently). This assumption is needed to control the bias term B(h) := (Kh ?f −f)(w) to
prevent the algorithm from stopping at bandwidths for which ∂

∂hj
B(h) vanishes. Remember

that this term plays a key role for the RevDir CDRodeo procedure (see Section 2.2.2).
It means that the RevDir CDRodeo procedure is not suitable for too irregular functions.
Anyway, estimating non-smooth functions in large dimensions is a very intricate problem.
Actually, this assumption is the price to pay for not exploring all possible bandwidths and
only focusing on special paths and is the counterpart of the competitive computational time of
the RevDir CDRodeo algorithm. Such conditions are shared by many iterative procedures.
See the stopping time procedure proposed by Blanchard et al. (2016) and their Section 1.2 for
instance or more generally, gradient descent algorithms that use convexity conditions. Observe
that Assumption M looks like a convexity condition.

Remark 5. If f is smooth enough so that ∂p

∂hpj
f(h) 6= 0 with p such that

∫
upK(u)du 6= 0,

then Assumption M is not required. See Nguyen (2018).
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We now derive the main result of our paper proved in Section 4 in which we show that ĥ
is closed to the ideal bandwidth h∗ defined in Section 2.2.2.

Theorem 3.1. We assume that f has only r relevant components with r ∈ {0, . . . , d} and
belongs to Hd(s, L) where L > 0 and 1 < s ≤ p. Then, under Assumptions LX , EfX , M,
the pointwise risk of the RevDir CDRodeo estimator f̂ĥ(w) is bounded as follows: for any
l ≥ 1, for n large enough,

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l]1/l

≤ C
(

(log n)a

n

) s
2s+r

(3.2)

where C only depends on d, r,K, β, δ, L, s, ‖f‖∞, U .

We can compare the obtained rate with the classical pointwise adaptive minimax rate for
estimating a s-regular r-dimensional density, which is ((log n)/n)s/(2s+r) (see Rebelles (2015)).
Our procedure achieves this rate up to the term (log n)s(a−1)/(2s+r). In Section 3.2, we specify
that any value a > 1 is suitable. So, our procedure is nearly optimal. Actually, we need a > 1
to ensure that for n large enough,

(log n)a−1 ≥
‖f‖∞, U

δ

but if an upper bound (or a pre-estimator) of ‖f‖∞, Uδ were known, we could obtain the similar
result with a = 1, and our procedure would be rate-optimal without any additional logarithmic
term. Remember that the term (log n)s/(2s+r) is the price to pay for adaptation with respect
to the smoothness (see Tsybakov (1998)). Theorem 3.1 shows that, in our setting, there is no
additive price for not knowing the sparsity, i.e. the value of r. This result is new.

Remark 6. We need s > 1, which means that f has to be at least C1. This technical assumption
is related to our methodology based on derivatives of f̂h(w) as proxies of derivatives of f to
detect relevant components.

3.4 Algorithm complexity

We now discuss the complexity of CDRodeo without taking into account the pre-computation
cost of f̃X at the points Xi, i = 1 : n (used for computing the Zhj). Regarding the computation
cost of f̃X , the estimator built for the proof of Proposition 1 has complexity O(d1n

c) but in
practice we use a Rodeo estimator with the same sample size n, which has a complexity
O(d1n log n) for each computation of f̃X(Xi) which causes an additional cost in O(d1n

2 log n).
During the Reverse Step, |Act(−1)| components are updated, and, for fixed h, the computa-

tion of all Zhj ’s and the comparisons to the thresholds λhj need O(|Act(−1)|n) operations. In
the same way, during the Direct Step, |Act(0)| components are updated and each update needs
O(|Act(0)|n) operations. Since the number of updates is at worse of order log(n) (because of
the stopping conditions), and |Act(−1)| + |Act(0)| ≤ d, we obtain the following proposition.
More details can be found in the proof (see Section 4.6).

Proposition 2. Apart from the computation of f̃X , the total worst-case complexity of RevDir
CDRodeo algorithm is

O(dn log n).
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Notice that for classical methods with optimization on a bandwidths grid, the complexity
is of order dn|H|d, where |H| denotes the size of the grid for each component. In practice, the
grid has to include at least log n points, which leads to a computational cost O(dn(log n)d).
For d = 5 and n = 105, the ratio of complexities is already dn(logn)d

dn logn > 1.7× 104 .

4 Proofs

4.1 Notations

In order to prove the theorem, some intermediate lemmas are needed. See Appendix for their
statements. First, we define some general notations: We denote

• ∂jg the partial derivative of a function g with respect to its j-th component;

• v · v′ the multiplication term by term of two vectors v and v′;

• l : m the set of consecutive integers from l to m;

• vI the vector v restricted to its components indexed in I;

• b ∨ c = max(b, c) the maximum value of two reals b and c.

Let us now introduce the key quantities of the proofs. For any bandwidth h ∈ (R∗+)d and any
component k ∈ {1 : d}, we consider the estimator f̄h(w) that we would have use if the density
fX were known:

f̄h(w) :=
1

n

n∑
i=1

f̄hi(w), f̄hi(w) :=
Kh(w −Wi)

fX(Xi)

and we denote ∆h its difference with the real estimator:

∆h := f̂h(w)− f̄h(w).

We denote B̄h := E
[
f̄h(w)

]
− f(w) the bias of f̄h(w). We also consider its partial derivative

Z̄hk:

Z̄hk :=
∂

∂hk
f̄h(w).

We can write

Z̄hk :=
1

n

n∑
i=1

Z̄hik, Z̄hik :=
1

fX (Xi)

∂

∂hk

(
d∏

k=1

h−1
k K

(
wk −Wik

hk

))
.

We shall consider ∆Z,hk the difference between Zhk and Z̄hk:

∆Z,hk := Zhk − Z̄hk.

Note that the value of the final bandwidth of our procedure provides the value of the bandwidth
at each iteration. More precisely, if a bandwidth h is the output of the RevDir procedure, we
denote (h(t))t∈Z, the different values of the bandwidth for all iterations t.
- On the one hand, if hk > h0, it means that at Initialization, the component k was in
Act(−1) and then the bandwidth path of this component has increased during the Reverse
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Step according to the following path h0β
−1, h0β

−2, ... until hk := h0β
−|tk|, and remains fixed

during the whole Direct Step (t ≥ 0).
- On the other hand, if hk < h0, the component k was in Act(0) at Initialization. Thus the
value of the bandwidth component was fixed and equals to h0 during the Reverse Step (i.e
for every t < 0 ). Then, it decreases during the Direct step: h0β, h0β

2, ... until hk := h0β
tk

is achieved (see Figure 1). This gives the following formula: for any k = 1 : d, during the
Reverse Step (when t < 0),

h
(t)
k := max(h0,min

(
hk, β

th0

)
) =


h0 if k is active during the Direct Step,
βth0 if k is active during the Reverse Step and not deactivated yet,
hk if k has already been deactivated during the Reverse Step,

and during Direct Step (when t ≥ 0),

h
(t)
k := max

(
hk, β

th0

)
=

{
βth0 if k is active during the Direct Step and not deactivated yet,
hk if k has already been deactivated (during the Reverse or the Direct Step).

Now we can define the set of bandwidths Hhp which contains with high probability the band-
width selected by the RevDir procedure:

Hhp := {h ∈
(
R∗+
)d

:∀k = 1 : d, hk = βtkh0 ≤ 1 with tk ∈ Z,

and
d∏

k=1

hk ≥ βr (logn)a+1

n ,

and ∀k ∈ Rc, hk = hirr},

where hirr := βtirrh0 such that tirr ∈ Z and β < hirr := βtirrh0 ≤ 1. So βtirr and hirr are uniquely
defined. We also denote HRev

hp (respectively HDir
hp ) the set which contains the different states

of the bandwidth during the Reverse Step (respectively the Direct Step) provided that the
selected bandwidth is in Hhp:

HRev
hp := {h(t) : h ∈ Hhp, t < 0} (4.1)

HDir
hp := {h(t) : h ∈ Hhp, t ≥ 0}. (4.2)

Finally, we introduce the high probability event Ehp on which ĥ systematically belongs to Hhp:

Ehp := Ãn ∩
⋂

h∈Hhp

(
Bernf̄ (h) ∩ Bern|f̄ |(h)

)
∩

⋂
h∈(HRev

hp ∪H
Dir
hp )

d⋂
k=1

(
BernZ̄(h, k) ∩ Bern|Z̄|(h, k)

)
,

(4.3)
where Ãn is the high probability event of Condition (ii) in Assumption EfX :

Ãn =

{
sup
u∈ U1

∣∣∣fX(u)− f̃X(u)
∣∣∣ ≤MX

(log n)
a
2

√
n

}
,

and Bern†(‡) is the high probability event resulting of Bernstein’s Inequality applied on the
random variable † with parameter(s) ‡. More formally:

Bernf̄ (h) := {|f̄h(w)− E[f̄h(w)]| ≤ σh},
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Bern|f̄ |(h) :=

{∣∣∣∣∣ 1n
n∑
i=1

|f̄hi(w)| − E[|f̄h(w)|]

∣∣∣∣∣ ≤ CĒ

}
,

BernZ̄(h, k) :=

{
|Z̄hk − EZ̄hk| ≤

1

2
λhk

}
,

Bern|Z̄|(h, k) :=

{
| 1
n

n∑
i=1

|Z̄hik| − E|Z̄h1k|| ≤ CE|Z̄|h
−1
k

}
,

where

σh = Cσ

√√√√√ (log n)a

n
d∏

k=1

hk

with Cσ =
2‖K‖d2‖f‖

1
2
∞, U

δ
1
2

. See Lemmas 1 and 2 in Appendix for the details and definitions of
constants CĒ,CE|Z̄|.

4.2 Main steps of the proof

Proposition 3 describes the form of the bandwidth selected by the RevDir procedure with
high probability. Given this selection, Proposition 4 gives upper bounds on the bias and the
deviation of the estimator f̄ĥ(w).

Proposition 3. The selected bandwidth belongs to Hhp with high probability. More precisely:

Ehp ⊂ {ĥ ∈ Hhp} (4.4)

and for n large enough:

P
(
Echp
)
≤ 2e−(logn)1+a−1

2 . (4.5)

Note in particular that with high probability the irrelevant components of the selected
bandwidth are equal to hirr.

Recall that B̄h := E
[
f̄h(w)

]
− f(w) is the bias of f̄h(w).

Proposition 4. The following upper bounds are satisfied for all h ∈ Hhp, and any constants
A ∈ R and CA > 0:

1{ĥ=h}∩Ehp

∣∣B̄h∣∣ ≤ rCB̄CAs (log n)As

n
s

2s+r

+ rmax

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
,

(4.6)

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehpσh

≤ max

(
Cσ

βd−rCA
r/2 (log n)(a−Ar)/2,

4CA
sCEZ̄Cσβ−

r
2−s

Cλ
(log n)sA

)
n−

s
2s+r , (4.7)

where Cλ is the constant defined in (2.5) and CB̄,Cσ,CEZ̄ are constants defined in Lemmas 1
and 2 in Appendix.
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4.3 Proof of Theorem 3.1

Let us fix l > 1. From Proposition 3: Ehp ⊂ {ĥ ∈ Hhp}, thus:

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l] = E
[
1Echp

∣∣∣f̂ĥ(w)− f(w)
∣∣∣l]+

∑
h∈Hhp

E
[
1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣l] .
(4.8)

We first control the terms E
[
1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣l]. We fix h ∈ Hhp. Then, we decom-

pose the difference f̂h(w)− f(w) as follows:

f̂h(w)− f(w) = ∆h +
(
f̄h(w)− E

[
f̄h(w)

])
+ B̄h, (4.9)

where we recall the notations ∆h := f̂h(w) − f̄h(w) and B̄h := E
[
f̄h(w)

]
− f(w). Remark

that
∏d
k=1 hk ≤ 1, since h ∈ Hhp. We apply 2. of Lemma 3 and 3. of Lemma 1: Since

Ehp ⊂
(
Ãn ∩ Bern|f̄ |(h)

)
∩ Bernf̄ (h):

1Ehp |∆h| ≤ CM∆σh

and
1Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ σh.
Therefore:

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣ ≤ 1{ĥ=h}∩Ehp

(
(CM∆ + 1)σh +

∣∣B̄h∣∣) . (4.10)

From Proposition 4 which controls both σh and
∣∣B̄h∣∣, we deduce:

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣

≤ (CM∆ + 1) max

(
Cσ

βd−rCA
r/2 (log n)

a−Ar
2 ,

4CA
sCEZ̄Cσβ

− r2−s

Cλ
(log n)sA

)
n−

s
2s+r

+ rCB̄CA
s (log n)As n−

s
2s+r + rmax

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
.

We optimize in A and CA: With A = a
2s+r , we obtain

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣ ≤ max

(
C1

(
(log n)a

n

) s
2s+r

, 7
4r

(
(log n)a

n

) p
2p+1

)
.

where C1 depends on β, d, r, s,CB̄,CEZ̄ ,Cσ,CM∆,Cλ. If r = 0, the last term in the right hand
side vanishes, otherwise p/(2p+ 1) ≥ s/(2s+ r) (since p ≥ s). Therefore, for n large enough:

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣ ≤ C′

(
(log n)a

n

) s
2s+r

. (4.11)

To prove the theorem, it then remains to control
∣∣∣f̂h(w)− f(w)

∣∣∣ on Echp. Recall that:
d∏

k=1

ĥk ≥ βr
(log n)1+a

n
,
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and Condition (i):
δ̃X := inf

u∈ U1

f̃X(u) > n−1/2,

then we can roughly bound f̂ĥ(w) by:∣∣∣f̂ĥ(w)
∣∣∣ ≤ ‖K‖d∞n

δ̃Xβr(log n)1+a
= o(n2).

So: ∣∣∣f̂h(w)− f(w)
∣∣∣l = o(n2l) = o(e2l logn).

Besides, from Proposition 3:

P
(
Echp
)
≤ 2e−(logn)1+a−1

2 .

Note that, since a > 1,
2l log n+ l log(n

1
2 ) = o((log n)1+a−1

2 ), (4.12)

therefore:

E
[
1Echp

∣∣∣f̂ĥ(w)− f(w)
∣∣∣l]1/l

≤
(
P
(
Echp
)
e2l logn

)1/l
= o(n−

1
2 ).

To conclude, we combine Equation (4.8) with the above upper bound and Inequality (4.11):

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l]1/l

≤ o(n−
1
2 ) +


(
C′
(

(log n)a

n

) s
2s+r

)l ∑
h∈Hhp

E[1ĥ=h]


1/l

≤ C
(

(log n)a

n

) s
2s+r

,

with C depending on d, r, ‖f‖∞, U , δ, L, s,K, β.

4.4 Proof of Proposition 3

By definition of the procedure, any selected bandwidth ĥ satisfies

∃(t1, . . . , td) ∈ Zd,∀k = 1 : d, ĥk = βtkh0

The loop condition in the Reverse Step imposes for any active component k that at the
beginning of an iteration t ∈ Z− :

ĥ
(t)
k ≤ β.

At most, ĥ(t)
k is multiplied by β−1. Then after the last update of the component ĥk:

ĥk ≤ 1 = β−1β.

Now let us prove that on Ehp, the irrelevant components are deactivated at value hirr. It
suffices to show that during the initialization, the irrelevant components activate for Reverse
Step, i.e.:

Rc ⊂ Act(−1),
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and in the case where h0 ≤ β, it suffices to prove that they remain active at all iterations
t = −1 : tirr. Remember that tirr ∈ Z is defined such that: hirr = βtirrh0.

Note that if the irrelevant components remain active at all iteration t = −1 : tirr, then for
k ∈ Rc, ĥ(t)

k = H
(t)
k = βth0. It corresponds to the definition of Hhp, since for all h ∈ Hhp,

t = −1 : tirr and k ∈ Rc,
h

(t)
k = βth0.

Therefore, there exists h ∈ Hhp such that ĥ(t) = h(t) for all iterations t = −1 : tirr.We will
then prove that for any h ∈ Hhp, t = −1 : tirr and k ∈ Rc,

1Ehp |Zh(t)k| ≤ λh(t)k.

Let us fix h ∈ Hhp, t ∈ {−1, . . . , tirr} and k ∈ Rc. We decompose Zh(t)k as follows:

Zh(t)k =
(
Zh(t)k − Z̄h(t)k

)
+
(
Z̄h(t)k − EZ̄h(t)k

)
+ EZ̄h(t)k. (4.13)

We use:

• 1. of Lemma 3: Recall the notation ∆Z,h(t)k := Zh(t)k − Z̄h(t)k, then remark that ∀h′ ∈
HRev

hp ∪HDir
hp ,

∏d
k=1 h

′
k ≤ 1, and Ehp ⊂ Bern|Z̄|(h(t), k) ∩ Ãn, therefore:

1Ehp

(
Zh(t)k − Z̄h(t)k

)
≤ 1

4
λh(t)k,

• the definition of BernZ̄(h(t), k): since Ehp ⊂ BernZ̄(h(t), k),

1Ehp

∣∣Z̄h(t)k − EZ̄h(t)k

∣∣ ≤ 1

2
λh(t)k,

• 2. of Lemma 2: since k ∈ Rc,
EZ̄h(t)k = 0.

Therefore:
1Ehp |Zh(t)k| ≤

3

4
λh(t)k ≤ λh(t)k,

and so, every irrelevant component is active during Reverse Step until Iteration tirr. In par-
ticular, we have proved that:

Ehp ⊂ {∀k ∈ Rc : ĥk = hirr}.

Let us now prove that on Ehp,

d∏
k=1

ĥk ≥ βr
(log n)1+a

n
.

The loop condition in the Direct Step imposes that at the beginning of any iteration t ≥ 0:

d∏
k=1

ĥ
(t)
k ≥

(log n)1+a

n
.
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For our algorithm, the bandwidth can only decrease during the Direct Step. Since on Ehp,
the irrelevant components are active the during Reverse Step, they are inactive during the
Direct Step. This is the reason why during the last iteration, only relevant components could
decrease and be multiplied by β. Therefore:

d∏
k=1

ĥk ≥ βr
(log n)1+a

n
,

which ends the proof of the inclusion (4.4) of Proposition 3.

Finally, we control P
(
Echp
)
. We first control the cardinal of Hhp by enumerating the

possible values for a component of a bandwidth in Hhp. For h ∈ Hhp and k ∈ R,

β(log n)1+an−1 ≤ hk ≤ 1,

thus:

|{hk : h ∈ Hhp}| =
∣∣{βth0 ∈ [β(log n)1+an−1, 1], t ∈ Z

}∣∣ ≤ 1+log 1
β

(
1

β(log n)1+an−1

)
≤ log 1

β
n

(for n large enough). For k ∈ Rc,
hk = hirr,

thus, we have
|{hk : h ∈ Hhp}| = 1.

Therefore:
|Hhp| ≤

(
log 1

β
n
)r
. (4.14)

Let us also control the cardinal of HRev
hp ∪HDir

hp . The only supplementary bandwidths are the
ones whose irrelevant components are smaller than hirr. We consider the irrelevant components
as the relevant ones, and we obtain the rough bound∣∣HRev

hp ∪HDir
hp
∣∣ ≤ (log 1

β
n
)d
. (4.15)

By Assumption EfX , Condition (ii):

P
(
Ãcn
)
≤ exp(−(log n)1+a−1

2 ).

We bound the events Bernf̄ (h)c’s and Bern|f̄ |(h)c’s using Lemma 1. Since for all h ∈ Hhp,

d∏
k=1

hk ≥ βr (logn)a+1

n ,

note that:

• Cond(h):
d∏

k=1

hk ≥ 4‖K‖2d∞
9δ2C2

σ

(logn)a

n is satisfied for any h ∈ Hhp for n large enough (when

log n ≥ 4‖K‖2d∞
9βrδ2C2

σ
). So, we have

P
(
Bernf̄ (h)c

)
≤ 2e−(logn)a .
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• Moreover,
P
(
Bern|f̄ |(h)c

)
≤ 2e−Cγ|f |n

∏d
k=1 hk ≤ 2e−Cγ|f |β

r(logn)a+1
.

Similarly, we bound the probability of events BernZ̄(h)c’s and Bern|Z̄|(h)c’s using Lemma 2.
Note that for all h ∈ HRev

hp ∪HDir
hp :

• CondZ̄(h):
d∏

k=1

hk ≥ condZ̄
(logn)a

n is satisfied for n large enough (when log n ≥ condZ̄
βr ).

So, we have

P (BernZ̄(h, j)c) ≤ 2e
− δ
‖f‖∞, U

(logn)a

.

• Moreover,

P
(
Bern|Z̄|(h, j)c

)
≤ 2e−Cγ|Z̄|n

∏d
k=1 hk ≤ 2e−Cγ|Z̄|β

r(logn)a+1

.

Therefore,

P
(
Echp
)
≤ P

(
Ãcn
)

+
∑
h∈Hhp

(
P
(
Bernf̄ (h)c

)
+ P

(
Bern|f̄ |(h)c

))

+
∑

h∈(HRev
hp ∪H

Dir
hp )

d∑
k=1

(
P (BernZ̄(h, k)c) + P

(
Bern|Z̄|(h, k)c

))
≤ e−(logn)1+a−1

2 +
∑
h∈Hhp

(
2e−(logn)a + 2e−Cγ|f |β

r(logn)a+1
)

+
∑

h∈(HRev
hp ∪H

Dir
hp )

d∑
k=1

(
2e
− δ
‖f‖∞, U

(logn)a

+ 2e−Cγ|Z̄|β
r(logn)a+1

)

≤ e−(logn)1+a−1
2

(
1 + 4

(
log 1

β
n
)r
e−(logn)

a−1
2 + 4d

(
log 1

β
n
)d
e
− δ
‖f‖∞, U

(logn)
a−1

2

)

≤ 2e−(logn)1+a−1
2 ,

for n large enough.

4.5 Proof of Proposition 4

We fix h ∈ Hhp and consider the event {ĥ = h} ∩ Ehp. Let (t1, . . . , td) ∈ Zd such that for all
k = 1 : d,

hk = βtkh0.

For fixed A and CA, we define t(A,CA) ∈ R such that

βt(A,CA)h0 = CA (log n)A n−
1

2s+r .

Using (3.1), observe that t(A,CA) > 0 (for n large enough). To simplify the notations, we
assume:

R = 1 : r

and
t1 ≥ t2 ≥ · · · ≥ tr. (4.16)
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4.5.1 Proof of Inequality (4.6)

The bias of f̄h(w) is denoted B̄h. Note that it does not depend on {hk}k∈Rc . Indeed, we have

B̄h : = E
[
f̄h(w)

]
− f(w)

=

∫
u∈Rd

Kh(u)
fXY (u)

fX(u1:d1)
du− f(w)

=

∫
u∈Rd

Kh(u)f(u)du− f(w)

=

∫
z∈Rd

(
d∏

k=1

K(zk)

)
[f(w − h · z)− f(w)] dz (4.17)

=

∫
z′∈Rr

(
r∏

k=1

K(z′k)

)[
fR
(
w1:r − h1:r · z′

)
− fR(w1:r)

]
dz′.

We consider the following disjunction of cases:

(Case A) R = ∅

(Case B) min
j∈R

tj ≥ t(A,CA)

(Case C) ∃j ∈ R, tj < t(A,CA).

Then we control the bias in each case.

(Case A) Assume R = ∅. In particular, f is constant on the neighborhood U . Note that for any
z ∈ supp (K)d, w − h · z ∈ U . We then derive from Equation (4.17):

B̄h = 0.

(Case B) Assume min
j∈R

tj ≥ t(A,CA). We apply 2. of Lemma 1

∣∣B̄h∣∣ ≤ CB̄
∑
j∈R

hsj = CB̄
∑
j∈R

(
βtjh0

)s
≤ CB̄ × r

(
βt(A,CA)h0

)s
= rCB̄CA

s (log n)As n−
s

2s+r

(Case C) Assume ∃j ∈ R, tj < t(A,CA). Then we consider

jA = min (j ∈ R : tj < t(A,CA)) .

In particular, for all j ≥ jA,

hj ≥ CA(log n)An−
1

2s+r . (4.18)

For the previously fixed bandwidth h (and its relevant deactivation times (t1, . . . , tr)),
we define the following intermediate bandwidths h(int,t), t ∈ R:

h
(int,t)
k =

{
βt∨tkh0 if k ∈ R
hk else.
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Then we decompose the bias by splitting f(w − h · z)− f(w) (note that h(int,tr) = h):

B̄h =

∫
z∈Rd

(
d∏

k=1

K(zk)

)
[f(w − h(int,t(A,CA)) · z)− f(w)

+ f(w − h(int,tjA ) · z)− f(w − h(int,t(A,CA)) · z)

+

r∑
j0=jA+1

f(w − h(int,tj0 ) · z)− f(w − h(int,tj0−1) · z)]dz

= B̄h(int,t(A,CA)) + (B̄
h

(int,tjA
) − B̄h(int,t(A,CA))) +

r∑
j0=jA+1

(
B̄
h

(int,tj0 ) − B̄
h

(int,tj0−1)

)
.

(4.19)

For the first term, note that h(int,t(A,CA)) satisfies the condition of (Case B), thus:∣∣B̄h(int,t(A,CA))

∣∣ ≤ rCB̄CAs (log n)As n−
s

2s+r . (4.20)

Let us now control the other terms. The same arguments are used to control the second
term B̄

h
(int,tjA

) − B̄h(int,t(A,CA)) or the terms in the sum B̄
h

(int,tj0 ) − B̄
h

(int,tj0−1) for j0 =

(jA + 1) : r. To shorten the proof, the followings lines are applied to the control of the
second term by identifying h(int,tjA−1) to h(int,t(A,CA)) by a slight abuse of notation.
Then, let us fix j0 ∈ {jA, . . . , r}. We consider the path between h(int,tj0−1)

j and h(int,tj0 )

j ,

namely for u ∈ [0, 1], we denote h[j0,u] := h(int,tj0−1) +u
(
h(int,tj0 ) − h(int,tj0−1)

)
. Remark

that, for any j = 1 : d,

h
(int,tj0 )

j − h(int,tj0−1)

j 6= 0⇒ (j ∈ R and tj ≤ tj0) .

Indeed, given the definition of h(int,t) for all t, each irrelevant component j keeps the
value hj . For j ∈ R, note that βtj∨tj0 6= βtj∨tj0−1 ⇒ tj ≤ tj0 .
Then, we introduce the function g : u ∈ [0, 1] 7→ f(w − h[j0,u] · z) (for a fixed z ∈ Rd).
In particular, using the above remark:

g′(u) =
∑
j∈R
tj≤tj0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
× zj∂jf(w − h[j0,u] · z).

Then we write:

f(w − h(int,tj0 ) · z)−f(w − h(int,tj0−1) · z)

= g(1)− g(0) =

∫ 1

u=0
g′(u)du

=
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
× zj∂jf(w − h[j0,u] · z)du.
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Hence, we obtain

B̄
h

(int,tj0 ) − B̄
h

(int,tj0−1) =

∫
z∈Rd

(
d∏

k=1

K(zk)

)
[f(w − h(int,tj0 ) · z)− f(w − h(int,tj0−1) · z)]dz

=
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)∫
z∈Rd

(
d∏

k=1

K(zk)

)
zj∂jf(w − h[j0,u] · z)dz du

=
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
E
[
Z̄h[j0,u],j

]
du, (4.21)

using Equation (5.4):

E
[
Z̄h[j0,u],j

]
=

∫
Rd

(
d∏

k=1

K(zk)

)
zj∂jf(w − h[j0,u] · z)dz.

Now the idea is to control
∣∣∣E [Z̄h[j0,u],j

]∣∣∣ with the test at the iteration tj on |Z
h(tj),j

|.

More precisely, we will first apply Assumption M to move from
∣∣∣E [Z̄h[j0,u],j

]∣∣∣ to∣∣∣E [Z̄
h(tj),j

]∣∣∣. Then, we will apply Bernstein’s inequality to convert the control on∣∣∣Z
h(tj),j

∣∣∣ to a control on
∣∣∣E [Z̄

h(tj),j

]∣∣∣.
Let us fix j ∈ R such that tj ≤ tj0 . We distinguish the cases where the component j is
deactivated during the Reverse Step or when it happens during the Direct Step.

Subcase (C.a) tj ≥ 0, i.e.: j is deactivated during the Direct Step.
Let us show h[j0,u] 4 h(tj):

• for k ∈ Rc, since h(int,tj0−1)

k = hk = h
(int,tj0 )

k ,

h
[j0,u]
k = hk.

Remember that the irrelevant components deactivate during the Reverse Step,
therefore they already have their final value during the Direct Step. Formally,
since tk < 0 ≤ tj , we have

h
[j0,u]
k = hk = βtkh0 = βtj∧tkh0 = h

(tj)
k .

• for k ∈ R, notice h(int,tj0−1) 4 h(int,tj0 ). Therefore:

h
[j0,u]
k ≤ h(int,tj0 )

k = βtj0∨tkh0

≤ βtj∧tkh0 = h
(tj)
k .

Then, we have proved h[j0,u] 4 h(tj). Using Assumption M:∣∣∣E [Z̄h[j0,u],j

]∣∣∣ ≤ ∣∣∣E [Z̄
h(tj),j

]∣∣∣ .
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Subcase (C.b) tj < 0, i.e.: j is deactivated during Reverse Step.
As well as h′ 7→ B̄h′ , h′ 7→ E

[
Z̄h′,j

]
is independent of the irrelevant components of

the bandwidth (see for instance Equation (5.4)).
Then we modify the irrelevant components of h[j0,u] and use the value of the irrel-
evant components of h(tj). Formally, we introduce the notation h{j0,u} such that

h
{j0,u}
k =

{
h

[j0,u]
k if k ∈ R
h

(tj)
k else,

so that:
E
[
Z̄h[j0,u],j

]
= E

[
Z̄h{j0,u},j

]
.

Now we just have to verify h{j0,u} 4 h(tj):

• for k ∈ Rc, by definition of h{j0,u}:

h
{j0,u}
k = h

(tj)
k

• for k ∈ R,

h
{j0,u}
k = h

[j0,u]
k

≤ h(int,tj0 )

k = βtj0∨tkh0

≤ βtj∨tkh0, since tj ≤ tj0 ,

≤ max
(
hk, β

tjh0

)
=: h

(tj)
k .

Then we have proved h{j0,u} 4 h(tj). Using Assumption M:∣∣∣E [Z̄h[j0,u],j

]∣∣∣ =
∣∣∣E [Z̄h{j0,u},j]∣∣∣ ≤ ∣∣∣E [Z̄h(tj),j

]∣∣∣ .
In each case (C.a and C.b), we have proved

∣∣∣E [Z̄h[j0,u],j

]∣∣∣ ≤ ∣∣∣E [Z̄
h(tj),j

]∣∣∣, then we apply
this inequality in Equation (4.21):∣∣∣B̄

h
(int,tj0 ) − B̄

h
(int,tj0−1)

∣∣∣ ≤ ∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄h[j0,u],j

]∣∣∣ du
≤
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄
h(tj),j

]∣∣∣ du
≤
∑
j∈R
tj≤tj0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄
h(tj),j

]∣∣∣ .
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Then, the previous decomposition of the bias (4.19) leads to:

∣∣B̄h∣∣ ≤ ∣∣B̄h(int,t(A,CA))

∣∣+
r∑

j0=jA

∣∣∣B̄
h

(int,tj0 ) − B̄
h

(int,tj0−1)

∣∣∣
≤ rCB̄CAs (log n)As n−

s
2s+r +

r∑
j0=jA

∑
j∈R
tj≤tj0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄
h(tj),j

]∣∣∣
≤ rCB̄CAs (log n)As n−

s
2s+r +

r∑
j=jA

∣∣∣E [Z̄
h(tj),j

]∣∣∣ j∑
j0=jA

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
≤ rCB̄CAs (log n)As n−

s
2s+r +

r∑
j=jA

∣∣∣E [Z̄
h(tj),j

]∣∣∣h(tj)
j ,

since the sum is telescoping, and by noticing that: h(int,tj)
j = h

(tj)
j .

Now, it remains to control
∣∣∣E [Z̄

h(tj),j

]∣∣∣ for j = jA : r using the test at the iteration tj
on Z

h(tj),j
:

1Ehp∩{ĥ=h}

∣∣∣E [Z̄
h(tj),j

]∣∣∣ ≤ 1ĥ=h

∣∣∣Z
h(tj),j

∣∣∣+ 1Ãn∩Bern|Z̄|(h
(tj),j)

∣∣∣Z
h(tj),j

− Z̄
h(tj),j

∣∣∣
+ 1BernZ̄(h(tj),j)

∣∣∣Z̄
h(tj),j

− E
[
Z̄
h(tj),j

]∣∣∣
By construction of the CDRodeo procedure, if ĥ = h, then j is deactivated at iteration
tj , in other words:

1Ehp∩{ĥ=h}

∣∣∣Z
h(tj),j

∣∣∣ ≤ λ
h(tj),j

.

We also apply:

• the definition of BernZ̄(h(tj), j):

1BernZ̄(h(tj),j)

∣∣∣Z̄
h(tj),j

− E
[
Z̄
h(tj),j

]∣∣∣ ≤ 1

2
λ
h(tj),j

,

• 1. of Lemma 3 (note in particular
∏d
k=1 h

(tj)
k ≤ 1):

1Ãn∩Bern|Z̄|(h
(tj),j)

∣∣∣Z
h(tj),j

− Z̄
h(tj),j

∣∣∣ = 1Ãn∩Bern|Z̄|(h
(tj),j)

∣∣∣∆
Z,h(tj)j

∣∣∣ ≤ 1

4
λ
h(tj),j

.

Therefore:

1Ehp∩{ĥ=h}

∣∣∣E [Z̄
h(tj),j

]∣∣∣ ≤ 1Ehp∩{ĥ=h}
7

4
λ
h(tj),j

.
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Hence:

1Ehp∩{ĥ=h}
∣∣B̄h∣∣ ≤ 1{ĥ=h}

rCB̄CAs (log n)As n−
s

2s+r +
r∑

j=jA

7

4
λ
h(tj),j

× h(tj)
j

 ,

≤ 1{ĥ=h}

rCB̄CAs (log n)As n−
s

2s+r +

r∑
j=jA

7Cλ(log n)a/2

4
(
n
∏d
k=1 h

(tj)
k

)1/2

 .

(4.22)

Then we control
∏d
k=1 h

(tj)
k using the same disjunction of subcases as above:

Subcase (C.a) tj ≥ 0. At the iteration tj ≥ 0, the Direct Step has begun, thus the Reverse Step is
over. Since h ∈ Hhp, the irrelevant components have already their final value: for
all k ∈ Rc,

1 ≥ h(tj)
k = hk = hirr > β.

Moreover, during the Direct Step, at iteration tj , all components are lower bounded
by the current active bandwidth value βtjh0, i.e.: for any k ∈ R,

h
(tj)
k ≥ βtjh0.

Recall that j ≥ jA, thus:
tj ≤ tjA ≤ t(A,CA).

It follows:
h

(tj)
k ≥ βt(A,CA)h0 = CA (log n)A n−

1
2s+r .

Therefore:
d∏

k=1

h
(tj)
k ≥ βd−r

(
CA (log n)A n−

1
2s+r

)r
.

Then the upper bound in Equation (4.22) becomes:

7Cλ(log n)a/2

4
(
n
∏d
k=1 h

(tj)
k

)1/2
≤ 7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2 n−
1
2(1− r

2s+r )

= 7Cλ
4β

d−r
2 CA

r
2

(log n)
a−Ar

2 n−
s

2s+r .

Subcase (C.b) tj < 0. At iteration tj , only iterations of the Reverse Step have been performed.
Thus, the current bandwidth has only been increased. Therefore:

7Cλ(log n)a/2

4
(
n
∏d
k=1 h

(tj)
k

)1/2
≤ 7Cλ(log n)a/2

4
(
nhd0

)1/2 .

Remark that h0’s lower bound (3.1) is exactly defined so, we have

7Cλ(log n)a/2

4
(
nhd0

)1/2 ≤ 7

4

(
(log n)a

n

) p
2p+1

.
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Note that n−
p

2p+1 is smaller than the minimax optimal rate for any regularity and
any sparsity structure (except for the degenerate case where r = 0 and which is
solved separately: cf (Case A)):

n
− p

2p+1 = min
1≤r′≤d
1≤s′≤p

(
n
− s′

2s′+r′

)
.

When we reunite the two subcases, Inequality (4.22) becomes:

1Ehp∩{ĥ=h}
∣∣B̄h∣∣ ≤ rCB̄CAs (log n)As n−

s
2s+r

+ r ×max

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
,

which concludes the proof of Inequality (4.6)

4.5.2 Proof of Inequality (4.7)

Let us now prove the second inequality (4.7). By definition: Ehp ⊂ Bernf̄ (h). Thus, we have

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ σh := Cσ

√
(log n)a

n
∏d
k=1 hk

.

Two cases occur: in the first case, the deviation is controlled by a concentration inequality; in
the second case, we control the deviation by EZhj thanks to the tests on the Zhj ’s.

1. max
k∈R

tk ≤ t(A,CA). Then, ∀k ∈ R:

hk = βtkh0 > βt(A,CA)h0 = CA(log n)An−
1

2s+r .

Besides, for k ∈ Rc:
hk = hirr > β.

Therefore:

σh ≤ Cσ

√√√√ (log n)a

nβd−r
(
CA(log n)An−

1
2s+r

)r = Cσ
β(d−r)/2CA

r/2 (log n)(a−Ar)/2n−
s

2s+r .

2. max
k∈R

tk > t(A,CA). First remark that for any k = 1 : d,

σh =
Cσ
Cλ

hk λhk.

Hence, it suffices to control the threshold in order to bound the deviation. Let us consider
j0 ∈ arg maxk∈R tk (actually assuming (4.16) means that j0 = 1). In particular, when
ĥ = h, the component j0 is deactivated during the last iteration, and during the Direct
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Step (recall that t(A,CA) > 0). Let us consider the penultimate iteration, i.e. Iteration
tj0 − 1. At this iteration, j0 is not deactivated, i.e.:

1ĥ=h

∣∣∣Z
h

(tj0
−1)

j0

∣∣∣ > 1ĥ=hλh(tj0
−1)

j0
.

Then we use 1. of Lemma 3. Note that
∏d
k=1 h

(tj0−1)

k ≤ 1, thus:

1Ehp

∣∣∣∆
Z,h

(tj0
−1)

j0

∣∣∣ ≤ 1

4
λ
h

(tj0
−1)

j0
.

Remember the definition of BernZ̄(h, j), thus

1Ehp

∣∣∣Z̄
h

(tj0
−1)

j0
− E

[
Z̄
h

(tj0
−1)

j0

]∣∣∣ ≤ 1

2
λ
h

(tj0
−1)

j0
.

Therefore:
1{ĥ=h}∩Ehp

∣∣∣E [Z̄
h

(tj0
−1)

j0

]∣∣∣ > 1{ĥ=h}∩Ehp

1

4
λ
h

(tj0
−1)

j0
. (4.23)

Let us compare h(tj0−1) to h. Recall h = h(tj0 ), since tj0 is the final iteration of our
algorithm. We have:

• for k ∈ Rc, h(tj0−1)

k = hk. Indeed, tk < 0, hence the components k have been
deactivated before Iteration tj0 − 1, and have the same value for the last two
iterations.

• for k ∈ R, hk ≥ βh
(tj0−1)

k . Indeed, at worst, the component k was active during
Iteration tj0 − 1 and have been multiplied by β.

Therefore:
d∏

k=1

hk ≥ βr
d∏

k=1

h
(tj0−1)

k

and

hj0λhj0 = Cλ

√
(log n)a

n
∏d
k=1 hk

≤ β−
r
2h

(tj0−1)

j0
λ
h

(tj0
−1)

j0
.

To summarize, we have

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehp
σh = 1{ĥ=h}∩Ehp

Cσ
Cλ

hj0λhj0

≤ 1{ĥ=h}∩Ehp
β−

r
2
Cσ
Cλ

h
(tj0−1)

j0
λ
h

(tj0
−1)

j0

≤ 1{ĥ=h}∩Ehp
4β−

r
2
Cσ
Cλ

h
(tj0−1)

j0

∣∣∣E [Z̄
h

(tj0
−1)

j0

]∣∣∣ .
Then we apply 2. of Lemma 2:∣∣∣E [Z̄

h
(tj0
−1)

j0

]∣∣∣ ≤ CEZ̄
(
h

(tj0−1)

j0

)s−1
.
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Therefore:

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehp
4β−

r
2
Cσ
Cλ

h
(tj0−1)

j0
× CEZ̄

(
h

(tj0−1)

j0

)s−1

≤ 4CEZ̄Cσβ
− r2

Cλ

(
βtj0−1h0

)s
=

4CEZ̄Cσβ
− r2−s

Cλ

(
βtj0h0

)s
≤ 4CEZ̄Cσβ

− r2−s

Cλ

(
βt(A,CA)h0

)s
=

4CEZ̄Cσβ
− r2−s

Cλ

(
CA(log n)An−

1
2s+r

)s
=

4CA
sCEZ̄Cσβ

− r2−s

Cλ
(log n)sAn−

s
2s+r .

Reuniting the two cases, we obtain Inequality (4.7):

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehp
σh

≤ max

(
Cσ

βd−rCA
r/2 (log n)(a−Ar)/2,

4CA
sCEZ̄Cσβ

− r2−s

Cλ
(log n)sA

)
n−

s
2s+r .

4.6 Proof of Proposition 2

Let us evaluate the number of operations of our procedure. During the Reverse Step, each
bandwidth of Act(−1) can be multiplied by β−1 several times until the loop condition is
achieved:

(Act(t) 6= ∅)&(max ĥ
(t)
k ≤ β).

In particular, max ĥ
(t)
k ≤ 1. Since ĥ(t)

k = h0β
−|tk|,

|tk| = log

(
ĥ

(t)
k

h0

)
/ log

(
β−1

)
≤ log(h−1

0 )

log(β−1)
= O

(
log(n)

d(2p+ 1)

)

using the lower bound on h0 (3.1). Thus, during this Reverse Step, note that only |Act(−1)|
components are updated and:

• the number of updates of the Zhj ’s is of order
|Act(−1)|
d(2p+1) log(n) given the above remark,

• the computation of the Zhj ’s and the comparison to the threshold cost O(|Act(−1)|n)
operations.

Therefore at worst, there are O
(
|Act(−1)|2

d log(n)n
)
operation during the Reverse Step.

For the Direct Step, the stopping condition is
(

d∏
k=1

ĥ
(t)
k > (logn)1+a

n

)
, which is satisfied for

the penultimate iteration, hence:

d∏
k=1

ĥk > βd
(log n)1+a

n
,

We denote tk the deactivation times of ĥ, then

hd0β
∑d
k=1 tk > βd

(log n)1+a

n
,
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which gives
d∑

k=1

tk <
log(β−d(log n)−(1+a)nhd0)

log(1/β)
.

Thus, during the Direct Step, note that only |Act(0)| components are updated and

• the total number of updates of the Zhj ’s is of order log 1
β

(n) given the above remark,

• the computation of the Zhj ’s and the comparison to the threshold cost O(|Act(0)|n)
operations.

Therefore at worst, there are O(|Act(−1)| log(n)n) operations during the Direct Step. Using
|Act(−1)|+ |Act(0)| ≤ d, the sum of these two steps leads to the proposition.

5 Appendix

5.1 Lemmas

The following lemmas are mainly proved in Nguyen (2018). Note that some adjustments have
been made from their initial versions. In particular, we have refined points 2. of Lemma 1
and of Lemma 2 to take into account the extension of our results to Hölder smoothness.
In the sequel, we only prove results of subsequent lemmas which were not established in
Nguyen (2018).

Lemma 1 (Lemma 5 of Nguyen (2018): f̄h(w) behaviour). Under Assumption LX , for any
bandwidth h ∈ (0, 1]d, and any i = 1 : n,

1. Let CĒ := ‖f‖∞, U‖K‖d1. Then∣∣Ef̄h1(w)
∣∣ ≤ E

∣∣f̄h1(w)
∣∣ ≤ CĒ.

2. If f has only r relevant components R and belongs to Hd(s, L) and if the order p of the
kernel K is larger than or equal to s,∣∣B̄h∣∣ ≤ CB̄

∑
k∈R

hsk, (5.1)

with CB̄ > 0 a constant only depending on L, s and K.

3. Let Bernf̄ (h) := {|f̄h(w) − E[f̄h(w)]| ≤ σh}, where σh := Cσ
√

(logn)a

n
d∏
k=1

hk

with Cσ =

2‖K‖d2‖f‖
1
2
∞, U

δ
1
2

. If Cond(h):
d∏

k=1

hk ≥ 4‖K‖2d∞
9δ2C2

σ

(logn)a

n is satisfied, then:

P
(
Bernf̄ (h)c

)
≤ 2e−(logn)a .

4. Let Bern|f̄ |(h) := {
∣∣∣∣ 1
n

n∑
i=1
|f̄hi(w)| − E[|f̄h(w)|]

∣∣∣∣ ≤ CĒ}. Then

P
(
Bern|f̄ |(h)c

)
≤ 2e−Cγ|f |n

∏d
k=1 hk ,
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with Cγ|f | := min
(

CĒ
2

Cσ2 ;
3δCĒ

4‖K‖d∞

)
.

Lemma 2 (Lemma 6 of Nguyen (2018): Z̄hj behaviour). If K is chosen as in Section 3.1,
and under Assumption LX , for any j ∈ {1, . . . , d} and any bandwidth h ∈ (0, h0]d, we have
the following results.

1. Let CE|Z̄| := ‖f‖∞, U‖J‖1‖K‖d−1
1 . We have

E|Z̄h1j | ≤ CE|Z̄|h
−1
j .

2. If f has only r relevant components R, for j /∈ R:

EZ̄hj = 0,

and if in addition f belongs to Hd(s, L), for j ∈ R:

|E[Z̄h,j ]| ≤ CEZ̄h
s−1
j , (5.2)

where CEZ̄ :=
(∫
|zsK(z)|dz

) ‖K‖r−1
1 L

(s−1)! denoting (s−1)! := (s−q+1)(s−q+2) . . . (s−1).

3. Let BernZ̄(h, j) := {|Z̄hj − EZ̄hj | ≤ 1
2λhj}. If the bandwidth satisfies:

CondZ̄(h):
d∏

k=1

hk ≥ condZ̄
(logn)a

n , with condZ̄ := 4‖J‖2∞‖K‖
2(d−1)
∞

32‖f‖∞, U‖J‖22‖K‖
2(d−1)
2

,

then:
P (BernZ̄(h, j)c) ≤ 2e

− δ
‖f‖∞, U

(logn)a

.

4. Let Bern|Z̄|(h, j) := {| 1n
n∑
i=1
|Z̄hij | − E|Z̄h1j || ≤ CE|Z̄|h

−1
j }. Then,

P
(
Bern|Z̄|(h, j)c

)
≤ 2e−Cγ|Z̄|n

∏d
k=1 hk ,

with Cγ|Z̄| := min

(
δC2

E|Z̄|

4‖f‖∞, U‖J‖22‖K‖
2(d−1)
2

;
3δCE|Z̄|

4‖K‖d−1
∞ ‖J‖∞

)
.

Lemma 3. For any h ∈ HRev
hp ∪ HDir

hp and any component j ∈ {1 : d}, under Assumptions

LXand EfX , if

√
d∏

k=1

hk ≤ 1, then

1. we have:
1Bern|Z̄|(hj)∩Ãn

|∆Z,hj | ≤
1

4
λhj

2. for CM∆ :=
4MXCĒ
δCσ :

1Ãn∩Bern|f̄ |(h)
|∆h| ≤ CM∆σh.

Lemma 4 (Taylor’s theorem). Let g : [0, 1]→ R be a function of class Cq. Then we have:

g(1)− g(0) =

q∑
l=1

g(l)(0)

l!
+

∫ 1

t1=0

∫ t1

t2=0
. . .

∫ tq−1

tq=0
(g(q)(tq)− g(q)(0))dtqdtq−1 . . . dt1.
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5.2 Proof of Inequality (5.1) in Lemma 1

We recall that the notation · means the multiplication term by term of two vectors, then we
have:

B̄h = Ef̄h(w)− f(w) =

∫
u∈Rd

(
d∏

k=1

K(h−1
k (wk − uk))

hk

)
f(u)du− f(w)

=

∫
z∈Rd

(
d∏

k=1

K(zk)

)
(f(w − h · z)− f(w))dz.

For any z ∈ Rd, let us introduce the notations z0 := w and for k = 1, . . . , d, zk := w −∑k
j=1 hjzjej , where {ej}dj=1 is the canonical basis of Rd. Then, we write:

f(w − h.z)− f(w) =
d∑

k=1

f(zk)− f(zk−1) =
∑
k∈R

f(zk)− f(zk−1),

since for k /∈ R, f(zk) − f(zk−1) = 0. We apply Taylor’s theorem (cf Lemma 4) to the
functions gk : t ∈ [0, 1] 7→ f(zk−1 − thkzkek), k ∈ R:

f(zk)− f(zk−1) = gk(1)− gk(0) =

q∑
l=1

(-zkhk)l

l!
∂lkf(zk−1) + Jk,

where we recall that q is the largest integer smaller than s and with

Jk :=

∫
0≤tq≤···≤t1≤1

(
g

(q)
k (tq)− g(q)

k (0)
)
dt1:q

= (-hkzk)q
∫

0≤tq≤···≤t1≤1

(
∂qkf(zk−1 − tqhkzkek)− ∂qkf(zk−1)

)
dt1:q.

We denote Ik :=
∫
z∈Rd

(
d∏

k′=1

K(zk′)

)
Jkdz and for any z ∈ Rd, we denote z−k ∈ Rd−1 the

vector z without its kth variable, then we obtain:

B̄h =
∑
k∈R

∫
z∈Rd

(
d∏

k′=1

K(zk′)

)(
Jk +

q∑
l=1

(-hk)l

l!
∂lkf(zk−1)zlk

)
dz

=
∑
k∈R

(
Ik +

q∑
l=1

IIk,l

)
,

where

IIk,l : =

∫
z−k∈Rd−1

∏
k′ 6=k

K(zk′)

 (-hk)l

l!
∂lkf(zk−1)

∫
zk∈R

zlkK(zk)dzkdz−k

=
(-hk)l

l!

∫
z−k∈Rd−1

∂lkf(zk−1)

∏
k′ 6=k

K(zk′)

 dz−k ×
∫
t∈R

tlK(t)dt = 0,
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since K is of order p ≥ s > q. So,

B̄h =
∑
k∈R

Ik.

Now we control |Jk|:

|Jk| ≤ |hkzk|q
∣∣∣∣∣
∫

0≤tq≤···≤t1≤1

[
∂qkf(zk−1 − tqhkzkek)− ∂qkf(zk−1)

]
dt1:q

∣∣∣∣∣
≤ |hkzk|q

∫
0≤tq≤···≤t1≤1

L|tqhkzk|s−qdt1:q =
L(hk|zk|)s

s(s− 1) . . . (s− q)
.

So:

|Ik| =

∣∣∣∣∣
∫
z∈Rd

(
d∏

k′=1

K(zk′)

)
Jkdz

∣∣∣∣∣ ≤ L‖K‖d−1
1 ‖(·)sK(·)‖1

s(s− 1) . . . (s− q)
hk

s.

Finally, ∣∣B̄h∣∣ ≤ CB̄
∑
k∈R

hsk, (5.3)

with CB̄ :=
L‖K‖d−1

1 ‖(·)sK(·)‖1
s(s−1)...(s−q) .

5.3 Proof of Inequality (5.2) in Lemma 2

Let j ∈ R. Denoting J : R→ R the function t 7→ tK ′(t) +K(t), we can write

Z̄h,j =
1

n

n∑
i=1

−J(
wj−Wij

hj
)
∏
k 6=j

K(wk−Wik
hk

)

fX(Xi)hj
∏d
k=1 hk

.

Then, taking the expectation,

E[Z̄hj ] = − 1

hj

∫
Rd
J(zj)

∏
k 6=j

K(zk)

 f(w − h · z)dz.

To simplify the notations, we assume R = {1, . . . , r}. Then, by integration by part

E[Z̄h,j ] =

∫
Rd

(zjK(zj))

∏
k 6=j

K(zk)

 ∂jf(w − h · z)dz

=

∫
Rr

(∏
k∈R

K(zk)

)
zj∂jfR(w1:r − (h.z)1:r)dz1:r, (5.4)

where fR is the restriction of f to the first r components (remember that for any u ∈ Rr and
any v ∈ Rd−r fR(u) := fR(u, v) does not depend on v). Let us denote by Gj,z,h : [0, 1] → R
the function

t 7→ ∂jfR(w1 − h1z1, . . . , wj − thjzj , . . . , wr − hrzr).
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Then

E[Z̄h,j ] =

∫
Rr

(∏
k∈R

K(zk)

)
zjGj,z,h(1)dz1:r

=

∫
Rr

(∏
k∈R

K(zk)

)
zj{Gj,z,h(1)−Gj,z,h(0)}dz1:r,

since the order p of K satisfies: p ≥ s > q ≥ 1. Next we use the Taylor expansion given by
Lemma 4:

Gj,z,h(1)−Gj,z,h(0) =

q−1∑
l=1

G
(l)
j,z,h(0)

l!
+R′j,z,h,q−1, (5.5)

where R′j,z,h,q−1 :=
∫ 1
t1=0

∫ t1
t2=0 . . .

∫ tq−2

tq−1=0(G
(q−1)
j,z,h (tq−1)−G(q−1)

j,z,h (0))dtq−1dtq−2 . . . dt1. But

G
(l)
j,z,h(t) = (-hjzj)l∂l+1

j fR(w1 − h1z1, . . . , wj − thjzj , . . . , wr − hrzr).

Then, the first q−1 terms in the r.h.s. of (5.5) vanish since
∫
zl+1
j K(zj)dzj = 0. Now, we will

bound the integral remainder of (5.5). Using that f belongs to Hd(s, L), for all t ∈ [0, 1],∣∣∣G(q−1)
j,z,h (t)−G(q−1)

j,z,h (0)
∣∣∣ ≤ |hjzj |q−1L|thjzj |s−q,

since w − h · z + (1− t)hjzjej ∈ U . Hence

|R′j,z,h,q−1| ≤
∫ 1

t1=0

∫ t1

t2=0
. . .

∫ tq−2

tq−1=0

∣∣∣G(q−1)
j,z,h (tq−1)−G(q−1)

j,z,h (0)
∣∣∣ dtq−1dtq−2 . . . dt1

≤ L(hj |zj |)s−1

∫ 1

t1=0

∫ t1

t2=0
. . .

∫ tq−2

tq−1=0
ts−qq−1dtq−1dtq−2 . . . dt1 =

L(hj |zj |)s−1

(s− 1)!
,

denoting (s− 1)! := (s− q + 1)(s− q + 2) . . . (s− 1). Finally,

|E[Z̄h,j ]| =

∣∣∣∣∣
∫
Rr

(∏
k∈R

K(zk)

)
zjR

′
j,z,h,q−1dz1:r

∣∣∣∣∣ ≤
∫
Rr

(∏
k∈R
|K(zk)|

)
|zj |

L(hj |zj |)s−1

(s− 1)!
dz1:r

≤
Lhs−1

j

(s− 1)!

 ∏
k∈R\{j}

‖K‖1

∫
R
|zj |s|K(zj)|dz1:r ≤ CEZ̄h

s−1
j ,

denoting CEZ̄ :=
(∫

R |z|
s|K(z)|dz

)
‖K‖r−1

1 L/(s− 1)!.

5.4 Proof of Lemma 3

Before establishing the upper bounds, let us control 1Ãn

∥∥∥ fX−f̃X
f̃X

∥∥∥
∞, U1

. First, using Assump-

tion LX :
δ := inf

u∈U1

fX(u) > 0,

35



remark that: for any u ∈ U1,

1Ãn f̃X(u) ≥ 1Ãn

(
fX(u)− ‖fX − f̃X‖∞,U1

)
≥ 1Ãn

(
δ −MX

(log n)
a
2

√
n

)
by Condition (ii),

≥ 1Ãn
δ

2
(for n large enough).

Therefore:
δ̃X := inf

u∈ U1

f̃X(u) ≥ 1Ãn
δ

2
,

which leads to:

1Ãn

∥∥∥∥∥ fX − f̃X

f̃X

∥∥∥∥∥
∞, U1

≤ 1Ãn

∥∥∥fX − f̃X

∥∥∥
∞, U1

δ̃X

≤ 2MX

δ

(log n)a/2

n1/2
. (5.6)

Let us now prove the first upper bound.

1. We still denote, for any bandwidth h, any component k and any observation i,

Z̄hik :=
∂

∂hk

(
Kh(w −Wi)

fX(Xi)

)
,

such that Z̄hk = 1
n

n∑
i=1

Z̄hik, with {Z̄hik}ni=1 i.i.d.. Then we can write:

∆Z,hk := Zhk − Z̄hk =
1

n

n∑
i=1

(
fX
f̃X

(Xi)− 1
)
Z̄hik =

1

n

n∑
i=1

(
fX−f̃X

f̃X
(Xi)

)
Z̄hik.

Note that since K is compactly supported, if Xi /∈ U1,

Z̄hik = 0.

Hence:

|∆Z,hk| ≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

× 1

n

n∑
i=1

|Z̄hik|

≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

×

(
E
[∣∣Z̄h1k

∣∣]+
1

n

n∑
i=1

∣∣Z̄hik∣∣− E
[∣∣Z̄hik∣∣]

)
.

Using the above Inequality (5.6) and the upper bounds 1. and 4. of Lemma 2:

1Ãn∩Bern|Z̄|(h,k)
|∆Z,hk| ≤

(
2MX

δ

(log n)a/2

n1/2

)
× 2CE|Z̄|h

−1
k

≤ 1

4
λh,k :=

Cλ
4

(log n)a/2

n1/2hk

(
d∏

k′=1

hk′

)1/2
,
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if
(

d∏
k′=1

hk′

)1/2

≤ δCλ
16MXCE|Z̄|

. Note that MX is determined in order to satisfy:

δCλ
16MXCE|Z̄|

= 1.

Hence the condition on the bandwidth becomes:(
d∏

k′=1

hk′

)1/2

≤ 1.

2. We still denote, for any bandwidth h and any observation i,

f̄hi(w) :=
Kh(w −Wi)

fX(Xi)
,

such that f̄h(w) = 1
n

n∑
i=1

f̄hi(w), with {f̄hi(w)}ni=1 i.i.d. Then we can write:

∆h := f̂h(w)− f̄h(w) =
1

n

n∑
i=1

(
fX
f̃X

(Xi)− 1
)
f̄hi(w) =

1

n

n∑
i=1

(
fX−f̃X

f̃X
(Xi)

)
f̄hi(w).

Note that since K is compactly supported, if Xi /∈ U1,

f̄hi(w) = 0.

Hence:

|∆h| ≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

× 1

n

n∑
i=1

|f̄hi(w)|

≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

×

(
E
[∣∣f̄h1(w)

∣∣]+
1

n

n∑
i=1

∣∣f̄hi(w)
∣∣− E

[∣∣f̄hi(w)
∣∣]) .

Using the above Inequality (5.6) and the upper bounds 1. and 4. of Lemma 1:

1Ãn∩Bern|f̄ |(h)
|∆h| ≤

(
2MX

δ

(log n)a/2

n1/2

)
× 2CĒ

=
4MXCĒ
δCσ

σh

(
d∏

k′=1

hk′

)1/2

≤ CM∆σh.

5.5 Proof of Proposition 1

The proof is very similar to the Proposition 1 of (Nguyen, 2018). The main modification is
due to the tighter log exponent in Condition (ii) and the enlarged neighborhood U1 of x.
We introduce the classical kernel density estimator f̃KX : for any u ∈ Rd1 and a bandwidth
hX ∈ R∗+ to be specified later,

f̃KX(u) :=
1

nX .h
d1
X

nX∑
i=1

d1∏
j=1

K

(
uj − X̃ij

hX

)
, (5.7)
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whereK : R→ R is a kernel which is compactly supported, of class C1 and of order pX ≥ d1
2(c−1) ,

where we recall that c > 1 is defined by nX = nc. We first show that there exists CX > 0
such that for any ξ > 0:

P

(
‖fX − f̃KX‖∞, U1 > CX

(log n)
1+ξ

2

√
n

)
≤ O

(
nd1+1
X exp

(
−(log n)1+ξ

))
. (5.8)

Then we set
f̃X ≡ f̃KX ∨ n−

1
2 ,

and we shall prove that this estimator satisfies Condition (i) and Condition (ii) for f̃X .

Let us prove Inequality (5.8). Let us first explicit f̃KX ’s behaviour. Following Lemma 5
gives a pointwise concentration inequality and a control of the bias of f̃KX on U1. We introduce
an enlarged neighborhood of U1:

U ′1 :=
{
u′ = u− hXz : u ∈ U1, z ∈ supp(K)

}
.

Lemma 5 (̃fKX behaviour). The estimator f̃KX satisfies the following results:

1. If there exists qX ∈ N such that fX is CqX on U ′1 and such that K has qX − 1 zero
moments, then there exists a positive constant C′biasX such that∥∥∥Ef̃KX − fX

∥∥∥
∞, U1

≤ C′biasXh
qX
X .

2. For any ξ > 0, any u ∈ U1 and any λ > 0 such that:

4CvarX
(log n)1+ξ

nXh
d1
X

≤ λ2 ≤ 9CvarX
2

‖K‖2d1∞
,

where CvarX := ‖K‖d1
2 ‖fX‖

1
2

∞, U ′1
,

P
(∣∣∣̃fKX(u)− Ef̃KX(u)

∣∣∣ > λ
)
≤ 2 exp

(
−(log n)1+ξ

)
.

This lemma is proved in Section 5.6.

We define p′X = min(p′, pX), so that: fX is of class Cp′X and the first p′X − 1 moments of
K vanish. Therefore, we can apply 1. of Lemma 5:∥∥∥Ef̃KX − fX

∥∥∥
∞, U1

≤ C′biasXh
p′X
X .

Therefore: ∥∥∥f̃KX − fX

∥∥∥
∞, U1

≤
∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

+
∥∥∥Ef̃KX − fX

∥∥∥
∞, U1

≤
∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

+ C′biasXh
p′X
X ,
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and we have for any threshold λ:

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ P

(∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

≥ λ− C′biasXh
p′X
X

)
. (5.9)

We have then reduced the problem to a concentration inequality of f̃KX in sup norm. In order
to move from a supremum on U1 to a maximum on a finite set of elements of U1, let us
construct an ε-net {u(l)}l of U1, in the meaning that for any u ∈ U1, there exists l such that
‖u− u(l)‖∞ := max

k=1:d1

|uk − u(l)k| ≤ ε. We denote A > 0 such that:

supp(K) ∪ supp(K) ⊂
[
−A

2 ,
A
2

]
.

Set N(ε) is the smallest integer such that 2εN(ε) ≥ A, and for l ∈ {1 : N(ε)}d1 , u(l) such that
its j-th component is equal to:

u(l)j := xj −
A

2
+ (2lj − 1)ε.

Then {u(l)}l∈{1:N(ε)}d1 is an ε-net of U1.

Therefore in order to obtain Inequality (5.8), we only need to obtain the concentration
inequality for each point of {u(l) : l ∈ (1 : N(ε))d1} and to control the difference of the function
f̃KX − Ef̃KX evaluated at the point u and at the nearest point of u in the ε-net. More formally,
we have to control the following supremum

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− Ef̃KX(u)− f̃KX(u(l)) + Ef̃KX(u(l))
∣∣∣ .

For this purpose, we obtain (from Taylor’s Inequality): for any u, v ∈ Rd1 ,∣∣∣∣∣
d1∏
k=1

K(uk)−
d1∏
k=1

K(vk)

∣∣∣∣∣ ≤ d1‖K′‖∞‖K‖d1−1
∞ ‖u− v‖∞.

Therefore, for any u, v ∈ U1:∣∣∣̃fKX(u)− f̃KX(v)
∣∣∣ ≤ 1

nX .h
d1
X

nX∑
i=1

∣∣∣∣∣
d1∏
k=1

K(uk−X̃ikhX
)−

d1∏
k=1

K(vk−X̃ikhX
)

∣∣∣∣∣
≤ d1‖K′‖∞‖K‖d1−1

∞
‖u− v‖∞
hd1+1
X

.

Since {u(l) : l ∈ (1 : N(ε))d1} is an ε-net of U1:

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− f̃KX(u(l))
∣∣∣ ≤ d1‖K′‖∞‖K‖d1−1

∞
ε

hd1+1
X

,

and also:

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣Ef̃KX(u)− Ef̃KX(u(l))
∣∣∣ ≤ d1‖K′‖∞‖K‖d1−1

∞
ε

hd1+1
X

.
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Therefore:

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− Ef̃KX(u)− f̃KX(u(l)) + Ef̃KX(u(l))
∣∣∣ ≤ 2d1‖K′‖∞‖K‖d1−1

∞
ε

hd1+1
X

.

We denote Cdiff := 2d1‖K′‖∞‖K‖d1−1
∞ . We then obtain the following inequality:∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

≤ max
l∈(1:N(ε))d1

∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣

+ sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− Ef̃KX(u)− f̃KX(u(l)) + Ef̃KX(u(l))
∣∣∣

≤ max
l∈(1:N(ε))d1

∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣+ Cdiff

ε

hd1+1
X

.

Then the inequality (5.9) becomes: for any threshold λ,

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ P

(∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

≥ λ− C′biasXh
p′X
X

)
≤ P

(
max

l∈(1:N(ε))d1

∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣ ≥ λ− C′biasXh

p′X
X − Cdiff

ε

hd1+1
X

)

≤ N(ε)d1 max
l∈(1:N(ε))d1

P

(∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣ ≥ λ− C′biasXh

p′X
X − Cdiff

ε

hd1+1
X

)
.

(5.10)

It then remains to apply 2. of Lemma 5 for each u(l), l ∈ (1 : N(ε))d1 . We set the following
settings:

• hX := n
− c−1
c.d1

X ;

• ε := h
1+

d1
2

X n
− 1

2
X ;

• λ := 2λX , where λX is defined by:

λX := 2
√

CvarX (log n)
1+ξ

2 h
− d1

2
X n

− 1
2

X = 2
√

CvarX (log n)
1+ξ

2 n
− 1

2c
X ,

where we recall that CvarX := ‖K‖d1
2 ‖fX‖

1
2

∞, U ′1
.

In particular, since we take pX ≥ d1
2(c−1) and we assume p′ ≥ d1

2(c−1) , then p
′
X = min(p′, pX) ≥

d1
2(c−1) . Hence we obtain for n large enough:

C′biasXh
p′X
X = C′biasXn

− p
′
X (c−1)

c.d1
X

≤ C′biasXn
− 1

2c
X

≤ 1

2
λX =

√
CvarX (log n)

1+ξ
2 n
− 1

2c
X .
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and also, since c > 1:

Cdiff
ε

hd1+1
X

= Cdiffh
− d1

2
X n

− 1
2

X = Cdiff n
− 1

2c
X

≤ 1

2
λX =

√
CvarX (log n)

1+ξ
2 n
− 1

2c
X .

Hence, we have
λ− C′biasXh

p′X
X − Cdiff

ε

hd1+1
X

≥ λX ,

and the inequality (5.10) becomes:

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ N(ε)d1 max

l∈(1:N(ε))d1
P
(∣∣∣̃fKX(u(l))− Ef̃KX(u(l))

∣∣∣ ≥ λX) (5.11)

We apply 2. of Lemma 5: we verify (since nX = nc)

4CvarX
(log n)1+ξ

nXh
d1
X

= λ2
X = 4CvarX (log n)1+ξn−1

≤ 9CvarX
2

‖K‖2d1∞
, (for n large enough),

then we obtain

P
(∣∣∣̃fKX(u(l))− Ef̃KX(u(l))

∣∣∣ > λX

)
≤ 2 exp

(
−(log n)1+ξ

)
.

Thus the inequality (5.11) becomes:

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ 2N(ε)d1 exp

(
−(log n)1+ξ

)
. (5.12)

Let us control 2N(ε)d1 :

2N(ε)d1 = 2

⌈
A

2ε

⌉d1

= 2

 A

2h
1+

d1
2

X n
− 1

2
X


d1

= o
(
nd1+1
X

)
Therefore, we have obtained the desired concentration inequality (5.8). Now we consider
f̃X ≡ f̃KX ∨ n−1/2, therefore f̃X satisfies Condition (i). Let us show it also satisfies Condition
(ii), for n large enough. We first show:{∥∥∥f̃KX − fX

∥∥∥
∞, U1

< λ

}
⇒

{∥∥∥f̃X − fX

∥∥∥
∞, U1

< λ

}
. (5.13)

Assume that for any u ∈ U1,
∣∣∣̃fKX(u)− fX(u)

∣∣∣ < λ. Let us fix u ∈ U1. Three cases occurs:

(a) When f̃KX(u) ≥ n−
1
2 , then f̃X(u) := f̃KX(u), and obviously:∣∣∣̃fX(u)− fX(u)

∣∣∣ < λ.
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(b) When f̃KX(u) < n−
1
2 and fX(u) ≥ n−

1
2 , then since f̃X(u) = n−

1
2 > f̃KX(u),∣∣∣̃fX(u)− fX(u)

∣∣∣ ≤ ∣∣∣̃fKX(u)− fX(u)
∣∣∣ < λ.

(c) When f̃KX(u) < n−
1
2 and fX(u) < n−

1
2 , then f̃X(u) = n−

1
2 , so for n large enough:∣∣∣̃fX(u)− fX(u)

∣∣∣ ≤ n− 1
2 < λ.

Therefore these three cases show Implication (5.13), and thus, from Equation (5.12), we obtain:

P
(∥∥∥f̃X − fX

∥∥∥
∞, U1

≥ λ
)
≤ P

(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ 2N(ε)d1 exp

(
−(log n)1+ξ

)
.

Now, to obtain Condition (ii), for ξ such that 1 + a−1
2 < 1 + ξ < a,

λ = 4
√

CvarX (log n)
1+ξ

2 n−
1
2 ≤MX(log n)

a
2n−

1
2 (for n large enough). (5.14)

Therefore:

P
(∥∥∥f̃X − fX

∥∥∥
∞, U1

≥MX(log n)
a
2n−

1
2

)
≤ P

(∥∥∥f̃X − fX

∥∥∥
∞, U1

≥ λ
)

≤ 2N(ε)d1 exp
(
−(log n)1+ξ

)
≤ exp

(
−(log n)1+a−1

2

)
,

that is Condition (ii).

5.6 Proof of Lemma 5

The result 1. of Lemma 5 is proved in Lemma 4 of Nguyen (2018). To prove 2. of Lemma 5,
let us fix ξ > 0. Then, we simply apply Bernstein’s Inequality (see Lemma 10 in Nguyen
(2018)). We define for any u ∈ U1 and for i = 1 : n

f̃KX,i(u) :=
1

hd1
X

d1∏
j=1

K

(
uj − X̃ij

hX

)
.

Observe that the f̃KX,i(u)’s are i.i.d. Then we pick up the following bounds from (Nguyen,
2018, p. 23): ∣∣∣̃fKX,1(u)

∣∣∣ ≤ MhX := ‖K‖d1
∞h
−d1
X .

Var
(

f̃KX,1(u)
)
≤ vhX := CvarXh

−d1
X ,

(we recall CvarX := ‖K‖2d1
2 ‖fX‖∞, U ′1). Therefore: for any λ > 0,

P
(∣∣∣̃fKX(u)− Ef̃KX(u)

∣∣∣ > λ
)
≤ 2 exp

(
−min

(
nXλ

2

4vhX
,

3nXλ

4MhX

))
.
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Let us show that when

4CvarX
(log n)1+ξ

nXh
d1
X

≤ λ2 ≤ 9CvarX
2

‖K‖2d1∞
,

then, we have

(log n)1+ξ ≤ nXλ
2

4vhX
≤ 3nXλ

4MhX

.

Indeed,

nXλ
2

4vhX
≤ 3nXλ

4MhX

⇔ λ ≤ 3vhX
MhX

=
3CvarX

‖K‖d1∞

⇔ λ2 ≤
9C2

varX

‖K‖2d1∞

and

(log n)1+ξ ≤ nXλ
2

4vhX
⇔ 4CvarX (log n)1+ξ

nXh
d1
X

≤ λ2.

Therefore when

4CvarX
(log n)1+ξ

nXh
d1
X

≤ λ2 ≤ 9CvarX
2

‖K‖2d1∞
,

P
(∣∣∣̃fKX(u)− Ef̃KX(u)

∣∣∣ > λ
)
≤ 2 exp

(
−min

(
nXλ

2

4vhX
,

3nXλ

4MhX

))
= 2 exp

(
−nXλ

2

4vhX

)
≤ 2 exp

(
−(log n)1+ξ

)
.
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